
Summary and discussion of: “Why Does Unsupervised

Pre-training Help Deep Learning?”

Statistics Journal Club, 36-825

Avinava Dubey and Mrinmaya Sachan and Jerzy Wieczorek

December 3, 2014

1 Summary

1.1 Deep Learning and All That

Before getting into how unsupervised pre-training improves the performance of deep archi-
tecture, let’s first look into some basics. Let’s start with logistic regression, which is one
of the first models for classification that is taught in machine learning. Logistic classifica-
tion deals with the supervised learning problem of learning a mapping F : X → Y given
a set of training points X = {x1 . . .xn} and a set of class labels Y = {y1, . . . , yn} where
xi is assigned a class label yi. The mapping is defined by the function p(Y = 1|X) =

1
1+exp (−(WTX+b))

. There is another way of looking at the logistic classifier. One can think

of the X as input to a node in a graphical model and the node does two things: it sums
up the inputs multiplied by weights of the edges and then applies a sigmoid on the result.
A diagram representing such a function is shown in Figure 1. The node that performs the
summation and the non-linear transformation is called a neuron. The summation function
is called input activation (a(x) = W TX + b) and the non-linear transform (h(x) = g(a(x))
is called output activation of the neuron.

Let’s take a look at an example in Figure 2. An AND function can clearly be modelled
using a neuron but a XOR function cannot be directly modelled using a single neuron. If

Figure 1: Diagram representation of logistic regression as a simple neural network

1



Figure 2: AND function on the left can be easily modelled by a single neuron, whereas a
XOR function cannot be modelled using a single neuron, but after feature transform (on
the right) it can be modelled

Figure 3: Top row represents a deep neural network, whereas the bottom row explains how
the final function f(x) is calculated

we can somehow transform the feature representation into a different representation shown
in the right then another neuron can be used to learn the XOR function. This is the basic
intuition behind deep neural networks. The hope of a multi-layered neural network is that
the first layer of the neural network would learn a basic transformation of the input features.
The second layer would learn a transformation of the output of the first layer and so on.
This intuition will also be very helpful in pre-training.

Figure 3 shows a deep neural network of L layers. An interesting aspect of how the
output function f(x) is calculated is shown in the second row. The flow helps in identifying
where the parameters of the model interact with the final output. This helps in learning the
model. The parameters of the model are learned by empirical risk minimization and usually
stochastic gradient descent is used to get to the solution. It can be easily seen that this is
a non-convex optimization problem with multiple minima. To get the partial derivative of
the model with respect to a particular parameter we find the place where it interacts with
the final objective and using the chain rule we calculate backwards the derivative. This
method is called back propagation.

2



1.2 Unsupervised Pretraining

Let’s get back to one of the prior motivations of going deep with neural networks. One of
the primary reason for doing so was to capture transformations of input features and then
further transformations of the output of the first layer and so on. Learning a representation
was not part of the learning method described above. One trick to learn the representation
is to reproduce the input. Suppose we want to learn a L depth neural network. We start
by first training the first layer so that the input can be produced as output. The is shown
in the first row of Figure 4. By trying to reproduce the output the hope is that the neurons
will learn a representation of the input. This is called an auto-encoder. (If noise is added
to the input, but not to the output which is meant to be learned, then it is a denoising
auto-encoder.) Next, weights of the first layer are kept fixed and the second layer’s weights
are learned so as to reproduce the output of the first layer. This hopes to capture a bit
more complex of a representation than the first layer. This method of greedily training each
layer one at a time is called pre-training with stacked auto-encoders. Finally all the weights
are initialised to the learnt weights and the backpropagation algorithm is run on supervised
data to get the final weights. This step is called finetuning. This procedure of learning
has been shown to outperform just learning a DNN all at once from randomly initialised
weights. There were two prominent hypotheses that were proposed in the paper to justify
why this way of training works better than no pre-training.

The Optimisation Hypothesis: The first hypothesis is that since this is a non-convex
optimisation problem the pre-training helps in providing a better initialisation point leading
to better optimisation of the empirical risk.

The Regularisation Hypothesis: The second hypothesis that this paper checks for
is whether such a method acts as a better regularisation and hence leads to a better gener-
alization error.

1.3 Experiments in the Paper

Experimental setup: The paper presents a host of large-scale simulations that make
useful connections to the two hypotheses. The main experiments are carried out on the
MNIST dataset (or the Infinite MNIST dataset). The MNIST dataset [3] is comprised of
60,000 training and 10,000 testing examples of 28x28 handwritten digits in gray-scale and
the task is to classify the digits into one of 10 classes (0-9). The InfiniteMNIST dataset [4] is
an extension of the MNIST dataset and potentially contains an infinite number of examples
obtained by performing random elastic deformations of the original MNIST digits. The
experiments use Deep Belief Networks (DBNs) containing either Bernoulli RBM layers,
Stacked Denoising Auto-Encoders (SDAE) with Bernoulli input units, or standard feed-
forward multi-layer deep neural networks (DNNs) with 1-5 hidden layers.

Each hidden layer contains the same number of hidden units. The number of hidden
units, learning rate, the L2 penalty / weight decay, and the fraction of stochastically cor-
rupted inputs (for SDAE) are hyper parameters and are tuned by a grid search among a
small set of values on the validation set: number of hidden units ∈ {400, 800, 1200}, learning
rate ∈ {0.1, 0.05, 0.02, 0.01, 0.005}, L2 penalty coefficient ∈ {104, 105, 106, 0}, pre-training
learning rate ∈ {0.01, 0.005, 0.002, 0.001, 0.0005}, corruption probability ∈ {0.0, 0.1, 0.25, 0.4},
and tied weights ∈ {yes, no}. For MNIST, the number of supervised and unsupervised

3



Figure 4: Pre-training a DNN. The first row represents the first layer being trained to
reproduce X, the second row is where the first layer’s weights are fixed and the second layer
is trained to reproduce the output of the first layer, and so on. Finally we make use of the
supervised data to learn all the weights after they have been initialised to the weights learnt
in the previous step

4



Figure 5: Plots showing the effect of depth on performance for a model trained on the
MNIST dataset. Plot on the left shows the case when unsupervised pretraining is not used
and the plot on the right shows the case when unsupervised pre-training is used. The depth
of the network is varied from 1 to 5 hidden layers (networks with 5 layers failed to converge
to a solution, without the use of unsupervised pretraining). Box plots show the distribution
of errors associated with 400 different initialization seeds (top and bottom quartiles in box,
plus outliers beyond top and bottom quartiles). Images taken from [1]

passes through the data (epochs) is 50 and 50 per layer, respectively. With InfiniteMNIST,
we perform 2.5 million unsupervised updates followed by 7.5 million supervised updates.
The standard feed-forward networks are trained using 10 million supervised updates. For
MNIST, model selection is done by choosing the hyperparameters that optimize the super-
vised (classification) error on the validation set. For InfiniteMNIST, average online error
over the last million examples was used for hyperparameter selection. In all cases, purely
stochastic gradient updates were applied. For a given layer, weights were initialized using

random samples from Uniform
[
−1√
k
, 1√

k

]
, where k is the number of connections that a unit

receives from the previous layer.
Observation 1 (Better Generalization): Figure 5 plots the distribution of test

classification error, obtained with and without pre-training, as the depth of the network
varies from 1-5. As evident in the plot, the test classification error goes down as we move
from 1 to 4 hidden layers, whereas without pre-training the error goes up after 2 hidden
layers. The authors report that they were unable to effectively train 5-layer models without
use of unsupervised pre-training. It is also evident that the error obtained on average
with unsupervised pre-training systematically lower than without the pre-training. More
importantly, it can be observed that the pre-trained model appears also more robust to
the random initialization as compared to the the model without pre-training. This can be
interpreted from observing the width of the quartile boxes in the two plots - the number
of bad outliers grow more slowly when unsupevised pre-training is used. Also, the gain
obtained with unsupervised pretraining is more pronounced as we increase the number of
layers, as is the gain in robustness to random initialization.

5



Figure 6: Plots showing histograms presenting the test errors obtained on the MNIST
dataset using models trained with or without pre-training (400 different initializations each).
The plot on the left is when the network employs 1 hidden layer, whereas the plot on the
right is when the network employs 4 hidden layers. Images taken from [1]

The last observation is further clarified in Figure 6 which plots the histograms of the test
errors using models trained with or without pre-training. The increase in error variance
and mean for deeper architectures without pre-training as compared to the pre-trained
model seen in the plot along with the findings in Figure 5 supports the authors arguments
that increasing depth increases the probability of finding poor apparent local
minima when starting from random initialization and unsupervised pre-training
is robust with respect to the random initialization seed.

Observation 2 (Better Features): Figure 7 shows the weights (filters) of the first
layer of a DBN before and after supervised fine-tuning when pre-training is used and also
when pre-training is not used. For visualizing what units do on the 2nd and 3rd layer, the
activation maximization technique [2] was used. First, we can roughly observe increasing
granularity of features that are observed in various layers in these deep nets. The first layer
learns some kinds of stroke-like local features, the second layer learns some kinds of edge
features and the third layer learns features which more closely resemble the digits. When
pre-training is not used, while the first layer filters do seem to correspond to localized fea-
tures, 2nd and 3rd layers are not as interpretable anymore. The authors attribute this to the
problem of high non-convex nature of the objective - unsupervised pre-training “locks”
the training in a region of the parameter space that is essentially inaccessible
for models that are trained in a purely supervised way.

Observation 3 (Different model trajectories): This experiment supports the last
argument that the pre-trained and un-pre-trained models cover very different regions in
parameter space - possibly alluding to the fact that the un-pre-trained parameter trajecto-
ries many indeed be getting stuck in many different apparently not-so-good local minimas.
Figure 8 compares the function (the ordered set of output values associated with the inputs)
represented by each network when pre-training is used or not. For a given model, all its

6



Figure 7: Visualization of image filters learned by a 3 layer DBN trained on InfiniteMNIST
dataset. The top figures contain a visualization of filters after pre-training, the middle ones
picture the same units after supervised fine-tuning, and the bottom ones picture the filters
learned by a network without pre-training. From left to right: units from the 1st, 2nd and
3rd layers, respectively. Images taken from [1]

Figure 8: 2D visualizations with tSNE (left) and ISOMAP (right) of the functions repre-
sented by 50 networks with and 50 networks without pre-training, as supervised training
proceeds over the MNIST dataset. Color from dark blue to cyan indicates a progression in
training iterations. Images taken from [1]

7



Figure 9: Evolution without pre-training (blue) and with pre-training (red) on the MNIST
dataset of the log of the test NLL plotted against the log of the train NLL as training
proceeds. Each of the 2 × 400 curves represents a different initialization. The errors are
measured after each pass over the data. The rightmost points were measured after the
first pass of gradient updates. Since training error tends to decrease during training, the
trajectories run from right (high training error) to left (low training error). Images taken
from [1]

outputs on the test set examples were computed and concatenated as one long vector sum-
marizing where it stands in “function space” - leading to one such vector for each partially
trained model. Many learning trajectories were plotted, one for each initialization seed,
with or without pre-training. Using two well-known dimensionality reduction algorithms,
these vectors were mapped to a two-dimensional space for visualization. The points are
colored according to training iteration numbers, to help follow the trajectory movement.

The first plot (plot on the left) shows that: (a) Pre-trained and not pre-trained
models start and stay in different regions of function space, (b) We see that all
trajectories of a given type (with pre-training or without) initially move together. However,
at some point, the trajectories corresponding to the un-pre-trained models diverge
and never get back close to each other. However, the pre-trained trajectories, seem
to be converging to a smaller space after an intermittent divergent behavior.

The second plot (plot on the right) show that the pre-trained models live in a disjoint
and much smaller region of space than the un-pre-trained models. Indeed the pre-trained
solutions appear to become all the same, and their self-similarity increases with time. This
is another confirmation of the fact that while un-pre-trained parameter trajectories many
indeed be getting stuck in many different local minimas, the local minimas obtained by
pre-trained model are much smaller in number and lead to better solutions.

Observation 4 (Effect of Pre-training on Training Error): All of the above
experiments are ambivalent with respect to the two hypothesis proposed in the paper.
Evidence such as the control in the generalization error as the model complexity (number
of layers) goes up (Figures 5 and 6) when pretraining is used points to the pretraining having
some regularization effect. At the same time, Figure 8 point out that the pre-trained and
un-pre-trained models indeed have different model trajectories hinting at some optimization
effect as well. The next experiment wishes to discriminate between the two hypothesis.

To do so, it recalls a well known property of regularizers. The optimization and regu-
larization hypotheses diverge on their prediction on how unsupervised pre-training should

8



Figure 10: Effect of layer size on the changes brought by unsupervised pre-training, for
networks with 1, 2 or 3 hidden layers on the MNIST dataset. Error bars have a height of
two standard deviations (over initialization seed). Images taken from [1]

affect the training error: the former predicts that unsupervised pre-training should result in
a lower training error, while the latter predicts the opposite. To ascertain the influence of
these two possible explanatory factors, this experiment looks at the test cost (Negative Log
Likelihood on test data) obtained as a function of the training cost, along the trajectory
followed in parameter space by the optimization procedure. Figure 9 shows 400 of these
curves started from a point in parameter space obtained from random initialization, that
is, without pre-training (blue), and 400 started from pre-trained parameters (red) when the
number of hidden layers were varied from 1-3. As the training progresses, the training error
(and hopefully the test error) drops. So the curve proceeds from top-right end in the figures
to the bottom-left.

It can be observed that: (a) Unsupervised pre-training reaches lower training cost than
no pre-training for 1 layer DNNs, where it hints at better optimization; (b) At a same
training cost level, the pre-trained models systematically yield a lower test cost than the
randomly initialized ones. This hints at a better generalization and the regularization
hypothesis.

Observation 5 (Influence of the Layer Size): Recall another well known property
of regularizers - effectiveness of regularization increases as complexity of the model (number
of hidden units, number of layers) increases. If the regularization hypothesis was to be true
then we should see a trend of increasing effectiveness of unsupervised pre-training as the
number of units per layer are increased. This is indeed the case in Figure 10. Figure 10
plots the generalisation error against the number of hidden units (varied from 10 to 1000)

9



Figure 11: Comparison between 1 and 3-layer networks trained on the InfiniteMNIST
dataset showing online classification error, computed as an average over a block of last
100,000 errors. Image taken from [1]

for 1-3 layer neural networks when pre-training (RBM pre-training and denoising auto-
encoder pre-training) is used or not. A systematic effect is observed for all three cases:
while unsupervised pre-training helps for larger layers and deeper networks, it also appears
to hurt for small networks, hence, supporting the regularization hypothesis.

Observation 6 (Effect of Pre-training with Very Large Data Sets): To moti-
vate these set of experiments, we recall another well known property of regularizers - the
effectiveness of a canonical regularizer decreases as the data set grows. However, this stands
in direct conflict with the optimization hypothesis. According to the optimization hypoth-
esis, the early examples determine the basin of attraction for the remainder of training,
and hence, the early examples have a disproportionate influence on the configuration of
parameters of the trained models.

To further probe this, the paper plots the online classification error (on the next block
of examples, as a moving average) for 6 architectures that are trained on InfiniteMNIST:
1 and 3-layer DBNs, 1 and 3-layer SDAE, as well as 1 and 3-layer networks without pre-
training in Figure 11. Here, we can observe that (a) 3-layer networks without pre-training
are worse at generalization, compared to the 1-layer equivalents and (b) more importantly,
the pre-training advantage does not vanish as the number of training examples
increases.

This is further supported in Figure 12 which plots the online classification error as the

10



Figure 12: Error of 1-layer network with RBM pre-training and without, on the 10 million
examples of the InfiniteMNIST dataset used for training it. Image taken from [1]

training sample size rises in relation to a fixed test set. It can be seen that the pre-trained
model is better across the board on the training set. Both these results support
an optimization effect and seem to disagree with the resularization hypothesis. In the face
of this dichotomy, the authors claim that while pre-training does have a regulariza-
tion effect, unlike canonical regularizers (such as L1/L2), the effectiveness of
unsupervised pre-training as a regularizer is maintained as the data set grows.

Observation 7 (Effect of Example Ordering): In the previous experiment, we
argued about the dependence of the basin of attraction on early data. The next experiment
tests to what extent the outcome of the model is influenced by the examples seen at different
points during training, and whether the early examples indeed have a stronger influence.
The experiment quantifies the variance of the outcome with respect to training samples at
different points during training, and compare these variances for models with and without
pre-training. Figure 13 plots the variance of the output of the networks on a fixed test set.
The samples at the beginning seem to influence the output of the networks more
than the ones at the end. Moreover, this variance is lower for the networks that
have been pre-trained. A caveat is that both networks also seem more influenced by
the last examples used for optimization. This is simply a property of SGD with a constant
learning rate - which gives more weight to recent datapoints.

Observation 8 (Pre-training only k layers): The next experiment explores the case
when only the bottom k layers are pre-trained (top n−k layers are randomly initialized) as
opposed to all the layers. Figure 14 plots the outcome of this experiment for both MNIST
and InfiniteMNIST datasets. The first plot (plot on the left) plots the trajectories (log(train
NLL) vs. log(test NLL)). Again, the trajectories go roughly from the right to left and from
top to bottom. Here, we see that the final training error (after the same number of

11



Figure 13: Variance of the output of a trained network with 1 layer. The variance is
computed as a function of the point at which we vary the training samples. Image taken
from [1]

Figure 14: On the left: for MNIST, a plot of the log(train NLL) vs. log(test NLL) at each
epoch of training. We pre-train the first layer, the first two layers and all three layers using
RBMs and randomly initialize the other layers; we also compare with the network whose
layers are all randomly initialized. On the right: InfiniteMNIST, the online classification
error. We pre-train the first layer, the first two layers or all three layers using denoising
auto-encoders and leave the rest of the network randomly initialized. Image taken from [1]

12



epochs) becomes worse with pre-training of more layers. For the second plot (plot
on the right), online error is instead plotted on the InfiniteMNIST dataset. In both plots we
see that as we pre-train more layers, the models become better at generalization.
This too lends support to the regularization hypothesis.

2 Our Simulations

The simulations described in [1] are highly computationally expensive, requiring the fine-
tuning of 6 hyperparameters and, according to the authors, “months of CPU time.” We
chose to perform a few smaller, more focused tests in our simulations.

In subsection 2.1, we confirm the original paper’s claimed effects of layer size on training
and test error, when running models to convergence, using 3-layer DNNs with and without
pre-training via stacked denoising auto-encoders (SDAE). We also explore a comparison
with dropout training. Subsection 2.2 explores the effect of the number of layers and
computational budget when working with small layer sizes. Finally, subsection 2.3 returns
to the same questions but with the goal of training auto-encoders themselves, rather than
the predictive DNNs we have been training so far.

The simulations for subsection 2.1 use the Python library Pylearn2, which is built on
top of another Python library Theano. The simulations in subsections 2.2 and 2.3 are based
on the MATLAB code in the Stanford Deep Learning Tutorial [5].

2.1 How Do Layer Size and Dropout Affect 3-layer DNNs Run To Con-
vergence?

Figure 15 shows convergence paths of the training and test negative log-likelihoods in our
Pylearn2/Theano simulations, with and without pre-training. We trained DNNs with 3
hidden layers on the MNIST dataset. Pre-training used SDAEs. Each path (from several
different random weight initializations) shows the negative log-likelihoods improving, from
the upper right corner towards the lower left, both with and without pre-training.

The top plot shows DNNs with small layers of 64 hidden units each. As we expected
from [1], pre-training is not effective with small hidden layers, so that both the final training
error and the final test error tend to be higher with pre-training than without. Perhaps with
such small hidden layers, the backpropagation algorithm may already be optimizing “well
enough,” while the layers may be too small for pre-training to encode a useful representation
of the features.

The bottom plot shows larger DNNs with 500 units per hidden layer. Now we are in
the range where pre-training can help, and we see the pattern from [1] suggesting that the
pre-trained DNNs tend to have lower test error but higher training error. This is evidence
for the regularization hypothesis (since pre-training generalizes better) and against the
optimization hypothesis (since pre-training does not reduce training error).

Figure 16 shows convergence paths from the same experiment, with even larger DNNs
of 1200 units per hidden layer, as well as a partial convergence path from the same DNN
but with dropout (and no pre-training). Here we see that pre-training converges to lower
training and test errors than without pre-training, which favors both the optimization and
regularization hypotheses. The single incomplete run of dropout training, which did not

13



finish converging in the time allotted, suggests that dropout could eventually converge to a
lower test error than the other two approaches.

2.2 How Does Number of Layers Affect Small-Layer DNNs With Fixed
Convergence Budgets?

Figure 17 shows boxplots of the training and test error rates in our MATLAB simulations,
with and without pre-training. Starting from 10 different random weight initializations, we
trained DNNs with 1 to 4 small hidden layers, of 64 units each, on the MNIST dataset.
Pre-training used SDAEs. Here, denoising means that when training each greedily-trained
hidden layer, a random 10% of the inputs (data pixels or hidden units) to the layer were
set to 0, while the unedited input was used as the output target.

In order to investigate the effects of computational budget and early stopping, we ran
each initialization of each model for a specified convergence budget, in terms of iterations
of batch gradient descent:

• Models marked “WithPretrain” ran for 50 iterations per greedily-trained hidden layer
in the auto-encoder, plus another 50 iterations of backpropagation to finetune the
final model, for a total of 50 × (L + 1) iterations, where L is the number of hidden
layers.

• For fair comparison with the total number of training iterations, the models marked
“WithoutPretrainFull” ran backpropagation on the whole model (from random initial
weights) for the same 50× (L + 1) total number of iterations.

• For fair comparison with the number of fine-tuning iterations (i.e. after the weights
are either pre-trained or randomly initialized), the models marked “WithoutPretrain-
EarlyStop” ran backpropagation on the whole model (from random initial weights)
for only 50 total iterations.

The top plot of Figure 17 shows the training errors. In almost every case, “Without-
PretrainFull” had enough iterations in its budget to converge fully to 0 training error. The
model with pre-training had non-negligible training error that grew slowly with the num-
ber of layers, suggesting that it takes longer to converge with pre-training than without,
even for the small layer sizes here. Finally, the models “WithoutPretrainEarlyStop” had
training error that grew far more quickly (with number of layers) than for the models with
pre-training. In fact, the models with pre-training had lower training error than “Without-
PretrainEarlyStop” except for the very smallest (single-hidden-layer) setup. This suggests
that pre-training does indeed help initialize the weights to better-than-random values for
the training set, which supports the optimization hypothesis.

The bottom plot of Figure 17 shows the corresponding test errors. The patterns and
conclusions are very similar to the training errors, except that the “WithoutPretrainFull”
models no longer have negligible error.

This difference is made clearer in Figure 18, a scatterplot of the training and test errors
with a line overlaid at y = x. Both early stopping and pre-training give values very close
to the line, showing that their training and test errors are very close. This supports the
regularization hypothesis: the performance on the training set is not overfit, and instead it

14



Figure 15: Convergence paths (starting at upper right and ending at lower left) of the
training and test negative log-likelihoods from Pylearn2/Theano simulations on the MNIST
dataset. 3-hidden-layer Deep Neural Networks, with either 64 (top) or 500 (bottom) units
per hidden layer, were run until convergence. Pre-training used SDAEs.

15



Figure 16: Convergence paths (starting at upper right and ending at lower left) of the
training and test negative log-likelihoods from Pylearn2/Theano simulations on the MNIST
dataset. 3-hidden-layer Deep Neural Networks with 1200 units per hidden layer were run to
convergence, except for dropout, which did not converge in the time available. Pre-training
used SDAEs.

16



is a good measure of the performance on future data. However, the “WithoutPretrainFull”
model shows signs of overfitting: the training error is near 0, but the test error is far from
the line.

2.3 How Does Number of Layers Affect Small-Layer Auto-Encoders With
Fixed Convergence Budgets?

Our final test compares auto-encoders with and without pre-training. Here our pre-training
is done just as before, except that we do not fine-tune after pre-training to predict the label
(the digit which that MNIST image represents); instead, we fine-tune to predict the image
itself again. Without pre-training, we fit the full model at once with backpropagation to
predict the MNIST image from its own input.

(Note: neither the auto-encoders with nor without pre-training used denoising in this
experiment.)

As in the previous simulation, the pre-training runs for 50 iterations per greedily-trained
hidden layer, followed by another 50 iterations for finetuning of the whole model. Without
pre-training, the auto-encoder has the “full budget” of 50× (L+ 1) total iterations starting
from random initial weights. With no classification error to report, instead we report the
root mean square error (RMSE) of the predictions: compute the squared error at each pixel,
average over pixels, and take the square root.

In the top plot of Figure 19 we see the training RMSEs. The models with pre-training
have a training error that rises with the number of hidden layers, but more and more
slowly as the number of layers grows. This suggests a kind of regularization again: the
pre-trained auto-encoder does not get dramatically worse as the number of parameters in
the model grows. On the other hand, the model without pre-training begins with a lower
RMSE for the single-hidden-layer network, but catches up to and even surpasses the pre-
trained model’s RMSE for the 4-hidden-layer network. This suggests that an auto-encoder
with backpropagation alone is not enough: greedy layer-wise pre-training provides some
additional benefit, at least for larger models and for this kind of convergence budget.

The test RMSEs, in the bottom plot of Figure 19, look almost identical and provide the
same conclusions.

However, it may be unfair to compare this auto-encoder without pre-training to a general
DNN without pre-training (as in previous sections), since the auto-encoder’s model is so
much larger than the other DNN’s. In the latter, the final set of weights only takes each
hidden unit to 10 output nodes (one per MNIST digit). In the auto-encoder, each hidden
unit connects to 282 = 784 nodes for the 28-by-28 pixelated images, leading to far more
parameters in the final weight vector.

Finally, it may seem surprising that the single-hidden-layer auto-encoder without pre-
training had much lower RMSEs than with pre-training. Most likely, this happens because
of the two-step nature of the version with pre-training: First, we train the single-hidden-
layer auto-encoder for 50 iterations. Second, we discard the top set of weights (from the
hidden layer to the output layer), replace them with random initial weights, and finetune
for a final 50 iterations. Those top-level weights must be discarded for pre-training other
DNNs, but actually would have been useful here, so this two-step process puts pre-training
at a disadvantage when the goal is to train a 1-hidden-layer auto-encoder.

17



Figure 17: Boxplots of training and test errors from MATLAB simulations on the MNIST
dataset. 1- to 4-hidden-layer Deep Neural Networks, with 64 units per hidden layer, were
trained for a specified number of batch gradient descent iterations. Pre-training used
SDAEs.

18



Figure 18: Scatterplot of training vs. test errors from MATLAB simulations on the MNIST
dataset. 1- to 4-hidden-layer Deep Neural Networks, with 64 units per hidden layer, were
trained for a specified number of batch gradient descent iterations. Pre-training used
SDAEs. Each point is a number, indicating the number of hidden layers used for that
run.

3 Discussion

Class discussion, on Deep Learning in general:

• Is “Deep Learning” the same thing as “a Deep Neural Network (DNN)
with unsupervised pre-training”? There is an overlap, since the specified model
is a common type of DL model. But the term DL also covers other deep architectures,
such as Deep Belief Nets (DBNs), which are made of stacked Restricted Boltzmann
Machines (RMBs) instead.

• If your auto-encoder reduces dimensionality by having few hidden units,
do you still benefit from denoising too? Yes: denoising may help to smooth the
functions that you are learning, while the bottleneck (having few hidden units) adds
sparsity. Think of doing PCA with an L2 penalty—each part gives you a different
benefit.

• Even the worst non-pre-trained network’s performance on the MNIST data
was really good, with accuracy in the high 90%’s, so there’s not much room
for pre-training to show dramatic improvement. How does Deep Learning
do on harder problems? Good question, and worth exploring given more time!

• Why do people seem to be more focused on Deep Learning than on using
kernels for new feature representations? It may be easier to specify aspects of
the model such as sparsity with an explicit deep network (with sparse connections at

19



Figure 19: Boxplots of training and test RMSEs from MATLAB simulations on the MNIST
dataset. 1- to 4-hidden-layer DNN auto-encoders, with 64 units per hidden layer, were
trained for a specified number of batch gradient descent iterations. Pre-training used stacked
auto-encoders (but no denoising).

20



each layer) than with a kernel representation. Kernels may also be harder to scale up.
However, there is current research into “deep kernels” too.

• Why does it seem Deep Learning is used mostly for image data? Why
not for non-image data, like genetics? There’s no reason you couldn’t use it for
genetics too. But the auto-encoders are easier to check and visualize for image data:
you can make those nice plots of the “image filters” that the weights correspond to,
and inspect them visually, and print them in your NIPS paper. You can do the same
with audio data, finding the sounds or pitches or rhythms that your hidden units
correspond to. But it probably wouldn’t look like anything meaningful with genetics
data. Convolutional neural nets (which we didn’t discuss today) are also nice with
image data, since your network could have hidden layers that are e.g. edge detectors,
which then get convolved around the image to build up higher-level representations...
and again, there may not be an obvious equivalent interpretation with genetics data.

Class discussion, on the loss function and regularization vs. optimization hypotheses:

• If pretraining is a regularizer, doesn’t it actually change the shape of the
loss function somehow? Yes, in a way, but it’s not an explicit penalty that you
can simply add to the cost function and then optimize the sum. It may help to think
about priors over the unmodified cost function instead.

• We talk about pre-training as a “prior” on the basins of attraction. But
what if you used a more aggressive line search that could jump from one
basin of attraction to other? Then the “prior” is clearly dependent on the opti-
mization algorithm you use. Indeed, Deep Learning seems to be inherently intertwined
with decisions about how to perform the optimization, when to stop convergence, etc.

• Does pre-training somehow make the basins of attraction steeper, to make
it harder to leave a basin? Perhaps—that may be why the pre-trained results
seems to have far less variability (over many random initializations) than without
pre-training.

Class discussion, on the simulations:

• Where does randomness come in to the simulations? Isn’t backpropagation
etc. deterministic? It’s a deterministic optimization, but we start with randomly
initialized weights. Also, the denoising step in the pre-training involves adding random
noise to the inputs.

• How and when did the authors of [1] stop the convergence? Did they
use the same number of runs for all numbers of layers, or more for larger
networks, etc.? This was unclear in the paper. But they seem to have optimized
hyperparameters for each setting (by cross-validation), so that at a given layer size,
number of layers, etc., the best pre-trained network is compared with the best non-
pre-trained network.

21



• How did we stop the convergence in our own simulations? How did we
avoid overfitting? We did not have time to cross-validate and find optimal hyper-
parameters. For the Pylearn2/Theano simulations, we ran each model until it hit 0
training error, or until the change (over iterations) in negative train log-likelihood fell
below a threshold. For the MATLAB simulations, we specified a fixed budget in terms
of the number of batch gradient descent iterations.

• Why did dropout converge more slowly than the neural nets? Good question—
we are not sure.

• How much time (in minutes, not iterations) did our simulations take to
train? Without pre-training, the MATLAB simulations ran a whole network in
around 2 minutes per hidden layer. With pre-training, the first auto-encoder layer
took maybe 5 minutes (since the input and output are both huge, with 768 units
each), but the hidden layers’ auto-encoders were much faster (with just 64 units in
and out), around half a minute, and then the fine-tuning took another 2 minutes.

Disclaimer: Some portions of the content (figures and summary) has been taken/paraphrased
from the original paper [1]. We do not claim originality of the scribe.

References

[1] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vin-
cent, and Samy Bengio. Why does unsupervised pre-training help deep learning? The
Journal of Machine Learning Research, 11:625–660, 2010.

[2] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing
higher-layer features of a deep network. Technical Report 1341, University of Montreal,
jun 2009. Also presented at the ICML 2009 Workshop on Learning Feature Hierarchies,
Montréal, Canada.

[3] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[4] Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training invariant support vector
machines using selective sampling. Large Scale Kernel Machines, pages 2278–2324,
2007.

[5] Andrew Ng. Unsupervised feature learning and deep learning tutorial. http://

deeplearning.stanford.edu/tutorial/. Accessed: 2014-12-03.

22


