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1 Introduction

Multi-layered (i.e. deep) artificial neural networks have recently undergone a resurgence in
popularity due to improved processing capabilities and the increasing availability of large
datasets. Popular in the 1980’s and before, they were largely abandoned in favor of convex
methods (such as support vector machines) that came with optimality guarantees and often
gave better results in far less time. However, with the modern ubiquity of GPUs and
distributed computing, the same methods that were once spurned for their computational
intractability have become the de-facto standard for large-scale commercial applications in
companies such as Google, Facebook, Baidu, etc. This almost universal adoption of deep
learning (as it’s now called) is not without reason; variants of these methods have achieved
state-of-the-art performance (often by a significant margin over other competing algorithms)
on numerous tasks such as image classification, speech recognition, etc.

While improved computational power has allowed these models to be trained in a mod-
erate amount of time, their performance is tied to the quantity and quality of the available
training data. Deep neural networks are often very large, often consisting upwards of mil-
lions (or even billions) of parameters whose values must all be learnt from data. Thus, like
any statistical model, they are susceptible to overfitting and typically require huge quanti-
ties of labeled training examples. Furthermore, the optimization landscape for the network
parameters is highly non-convex with many local optima. So even with sufficient training
data, the performance of a trained model could still be poor. These problems have been
addressed empirically by a surprisingly simple method referred to as dropout. First intro-
duced by Geoffrey Hinton, dropout has become an important component in most modern
deep learning implementations because it results in reduced overfitting and often reaches
better local minima. Even so, very little is understood theoretically about why this should
be the case. The paper Dropout Training as Adaptive Regularization is one of several recent
papers that attempts to understand the role of dropout in training deep neural networks.

1.1 A Motivating Example

To motivate the use of dropout in deep learning, we begin with an empirical example of
its success originally given in [3]. Specifically, the authors considered the TIMIT dataset,
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a benchmark for recognition of clean speech with a small vocabulary. This task was ap-
proached using a neural network with four fully-connected hidden layers of 4000 units per
layer and 185 softmax output units for representing the 39 distinct output classes. Fig-
ure 1 summarizes the results of this experiment both with and without dropout. Because
of the relatively small amount of available training data, the network demonstrates obvious
overfitting resulting in almost perfect training accuracy but very poor testing performance.
However, we can see that dropout appears to act as a type of regularizer and gives worse
training performance but improved testing performance. Furthermore, we can see that the
final convergence accuracy is better than what would have been achieved by stopping the
training process early. This demonstrates that dropout could allow for finding better local
minima. The resulting model achieved state-of-the-art recognition rates: 22.7% without
dropout and 19.7% with dropout.

(a) Training (b) Testing

Figure 1: Classification error rates for the TIMIT benchmamrk on both training (a) and
testing (b) data. Note that without dropout, the network overfits to the training data
resulting in almost perfect training performance but much worse testing accuracy.

2 Artificial Feature Noising as Regularization

Because neural networks are highly nonlinear, consisting of layered compositions of func-
tions, they are difficult to analyze theoretically. Instead, we consider feature noising in
Generalized Linear Models (GLMs), which can be considered single-layer neural networks.

A GLM is a parametric model for regression that explicitly defines the conditional
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probability distribution of an output y ∈ Y given an input feature vector x ∈ Rd:

pβ(y|x) = h(y) exp{yx · β −A(x · β)} (1)

Given an i.i.d. training set {xi, yi}ni=1, the model parameters β can be found by minimizing
the empirical loss defined to be the negative log likelihood of the data:

β̂ = arg min
β∈Rd

n∑
i=1

ℓxi,yi(β), ℓxi,yi(β) = − log pβ(yi|xi) (2)

Artificial feature noising replaces the observed feature vectors xi with noisy copies x̃i =
ν(xi, ξi) where ν is a function of the input xi and an i.i.d. random variable ξi. We consider
two types of noise:

• Additive Gaussian noise: ν(xi, ξi) = xi + ξi, where ξi is a Gaussian random variable
ξi ∼ N (0, σ2Id).

• Dropout noise: ν(xi, ξi) = xi⊙ξi, where ξi is a vector of independent scaled Bernoulli(1−
δ) random variables with values ξij ∈ {0, (1− δ)−1}. This can be equivalently written
as follows:

x̃ij :=

{
0 w.p. δ

xij/(1− δ) w.p. 1− δ
(3)

Note that the expectation of the augmented variable x̃i with respect to the artificial feature
noise ξ is equal to the original feature vectors xi, i.e. Eξ[x̃i] = E[x̃i|{xi, yi}] = xi. Thus,
while simply replacing our data set with an augmented version {x̃i, yi}ni=1 would result in a
loss of information, if we average over multiple copies with different instantiations of noise,
then this noise will average out. If we consider averaging over m of these augmented copies

of our data set (where x̃
(j)
i denotes the augmented version of xi from the jth copy, the

optimization problem in Equation 2 becomes:

β̂ = arg min
β∈Rd

n∑
i=1

1

m

m∑
j=1

− log pβ(yi|x̃
(j)
i ) (4)

In the limit where m becomes large, we can replace the average with an expectation, which
is effectively equivalent to integrating over all possible instantiations of feature noise:

β̂ = arg min
β∈Rd

n∑
i=1

Eξ[− log pβ(yi|x̃i)] (5)

For GLMs, the negative log likelihood can be simplified further:

n∑
i=1

Eξ[− log pβ(yi|x̃i)] =
n∑

i=1

−(yEξ[x̃i] · β − Eξ[A(x̃i · β]) (6)

=

n∑
i=1

−(yxi · β − Eξ[A(xi · β]) +R(β) (7)

=
n∑

i=1

− log pβ(yi|xi) +R(β) (8)
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This is equivalent to the negative log likelihood of the original data, with an additional term
R(β) defined to be

R(β) =

n∑
i=1

Eξ[A(x̃i · β)]−A(xi · β) (9)

Since the log partition function A of a GLM is always convex, R must always be positive
by Jensen’s inequality. In addition, this term is independent of the training labels and can
thus be interpreted as a regularizer akin to ridge regression (which penalizes the L2 norm
of β) or lasso (which penalizes the L1 norm of β) that summarizes entirely the effects of
feature noising.

2.1 A Quadratic Approximation to the Noising Penalty

While the regularizer in Equation 9 is exactly equivalent to feature noising in a GLM with
an infinite number of noisy copies of the data, it is difficult to interpret and effectively
impossible to implement in general. Thus, we approximate it by taking a second-order
Taylor expansion of A around x · β to gain more insight. Specifically,

Eξ[A(x̃ · β)]−A(x · β) ≈ 1

2
A′′(x · β)Varξ[x̃ · β] (10)

since the first-order term Eξ[A
′(x · β)(x̃ − x)] vanishes because Eξ[x̃] = x. This allows

Equation 9 to be approximated as follows:

Rq(β) :=
1

2

n∑
i=1

A′′(xi · β)Varξ[x̃i · β] (11)

This can be interpreted as penalizing both the variance of the response yi in the GLM A′′(xi ·
β) and the variance of the estimated parameters due to noising Varξ[x̃i ·β]. Empirically, this
quadratic approximation has been found to be accurate for logistic regression, although it
tends to overestimate the true penalty when p ≈ 0.5 and underestimate it for very confident
predictions. Thus, fitting a logistic regression model with this approximate regularization
term results in very similar results to using actual dropout.

2.2 Regularization based on Additive Noise

This quadratic noising regularizer in Equation 11 is general and can be applied to any GLM.
To give some intuition for the effects of feature noising on learning process, we first focus on
Gaussian additive noise and two specific examples: linear regression and logistic regression.

If x̃ = x+ϵ is generated by adding Gaussian noise with Var[ϵ] = σ2Id. Then, Var[x̃ ·β] =
σ2 ∥β∥22.

2.2.1 Linear Regression

For linear regression, A(z) = 1
2z

2 so A′′(z) = 1. Plugging this information into Equation 11
results in the simplified noising penalty:

Rq(β) :=
1

2
σ2n ∥β∥22 (12)
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Since the quadratic approximation is exact, this demonstrates the known relation that
Gaussian feature noising is equivalent to ridge regression.

2.2.2 Linear Regression

For logistic regression, A′′(xi · β)pi(1− pi) where

pi := 1/(1 + exp(−xTi β)) (13)

is the predicted probability that yi = 1. The resulting quadratic penalty is:

Rq(β) :=
1

2
σ2 ∥β∥22

n∑
i=1

pi(1− pi) (14)

Thus, the noising penalty not only encourages parsimony by encouraging ∥β∥22 to be small,
but also confident predictions by encouraging pi to be far from 1

2 .

2.3 Regularization Based on Dropout Noise

With dropout noise as defined in (3), then

Varξ[x̃i · β] =
δ

1− δ

d∑
j=1

x2ijβ
2
j . (15)

Then, substituting into (11), the quadratic approximation to the regularizer with dropout
noise is

Rq(β) =
1

2

δ

1− δ

n∑
i=1

A′′(xi · β)
d∑

j=1

x2ijβ
2
j

=
1

2

δ

1− δ
βTdiag(XTV (β)X)β,

(16)

where X ∈ Rn×d is the design matrix and V (β) ∈ Rn×n is a diagonal matrix with entries
A′′(xi · β). If we define β⋆ to be the MLE as n → ∞, then

1

n
XTV (β⋆)X =

1

n

n∑
i=1

∇2ℓxi,yi(β
⋆) = Î, (17)

an estimate of the Fisher information I. That is, the dropout regularizer is equivalent to
applying an L2 penalty after normalizing the feature vector by diag(I)−1/2—the L2 penalty
is applied in a basis where the features have been “balanced out.”

For linear regression, where V (β) = I (since A(z) = 1
2z

2 =⇒ A′′(z) = 1), the quadratic
penalty term becomes

Rq(β) =
1

2

δ

1− δ
βTdiag(XTX)β

=
1

2

δ

1− δ

d∑
j=1

β2
j x

T
j xj ,

(18)
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where xj := j-th column of X. Thus, the dropout regularizer is equivalent to applying an
L2 penalty (ridge regression) on a column-normalized X.

For logistic regression, where A′′(xi · β) = pi(1 − pi), the quadratically-approximated
regularizer becomes

Rq(β) =
1

2

δ

1− δ

n∑
i=1

d∑
j=1

pi(1− pi)x
2
ijβ

2
j . (19)

In this case, the interaction among pi(1− pi), β
2
j , and x2ij allows for large pi(1− pi) and β2

j

terms as long as x2ij is small. In particular, note that there is no penalty on βj for which
xij = 0. Therefore, dropout can learn feature weights for rare (i.e., xij = 0, often) yet
highly-discriminative (i.e., β2

j is large) features, since it incurs no penalty in increasing βj
in this case.

2.4 Dropout Regularization in Online Learning

Stochastic gradient descent (SGD) updates the estimate for the weight vector β at the t+1-
st training example according to β̂t+1 = β̂t − ηtgt, where gt := ∇ℓxt,yt β̂t) is the gradient of
the loss at the t-th training example. This process is equivalent to solving an L2-regularized
linear problem at each step (linear approximation to loss + L2 penalty on β):

β̂t+1 = argmin
β

{
ℓxt,yt(β̂) + gt · (β − β̂t) +

1

2ηt
||β − β̂t||22

}
(20)

Traditional SGD has difficulty (is slow) when learning weights for rare, highly discrim-
inative features (a setting in which dropout training can succeed), which motivated[2] to
propose AdaGrad, which changes the SGD update rule to β̂t+1 = β̂t − ηA−1

t gt, where At is

learned online; Duchi et al. use At := diag(Gt)
1/2, where Gt :=

t∑
i=1

gig
T
i .

The authors propose changing the L2 regularization term in (20) to their dropout reg-
ularizer:

β̂t+1 = argmin
β

{
ℓxt,yt(β̂) + gt · (β − β̂t) +Rq(β − β̂t; β̂t)

}
, (21)

where Rq(β − β̂t; β̂t) is centered at β̂t:

Rq(β − β̂t; β̂t) :=
1

2
(β − β̂t)

Tdiag(Ht)(β − β̂t), (22)

where Ht :=
t∑

i=1
∇2ℓxi,yi(β̂). Therefore, dropout descent is equivalent to adaptive SGD with

At = diag(Ht). For GLMs, Gt and Ht are both consistent estimates of the Fisher informa-
tion, so both AdaGrad and dropout SGD achieve their similar performance improvement
(particularly for learning weights for rare yet highly discriminative features) by scaling
features by the Fisher information. However, AdaGrad has a more aggressive learning rate.
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2.5 Semi-Supervised Dropout Training

Note that the regularizer defined in (9) does not depend on the labels y. Therefore, we can
use unlabeled training examples to get a better estimate of R(β). If we have an unlabeled
dataset {zi}mi=1, we define a semi-supervised penalty estimate by

R⋆(β) :=
n

n+ αm
(R(β) + αRunlabeled(β)) , (23)

where α ∈ (0, 1] is the discount factor for how much to weight the unlabeled data and
Runlabeled(β) indicates the value of R(β) applied to the unlabeled dataset Z. The authors
use this semi-supervised paradigm on text classification and including unlabeled data in the
regularizer improved performance in all their reported experiments.

3 Simulations

3.1 Data

We generated data as described in Appendix A.1 of the paper to illustrate the effective-
ness of dropout on learning rare, highly discriminative features. Data samples are 1050-
dimensional, with 50 discriminative features (each of which is active only 4% of the time)
and 1000 noise features. The discriminative features are drawn from an exponential dis-
tribution scaled such that the second moment is normalized; noise variables are generated
from N (0, 1). Each label yi is drawn from a Bernoulli distribution with parameter σ(xi ·β),
where the first 50 coordinates of β are 0.2792 (chosen such that E [|xi · β|] = 2 when there
is a signal).

3.2 Experiments

We performed logistic regression on data simulated as described in 3.1, under several
regularization conditions:

3.2.1 Maximum likelihood estimation, with no regularization

First, we compared with unregularized MLE estimation using the GLMNET package. The
corresponding objective function is:

min
β

− ℓ(p) (24)

where ℓ(p) =
n∑

i=1
yi log pi + (1− yi) log(1− pi) and pi = 1/(1 + exp(−xi · β)).

3.2.2 MLE with L2 regularization

We also performed MLE optimization with an L2 regularization term with the optimal λ
parameter given in the original paper. The objective function is:

min
β

− ℓ(p) +
1

2
λ||β||22 (25)
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Figure 2: Generated features X and labels y.

3.2.3 MLE on dropout-noised datasets

We performed the same MLE optimization as described in 3.2.1, except with many copies
of the augmented dropout-noised data. Given a dataset X ∈ Rn×d, we create N noised

versions X̃i ∈ Rn×d for i = 1, ..., N and concatenate to form X̃ =

 X̃1
...

X̃N

 ∈ RNn×d. The

augmented ỹ ∈ RNn is just the original y ∈ Rn repeated N times. Then, we solve

min
β

− ℓ(p̃) (26)

where ℓ(p̃) =
N∑
i=1

nỹi log p̃i + (1− ỹi) log(1− p̃i) and p̃i = 1/(1 + exp(−x̃i · β)).
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3.2.4 MLE with dropout regularization

Here, we use the quadratic approximation to dropout noise, rather than optimizing over an
augmented dataset, as described in 3.2.3:

min
β

− ℓ(p) + λRq(β), (27)

where Rq(β) = 1
2

δ
1−δ

n∑
i=1

d∑
j=1

pi(1−pi)x
2
ijβ

2
j , the quadratic dropout approximation for logistic

regression, as defined in (19).
Note that this objective is nonconvex, due to the pi(1− pi) term in Rq(β). However, if

p is given, then the objective is convex. Therefore, we first assumed that p was fixed and
solved for the optimal β⋆, updated p = 1/(1+exp(−x̃i ·β⋆)), and repeated until convergence.
This approach worked quite well in our simulations.

3.2.5 MLE with dropout regularization with full-Fisher-estimate

Because dropout can be interpreted rescaling the features by an estimate of the diagonal of
an estimated Fisher information matrix, we also attempted to explicitly rescale the features
by the full estimated matrix. Specifically, for logistic regression, the optimization problem
becomes:

min
β

− ℓ(p) +
1

2
λ

d∑
j=1

β2
j

n∑
i=1

pi(1− pi)
n∑

k=1

xijxik (28)

As shown in Figure 3, this resulted in slightly improved performance in comparison to the
regular and L2-regularized MLE, it was not as effective as dropout or its quadratic approx-
imation. This could be explained by an insufficient amount data to accurately estimate the
full Fisher information matrix.

3.3 Findings

Figure 3a shows that dropout and its quadratic approximation slightly outperformed our
other methods in test accuracy over all training examples. Interestingly, Figure 3b illustrates
the sharp improvement of the dropout methods when performance is calculated just over
the active instances, where the rare-but-useful features are being used; in contrast, the
non-dropout methods show very little improvement in accuracy over active instances. This
result is due to dropout’s ability to focus on rare but highly discriminative features, whereas
simple MLE or MLE + ridge regression cannot give preferential weight to these types of
features.

Figure 4 shows the test accuracy of the approach described in 3.2.3, where we performed
simple maximum likelihood estimation on augmented noised datasets, as we varied the
noise parameter δ and the number of noisy copies. Generally, performance improves as the
number of noisy copies increases; accuracy over all examples (Figure 4a) sharply improves
when the number of training copies reaches a threshold around 20. Figure 4b gives a more
nuanced result for accuracy over active instances: as the dropout rate δ increases, the
number of copies required to achieve a higher accuracy actually decreases. Furthermore,
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Figure 3: Test accuracy on all and active instances.

while we might expect there to be a larger variation in performance as we vary δ in the
quadratic approximation, because the objective is nonconvex and we use an alternating
solution method, it is likely that it is not actually converging to the optimal local minima.
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4 Discussion

One point raised in class was a comparison of random forests to dropout training. A random
forest is a collection of decision trees where each split in the trees is calculated on a random
subset of the total number of features d, where the number of features d′ in the subset is
much smaller than the total number of features (typically, if there are d features, random
forests look at only d′ =

√
d features for each split). Then, all the random trees in the forest

vote on the final classification [1]. Both dropout training and random forests are essentially
getting rid of extra features (for dropout, those features that are randomly set to 0; for
random forests, those randomly-not-chosen d − d′ features that aren’t used in a split) and
training on multiple random subsets of features (for dropout, the multiple noised copies of
X that are used in the final training X̃ (as we performed in 3.2.3); for random forests,
each decision tree that votes). These techniques help both methods to avoid overfitting to
the training set and to find a better local optimum.
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