
Let Xi1, . . . Xin ∼ N(µi, σ
2) and Yi1, . . . Yin ∼ N(θi, σ

2) independently, for i = 1, . . .m. Think
of Xi1, . . . Xin as the expression levels of gene i for a set of n healthy patients, and Yi1, . . . Yin the
expression levels of gene i for a set of n sick patients. We will test the m hypotheses

Hi : µi = θi, i = 1, . . .m.

Specifically for each gene i, we will compute a t statistic
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2, and similarly for Yi1, . . . Yin.
We claim that screening out genes from this set in pre-processing, based on total variances, is

OK—in that, if we were to compute say FDR estimates using Benjamini-Hochberg on the reduced
set, then our estimates would still be valid. For this to be true, we would need to make sure that
the distribution of the null t statistics (null p-values) is unchanged after screening. Note that what
happens to the distribution of the non-null t statistics (non-null p values) is important for power
purposes, but does not concern us when it comes to FDR control.

Hence, it suffices to check that for the null genes i, in which µi = θi, the total variance
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where Mi denotes the mean of the joint sample Xi1, . . . Xin, Yi1, . . . Yin, is independent of Ti, the t
statistic for the ith gene. This can be seen in more than one way. From a classical stats perspective:
under the null in which the means are the same and therefore Xi1, . . . Xin, Yi1, . . . Yin are drawn
independently from the same normal model, Mi is a complete, sufficient statistic for σ2. But Ti is
ancillary to σ2; this can be seen by dividing numerator and denominator by σ, and noticing that it is
then entirely expressed in terms of normal variates within unit variance. Hence by Basu’s theorem,
the two are independent.
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