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Summary 

A new and consistent rank test for bivariate dependence is developed. Let X' and Y' denote the 
(approximate) normal scores associated with the iid vectors (X,, Y,), i= 1, . . ., n. Then the 
proposed test statistic may be obtained by removing the first Hajek projection from the quantity 

n-2E E IX/'- Xk'l Y - Ykl. Empirical characteristic function considerations are used in our 
development and some related graphical methods are proposed. Some difficulties that arise in 
extensions to dimension k >2 are noted. A small simulation study provides evidence of the 
effectiveness of the new procedure. 

Key words: Test for dependence; nonparameteric test; consistency; graphical methods; empirical 
characteristic function. 

1 Introduction 

This paper is concerned with the general problem of testing for dependence in the 
bivariate case. In this context we consider the independent, identically distributed random 
vectors (Xj, Yj), j = 1, . . ., n, but with unknown joint distribution, and we seek to test 
the null hypothesis H(, that X and Y are independent. Our emphasis will be on procedures 
consistent against nonparametric alternative classes, and hence appropriate for data from 
potentially complex distributional structures. In simpler situations, where the dependency 
has what can loosely be described as monotone character, the product moment 
correlation is generally used, and when robustness against nonnormality is important, 
tests such as the Spearman rank-correlation, Kendall-tau, and Fisher-Yates normal 
scores tests are often used instead. But these tests are not consistent in general, and in 
fact will not be appropriate even in the simple situation where Y has a non-monotone 
regression o n X, and X is sampled randomly. More interesting situations can arise in 
engineering applications where signals are modeled and simulated using expansions such 
as those of Karhunen-Loeve and it is of interest to test for dependency amongst the 
uncorrelated random coefficients that appear in such models. Other potential applications 
involve testing the adequacy of random number generators. Although our emphasis here 
is on the bivariate context, it is applications such as these, wherein the forms of 
dependency can be of a complex nature, that motivate the study of consistent tests for 
dependence. 

In part because simple forms of dependence are the most common, there is only a 
modest literature on the general problem of testing for dependence. The main exception 
is the H(,-distribution-free rank test first proposed by Hoeffding (1948) and given later in a 
more transparent form by Blum, Kiefer & Rosenblatt (1961). This test is based upon 

Bn = ff [F,(x, y) - Fx(x)Fy(y)]2 dF(x, y) (1.1) 
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where Fn is the sample cdf, and Fx, FY are the sample marginal cdf's for the (Xj, Yj). An 
alternative test based upon 

Rn = f [f(x, y)-fX(x)fY(y)]2a(x, y) dx dy (1.2) 

where the f, are kernel density estimates and a(x, y) is a weight function was studied by 
Rosenblatt (1975). This test is not H(-distribution-free, although in itself this fact does not 
in any important way affect the applicability of (1.2) as a practical testing procedure. In 
contrast however, Rosenblatt reported that tests based on density estimates typically are 
less powerful than those based on sample distribution functions; this fact is of significant 
concern for applications. Also surprising are the very different asymptotic distributional 
characters of (1.1) and (1.2) which, under H(), are a weighted sum of independent xI 
variates and normally distributed respectively, while under (fixed) alternatives are both 
normally distributed. In our discussions below, we shall uncover a reason for these 
irreconcilable differences. 

Although we shall use Fourier considerations, and in particular empirical characteristic 
functions (ecf's), to develop our proposal for a test statistic, the resulting procedures are 
more general than the context from which they arise. In fact our main proposal may be 
introduced and motivated in a suggestive alternative manner. To this end let X' and Y' 
denote the (approximate) normal scores associated with the Xi and Yi respectively. (Our 
definition for the approximate scores is given in (8.1) below.) Making use of the well 
known U-statistics identity 

1 Uj U- 
n EU i ( E vj =2 (Uj 

- 
Uk)(V- Vk) (1.3) n n n j 

we start here with the Fisher-Yates normal scores test statistic which we shall write in the 
form 

1 
2n2 (X' - Xk,)(Yi - Yk). (1.4) 
jn j k 

We next make an adjustment to the statistic (1.4); interjecting absolute value signs (and 
removing the factor of 2 from the denominator for convenience) we arrive at the form 

1 
2 E i- I E IY- IXJ. (1.5) 

j k 

Lastly, we shall now remove from (1.5) its first order Hajek projection. To do this we 
note that under independence 

-- Eo~ = 
n3(n x 1) 

- )( E y - Y ) (1.6) n (n - 1) j k j k 

so that the Hajek projection under H(, is 

j E,,[I- (X, Yr;)] = _ IX. k l li'-r;l 

2 

I n(n-1)(n-2) i k I 

2C > > Ix;-x;i.iY;-Y 'i. (1.7) n2(n-1)(n-2) E E E E I-Xkl I- l. (1.7) 

The calculations in (1.6) and (1.7) involve algebra based on the null distribution of 
random assignment of the X' scores to Y' scores. Consequently the projection corrected 
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form of (1.5), which is the difference between (1.5) and (1.7) is given by 

1 2 
-22lE E ix \xyi y2- ix;-x, . ri,-Y n j k n(n-l1)(n-2) j I m 

+ 
2 

Y' -- . (1.8) n (n- 1)(n-2) j k i (1. 

and this is equivalent to the test statistic we shall obtain using ecf methods below. 
Our main proposal for a test statistic for dependence is an ecf version of the statistics 

(1.1) and (1.2) and is presented in Section 4, but first, some related graphical methods are 

presented in Section 2, and some properties of dependence-related ecf quantities are 
discussed in Section 3. In Section 5, the relation to Rosenblatt's tests is discussed, and in 
Section 6, the asymptotic distributions are derived. Some analytical difficulties occur in 
extensions to dimension k > 2; this is described in Section 7. Finally, in Section 8, a brief 
numerical study is presented. 

2 Some Graphical Tools-The Correlographs 

New graphical tools of interest arise from the observation that X and Y are 

independent if and only if cov [f(X), g(Y)] = 0 for all f and g ranging over a separating 
class of functions (see for example Breiman, 1968, p. 165ff). Using a statistical computing 
package such as S, plots of covariances or correlations over such classes are easily 
obtained and may provide useful and interesting information concerning the structure of 

dependence. For example, consideration of the well-known separating class consisting of 
the functions cos (tx), sin (tx), t > 0 leads us to define the functions 

Pcc(s, t) = cov [cos (sX), cos (tY)] (2.1) 

cs(s, t) = cov [cos (sX), sin (tY)] (2.2) 

psc(s, t) = cov [sin (sX), cos (tY)] (2.3) 

p,s(s, t) = cov [sin (sX), sin (tY)]. (2.4) 

Figures la-d show a typical empirical realization of these functions for a standard 
bivariate normal sample of size n = 200 generated under independence, except that in 
these figures, sample correlations rather than covariances have been plotted. The domains 
in these perspective plots are 0 < s 30, 0 < t 3-0; the s -axis is at 45 degrees and the 
t-axis is at 135 degrees as shown in Fig. la. To obtain these plots, each function was first 
rescaled by its maximum absolute value in order to obtain satisfactory output from the 
S-routine 'persp' that was used to produce the plots. Hence in order to interpret any plot, 
its scale must be known; to this end, the maximum and minimum values are provided 
below each graph. In Figs. la-d we see that the correlations are all quite modest except 
possibly for the maximum of 0 167 in the sine-sine correlation plot. However this value is 
well within the null hypothesis, as a little experience with such plots shows, and occurs 
essentially because the sample size n = 200 is rather modest, and many correlations are 
being computed. 

Figures 2a-d were produced in a like manner, except now are based on a sample of size 
n = 200 of bivariate normals of means 0, variances 1, and correlation 2. The essential 
significant feature in these plots is the high level plane emanating from the origin in the 
sine-sine correlation plot. This behaviour is quite typical of situations in which 
dependence is essentially of a simple linear kind, and data are centred at the origin. 
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corr (cos (sx), cos (ty)) (b) corr (cos (sx), sin (ty)) 

t 

min = -0-107 max = -0-128 min = -0-041 max = 0-060 

corr (sin (sx), sin (ty)) (d) corr (sin (sx), cos (ty)) 

min - 0-001 max = 0-167 min = -0-049 max = 0.079 

Figure 1. Correlographs for a sample of size n = 200 from the standard bivariate normal distribution (independent). 

(a) corr (cos (sx), cos (ty)) 

min = -0-019 max = 0-170 

(c) corr (sin (sx), sin (ty)) 

(b) corr (cos (sx), sin (ty)) 

min = -0-138 max = 0-140 

(d) corr (sin (sx), cos (ty)) 

min = -0-101 max = 0.459 min = -0-098 max = 0-041 

Figure 2. Correlographs for a sample of size n = 200 from the bivariate normal distribution with means 0, 
variances 1, and correlation 2. 

422 
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corr (cos (sx), cos (ty)) (b) corr (cos (sx), sin (ty)) 

min = -0-698 max = -0-640 min = -0-043 max = -0-012 

corr (sin (sx), sin (ty)) (d) corr (sin (sx), cos (ty)) 

min = -0-009 max = 0-042 min = -0-028 max = 0-018 

Figure 3. Correlographs for a sample of size n = 200 from an annular distribution. 

Finally, Figs. 3a-d were produced from a sample of n = 200 (X, Y) points in the plane 
each chosen by selecting a radius uniformly in the interval [0-5, 1] and then an angle 
uniformly on [0, 2ar). In these plots the significant feature is the very low cosine-cosine 
correlation plane which ranges over large negative values. This kind of behaviour is 

typical of annular type distributions when centred at the origin. 
Of course, there are many possible variants of these plots to experiment with. For 

example, the functions shown could be standardized by dividing them by their estimated 
standard error functions which may readily be derived; alternatively data can be replaced, 
say, by their normal scores prior to the computations. We will not pursue these variants 
here. 

The quantities (2.1)-(2.4) are related to certain empirical characteristic function (ecf) 
quantities which we shall make use of below. Specifically let 

c(s, t) = Eei(s+t), cx(s) = Eeis, cY(t) = EeY 

and define the dependence measure 

F(s, t) = c(s, t) - cx(s)cY(t); 

define also the empirical quantities 

cnt) = ex+tY, eic(sx X() = eisX cY(t) = 1 e 
nj=l n j n j 

and 
Fn(s, t) = cn(s, t) - c(s)c,(t). 

Then the following relation (which holds also in the empirical version) is easily verified: 

F(s, t) = [p,(s, t) - ps(s, t)] + i . [p,c(s, t) + Pc(s, t)]. 

(a) 

(c) 
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(a) real part (b) imag part 

min = -0-040 max = 0-047 min = -0-054 max = 0-101 

(c) abs squared (d) var adjusted 

max = 0-010 max = 2-687 

Figure 4. Correlographs for a sample of size n = 200 from the standard bivariate 
normal distribution (independent). 

(a) real part (b) imag part 

min = -0-001 max = 0-292 min = -0-055 max = 0-029 

(c) abs squared (d) var adjusted 

max = 0-087 max = 17-705 

Figure 5. Correlographs for a sample of size n = 200 from the (UZ, UZ') 
distribution (see text). 
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Inverse relations, based on natural symmetries, are also easily obtained: 

Pc(s, t) = Re {r(s, t) + F(s, -t) 

pss(s, t)= -2 Re {(s, t) - r(s, -t)} 

cs(S, t) = I m {r(s, t) + r(-s, t)} 

Psc(S, t)= I m {r(s, t) + r(s, -t)}. 

Figures 4a-d show a typical empirical realization of the functions Re Fn(s, t), 
Im FI(s, t), rFn(s, t)12, and n (1 - e-S2)-' (1 - e-t2)-1' Fn(s, t)12 for a standard bivariate 
normal sample of size n = 200 generated under independence, except that it is the 
approximate normal scores of the data that were actually used. Note that the fourth plot 
is just that obtained from the third on dividing it by the asymptotic variance function of 
the scored version of Fr(s, t); see equation (3.4) below. 

Figures 5a-d were produced in like manner except now based on a sample of n = 200 
observations of Xi = UiZi, Yi = UiZ', where the Zi, Z' are independent N(0, 1) variables 
and the Ui are independent uniform variables on [0, 2]. Because Xi, Yi share a common 
value of Ui, they are not independent, but this fact is quite difficult to discern from an 
(X, Y)-scatterplot. On the other hand, the variance-scaled Fig. 5d provides very clear 
evidence of the presence of dependence. 

For data sets of moderate size or larger, all of these displays carry significant 
information concerning the structure of dependency. We refer to displays such as those 
shown here collectively as correlographs. 

3 Some Dependence Processes 

The properties of the ecf are discussed, for example, in Feuerverger & Mureika (1977), 
Feuerverger & McDunnough (1981) and references appearing therein. See also Csorgo 
(1985) and Feuerverger (1987). By straightforward computations, the ecf quantities are 
found to be unbiased and consistent estimators of the corresponding cf's. The properties 
of F,(s, t) are readily established using similar methods and we find that TF(s, t) is 
consistent for F(s, t) and has mean 

n-i 
Ern(s, t)= - (s, t). n 

Since independence of X, Y may be characterized by F(s, t)=0 for all (s, t) eR2, 
consistent tests of H( may be based on the idea of comparing F,(s, t) to zero. 

Now, the covariance structure 

n(Sl , t, S2, t2)- COV (rn(Sl, t,), Fr(S2, t2)) 

E(Fr,(s, t,) - EFn(s, t,))(r(s2, t2) - ET(s2, t2)) 
as well as the limiting covariance form 

E(sl, t, s2, t2) = lim n ? n(s,, tl, s2, t2) (3.1) 
n-oc 

may be determined in a straightforward manner, but the resulting expressions are very 
lengthy and thus we omit them here. Under H( however the expressions simplify and we 
find 

o(rS, t), nS2,t2) 
n- 

(, ts 2) covy (Fn(s1, tl), Fn(s2, t2)) = 2 Zo(s1, t1, s2, t2) n 
-- 
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where 

1o(sl, tl, s2, t2) = (cX(sl - s2) - cX(s)cX(s2)) (CY(tl - t2) - C(tl)C(t2)). (3.2) 

(Remark: this simple form of factoring does not extend to dimension higher than two.) It 
is also readily established that at finite collections of points (Sk, tk), k = 1, . ... , K the 
process n?(Fr(s, t) - F(s, t)) is asymptotically normal with mean zero and covariance 
function 2 referred to in (3.1) above; under H,, the covariance function is given by o( as in 
(3.2). Further, weak convergence (in the space of continuous functions under the 

supremum norm) may be shown to hold under mild conditions (Csbrgo, 1985). 
Concerning the shape of F(s, t), note that F(s, t) is bounded and that F(s, t)= 0 on the 

axes s = 0 or t = 0. Also, since F(s, -t) = T(-s, -t), the natural domain of definition for 
F(s, t) can be taken as any half plane with boundary passing through the origin. Related 
to this, since Fn(s, t)= Fr(-s, -t), the covariance structure for the real and imaginary 
components Re Fn(s, t), Im Fj(s, t) may readily be computed from the complex-valued 
covariance forms. Note also that if (X, Y) are absolutely continuous (i.e. possess density 
relative to the Lebesque measure on R2) then F(s, t)- 0, as II(s, t)I -- oo. This follows 
from the Reimann-Lebesque Lemma (see for example Kawata 1972, p. 43) as a 
consequence of which both c(s, t) and cX(s) ? cY(t)--- as II(s, t)l-> oo. (It does not hold 
in general: consider X = Y taking on values 0 or 1 with probability 2 each.) 

To develop nonparametric (i.e. H,-distribution-free) tests we shall need to replace the 
Xi and Yi by approximate normal score quantities X; and Y;. This leads us to consider the 
associated quantities cx (s), cY (s), c'(s, t) and 

n(s, t) = cn(s, t) -cn (s) c (t) 

calculated from the scored data. In this context, the marginal quantities cX (-) and cY (-) 
will approximate the function e-~i2 and will no longer be random. Consequently, under H(, 
we will have 

coV( (F"(s,, tl), F'(s2, t))= covy (c'(s , t,), c'(s2, t2)) 

n--I 
[(Pn (s - S2) - Pn(Sl)Pn(S2)[)n(tl 

- t2) - Onn(tl)n(t2)] 

(3.3) 

where 4, is the ecf corresponding to the approximate normal scores. This computation 
involves the straightforward combinatorics of uniformly random assignments of X, to Y' 
scores, as appropriate to the H( distribution. It follows from (3.3) that 

n * Var (T'(s, t))-- (1 - e-S2) ? (1 - e-'2). (3.4) 

Finally, we need to consider the stochastic process 

e,(s, t) = n. (c(s, t) - Ec'(s, t)). 

By applying the Wald-Wolfowitz Theorem (e.g. Serfling 1980, p. 297) in conjunction with 
the Cramer-Wold device, we may show that, under H,, the finite dimensional 
distributions of , converge in distribution to those of a zero mean Gaussian process 
e(s, t) such that 

E ,(s2, t2)0(s1, tl) = [p(S2 - Sl) - (s2)((sl)][(t2 - tl) - 
0(t2)0()], 
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where (P(t) = e-t2/2. Next, again under Ho, we may see that 

n 
- . E I n( 2, t2) - n(S,)2 = [1 - In(S2)2][1 - In(t2)l2] + [1 - ln(Sl)2][1 - ln(tl)l2] n 

- 2* Re {[n,(s2 - s) - n(S2)n(Sl)][qn(t2 - tl) - n(t2)(n(tl)] 

2 2[1 - Re {(n(S2 
- 

Sl)2n(t2- t)}] 

= 2 ff [1 - cos ((S2 - s) + y(t2 - t)] dF'(x) dF'(y) 

2 Jf (X(2 - Si) + y(t2- t))2 dF(x) dF'(y) 

K - [(s, - s)2 + (t2- t)2]. 

In these calculations On and Fn are the ecf and the distribution function corresponding to 
the scores, and K is a constant. It therefore follows from Theorem 8 of Whitt (1970) and 
Theorem 12.3 of Billingsley (1969) that the process n(s, t) converges weakly to the 

process t(s, t) on compact regions. A similar argument is applicable in the case of the 
alternatives. 

4 Development of the Test Statistics 

We are now in a position to make a specific proposal for a useful class of nonparametric 
test statistics for dependence, namely 

T, = - 
- W^(s, t) ds dt (4.1) 

where W(s, t)>0 is an appropriate weight function. The denominator in (4.1), which 

equals n times the limiting variance function (3.4) of T'(s, t), tends to 0 as s or t tends to 
0. Nevertheless, the integrand may be defined by continuity at these limiting values (as in 
the following paragraph). The presence of the (variance) divisor is an important aspect of 
(4.1); without it, the effects measured at s =0 and/or t =0 would be largely eliminated 
from the overall test statistic and substantial power would be lost for many typical 
alternatives. 

Now one suitable and particularly convenient bell-shaped choice for the weight in (4.1) 
is the function 

W(s,t)=(1-e-2) (1e t2 (4.2) 

which has Cauchy-like tails and results in the test statistic 

I nc(s, t) -c X(s) 
. 

cY(t)lds dt. 
Tn ~ 2~ ds dt. (4.3) 

Making use of the notation 

cov,= (Uj, UV- 
n n n 

here affords the easiest way to see that the quantity 

c,(s, t)- c" (S) . Cn (t) 1 n 
Snt 

n = ~ COV j, ei'') s 't s't 
1= 
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can be defined by continuity as 

-covj=I (Xj, eiti) when s =0, t 0, t 

-cov= i (eiSX, Yj) when t= 0, s 40, 
s 

and as 
-cov, 1 (Xj, Yj) when s=t=0. 

Now use the U-statistics identity (1.3) within the modulus of the numerator of (4.3) to get 

T f|f 1 E (esX) ds dt (4.4) 

= ( )2 E E (term 1). (term 2) (4.5) 
\n2 j k I m 

where 
f0 (eisX X(- ei?xl)(e-iKi/- eI-SX;A) 

term 1 = (e - e )(e e ds (4.6) 

=- [IX - * [ X - IX - Xj I - IxX - Xl\ + IX, - Xml] (4.7) 

and term 2 is identical except with t and Y in place of s and X. The step from (4.6) to 

(4.7) is obtained by multiplying out the exponentials in the numerator of (4.6), dropping 
the sines which are odd functions, and then using the identity 

f cos (a - x)- 1 
cos(ax) dx = -.. lal. 

See for example Gradshteyn & Ryzhik (1980, item 3.784.3). We are thus led to the test 
statistic 

72 
Tn =- E E [IX; - I - IX - I - IX1 - X;I + IX - Xm] 4n j k I m 

[IY Y; - IY; - Y I - IY, - Y; + Y, - Y,I]. 

Multiplying out and resubscripting the sixteen terms that arise we find 

oT2 2:7r2 
T. =2 E E Ix;- 3 . ix;-l|i, x - ' -Y: | 

n jk n j m 

+ 1 E E E IX; - Xk * IYI - Y,1. (4.8) 
n j k I m 

Note that the three terms on the right in (4.8) can each be computed in O(n2) operations, 
and that the last term is a constant which depends only on n. 

The choice (4.2) is not the only tractable possibility for a weight function in (4.1). Thus 
consider choices of the form 

W(s t) =(1 -es2) V(s). V(t. 

Following the same computational steps as before, we again arrive at (4.5) except that 
now 

term 1= (eisX eisX )(e 
-is _ e -isXm) terml1= ? 2V(s) ds, 

J-oo s 
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and similarly for term 2. We may progress from here by first taking note of the identity 

fc [cos (a x)-1]cos (b - x) 
_x x 

when Ibl < lal, and equals 0 when lal < Ib (Gradshteyn and Ryzhik, 1980, item 3.786.3). 
Therefore if V(s) can be represented in the form 

V(s) = cos (s u) dG(u) (4.9) 

we will then obtain 

term 1 = g(Xj - X) - g(X, - X') - g(X, - Xj) + g(X, - XI) 
where 

g(x) = Jr ( u dG(u) - Ix [G(Ixl) - G(0)]), (4.10) 

and hence the test statistic 

Tn = 4 C E [g(X - X;) - g(Xj - XM) - g(X, - X;) + g(x, - X')] 4 j k I m 

[g(Y, - Y;) - g(Y - YM) - g(Yk - Y;) + g(Y,- Y )], 
.7r2 272r2 = 2n g(Xj - X,) g(Yj - Y)- E E g(Xj - X) g(Yj -Y) n j k n j m 

+ 4-i s C g(X; - X;). g(Y; - Ym). (4.11) 
j k I m 

This will be tractable for any appropriate choice of G in (4.9) that results in a tractable g 
in (4.10). 

Let us now return to the statistic (4.8). Firstly, on closer examination we see that, to an 
adequate degree of approximation, (4.8) is essentially a bivariate, rank-based, U statistic 
(based on a kernel of order 2) and is of degree 2 in the sense that, except for constant 
terms, its first order Hajek projection under H( is essentially null. The calculations to 
back up this assertion were provided in Section 1 where the test statistic (1.8) was 
obtained by removing the projection from (1.5). Now, the final terms in (1.8) and (4.8) 
are constants and thus may be ignored. We may also ignore the irrelevant jr2 factor in 
(4.8). We thus see the essential difference between (1.8) and (4.8) is just 

2 2 2] 
n(n- )(n -2) n3 ]2 1 ;- - 

which is Op(n-') so that tests based on (4.8) and on the projection corrected form of (1.5) 
are asymptotically equivalent. 

Secondly, there is an approximation to (4.8) which is computationally convenient. Note 
that the second term in (4.8) involves repetitive approximation to the function 

q(x) = E Ix - ZI = (2/.r)i * e-x2/2 + 2x(x) - x 

where Z -N(0, 1) and 1 is the N(0, 1) distribution function, while the third term 
involves approximating the square of 

Eq(Z) = 
~7rt 
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Dropping the jr2 factor in (4.8) we thus arrive at the following modification of the test 
statistic: 

mod1 2 4 
Tr= n 2 X - Xk,I Y,-Yk, - E q(X;) q(Y') +- (4.12) 

n jk n j 

The difference between (4.8) and (4.12) depends on the specific approximate scores used, 
but here was found numerically to be approximately equal to 3.1/n over a very broad 

range of conditions that were tested. 

5 Relation to Rosenblatt's Tests 

Suppose now that we disregard the initial variance rescaling, and also that we use 
unscored data, so that instead of (4.1) we choose to work with 

T = f F,(s, t)2 W(s, t) ds dt. (5.1) 

Then apply the Parseval Theorem to write (5.1) alternatively as 

Tn = IJv(x u, y - v) d2[Fn(u, v) F x(u)Fn()] dx dy (5.2) 

where V(u, v) is the Fourier transform of [W(s, t)j1. Observe now that the inner integrals 
in (5.2) are a convolution so that Tn evidently is a version of Rosenblatt's density 
estimation-based statistic (1.2). However there is one important difference. Rosenblatt 

(1975) requires that a bandwidth parameter b(n) 0 in order that the resulting density 
estimates be consistent. In the statistic (5.2) however, the effective bandwidth is constant 
and does not vary with n. This has implications for the asymptotic distributional character 
of the statistic. In particular, it is now apparent that consistency of the associated density 
estimators is neither a relevant nor helpful property for the dependence testing context. 
Furthermore, the Rosenblatt statistics (1.2) do not ordinarily correspond to a weight 
function W in (5.1) which emphasizes the origin and axes in the manner of (4.1) thereby 
resulting in additional losses of power for many typical situations. 

6 Asymptotic Distributions 

Using the weak convergence result of Section 3 and standard arguments, we find that 
under H( (4.1) is of the form 

n-" 
I 

jf l (S, t)l2 ds dt 

where 4n(s, t) converges weakly to a Gaussian process !(s, t) having mean 0 and 
covariance function 

v(SI, tl, s2, t2)-COV (4(si, t0), 4(s2, t2)) 
= [e-(S-2)2/2 _ e-(s2+2)/2[e-(t,-t2)2/2 _ e-(2+t2)/2] 

W(s, t,) W(s2, t2) 

(I-e-S2)(1-e-') _ (1-e e-s)(1 e (6.1) 

so that n times (4.1) has asymptotically a E Aj * Z2 distribution where, for j= 1, 2. . the 

Zj are independent N(0, 1) variables and the Aj are the solutions of the eigenvalue 
equation 

i . f1(s,1, t) = Jj ((s2 
, t2) v( , s2, t2) ds2 dt2. (6.2) 
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In the event that we have the factorization W(s, t)= Wl(s) . WI(t), the covariance 
function (6.1) will factor as v(sl, s2, t,, t2)= Vi(S1, 2) 

' V1(tl, t2) where 

VI(S, S2) [- -e- ( 82+-82)//2 ] W-1 2 
W 

lS2 
) 

2 2 
s..^~~31?"-l 'e)(1 -) e )(-e )(l -e-^) 

so that equation (6.2) separates and the eigenvalues of (6.2) will range over all pairwise 
products of the eigenvalues of 

fj fj(s) = fJ(s2) v1(s , 52) ds2. 

When W is as in (4.2) we will have 

e-(s2+s2)/2[ess2 1] 
vI(S1, 2), = 

Is, S2. 

however an exact solution for the eigenvalues here does not appear to be straightforward. 
Instead of solving such eigenvalue equations numerically, we shall prefer to obtain the 
distributions of the test statistics by Monte Carlo means. 

Under the alternatives we have, following standard arguments, that (4.1) is asymptoti- 
cally normal, i.e. T,-> N(t, a2) in distribution; the expressions for i and a2 are very 
lengthy and here omitted. 

7 Concerning Multivariate Extensions 

The purpose of this section is to indicate briefly that extension to dimensions k > 2 is 
not straightforward. The k-variate forms for all quantities, including F, and Fr, are 
immediate and their exact and limiting covariance structures may be readily determined; 
we omit these expressions here. However, factorization analogous to (3.2) and (3.3) does 
not occur for k > 2. Likewise, the factoring step which carries (4.3) into the form (4.4) 
also has no analogue for k > 2. Consequently there is no natural analogue for the results 
of Section 4. 

Difficulties with dimension k >2 have been noted elsewhere. Some useful ideas may be 
found in Section 3 of Blum, Kiefer & Rosenblatt (1961); see especially their form (3.3). 
See also Deheuvels (1981) and Lancaster (1960). However, the ensuing lines of inquiry 
are extensive and are not pursued here. 

8 Some Numerical Studies 

Some numerical trials and a brief Monte Carlo study were carried out and these 
confirm the practicality of the procedures proposed here. The definition of the 
approximate normal scores which we have used throughout was taken to be 

x (rank (Xi)- 3/8) (8.1) 

where <& is the N(0, 1) distribution function (see e.g., Blom, 1958), and the version of the 
test statistic used here is n ? T, where 

T, =2 X- Y; - Y--3 -X ' Y - Y +- (8.2) n jk j Im 7 

Table 8.1 gives the upper percentage points of the distribution of n . T. under H1, 
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Table 8.1 

Critical values for n ? Tn 

Upper tail probability 
Sample 

size p = 0-10 p = 0-05 p = 0-02 p = 0-01 p = 0-005 

n = 100 4-88 5-24 5-77 6.11 6.44 
n = 200 5.09 5-48 6-02 6-39 6.79 
n = 300 5-17 5-56 6-15 6-54 6-96 
n = 400 5.35 5-76 6-3 6-8 7-0 
n = 500 5.37 5-78 6.3 6.6 7-0 

Table 8.2 

Power of the test statistic (8.2) for distributions, sample sizes, and levels shown 

Sample size (n) 

Dist'n Level 100 200 300 400 500 

Normal 0-05 0-45 0-77 0-90 0-96 0-99 
rho = 0-2 0-01 0-21 0-56 0-77 0-90 0-95 

Normal 0-05 1-000 1-000 1-0 000 1.000 1-000 
rho = 0.5 001 0-998 1-000 1 000 1-000 1.000 

annulus 0-05 0-43 1-00 1.00 1-00 1-00 
0-01 0-05 0-85 1-00 1-00 1-00 

UZ, UZ 0-05 0-19 0-45 0-79 0-87 0-97 
0-01 0-07 0-10 0-25 0-35 0-76 

determined, for the sample sizes indicated, by Monte Carlo trials on a Sun 3/60 computer 
in conjunction with the S statistical package and double precision Fortran routines. Table 
8.2 gives the powers of the test for various alternative distributions, sample sizes, and 
levels. The number of Monte Carlo trials used for Table 8.1 were 6,000, 14,000, 4,800, 
500 and 2,400 for sample sizes 100, 200, 300, 400 and 500 respectively, and the number of 
trials used for Table 8.2 were at least 200 trials for each entry. The number of digits 
selected for reporting in each case is such that the standard error is ordinarily at most one 
or two units in the last digit provided, and usually much less. The four distributions 
indicated in Table 8.2 refer to normals with correlations 0.2 and 0.5, the annular 
distribution discussed in Section 3 in the context of Fig. 3a-d, and the (U Z, U Z') 
distribution discussed in Section 3 in the context of Fig. 5a-d. 
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Resume 

Un nouveau test du rank convergent pour la dependance bivari6e est expose dans cet article. Soit X'et Y; les 
scores normaux (approch6s) associ6s aux vecteurs iid (X,, YD), i = 1, . . ,n. La statistique du test proposee peut 
alors etre obtenue en enlevant la premiere projection de Hajek de la quantite = n-2 EX- X' 1 - 

Yj- Y,I. Des consid6rations liees aux fonctions caracteristiques empiriques sont utilis6es dans notre 
developpement et des methodes graphiques correspondantes sont propos6es. Des difficult6s apparaissant lors 
d'extensions aux dimensions k > 2 sont indiqu6es. Une dtude de simulation atteste de I'efficacitd de la nouvelle 
methode. 
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