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SEQUENTIAL SELECTION PROCEDURES AND
FALSE DISCOVERY RATE CONTROL

By MAX GRAZIER G’SELL, STEFAN WAGER, ALEXANDRA
CHOULDECHOVA AND ROBERT TIBSHIRANI

We consider a multiple hypothesis testing setting where the hypotheses
are ordered and one is only permitted to reject an initial contiguous block,
Hy,...,Hy, of hypotheses. A rejection rule in this setting amounts to a
procedure for choosing the stopping point k. This setting is inspired by
the sequential nature of many model selection problems, where choosing a
stopping point or a model is equivalent to rejecting all hypotheses up to
that point and none thereafter. We propose two new testing procedures,
and prove that they control the false discovery rate in the ordered testing
setting. We also show how the methods can be applied to model selection
using recent results on p-values in sequential model selection settings.

1. Introduction. Suppose that we have a sequence of null hypotheses, Hy,
H,,...H,,, and that we want to to reject some hypotheses while controlling the
False Discovery Rate (FDR, Benjamini and Hochberg, 1995). Moreover, suppose
that these hypotheses must be rejected in an ordered fashion: a test procedure
must reject hypotheses Hy, ..., Hy for some k € {0,1, ..., m}. Classical methods
for FDR control, such as the original Benjamini-Hochberg selection procedure, are
ruled out by the requirement that the hypotheses be rejected in order.

In this paper we introduce new testing procedures that address this problem, and
control the False Discovery Rate (FDR) in the ordered setting. Suppose that we have
a sequence of p-values, p1, ..., pm € [0, 1] corresponding to the hypotheses H;, such
that p; is uniformly distributed on [0, 1] when H; is true. Our proposed methods
start by transforming the sequence of p-values p1, ..., p,m, into a monotone increasing
sequence of statistics 0 < ¢; < ... < ¢, < 1. We then prove that we achieve
ordered FDR control by applying the original Benjamini-Hochberg procedure on
the monotone test statistics g;.

Our setup is motivated by the problem of selecting stopping rules for model
selection procedures such as the lasso, stepwise regression, and hierarchical cluster-
ing. Recent work (Lockhart et al., 2014; G’Sell, Taylor and Tibshirani, 2013; Taylor
et al., 2013, 2014) develops p-values for the individual steps of these procedures.
Under this formalism, taking an additional step along the model selection path
is equivalent to rejecting the hypothesis that the existing model captures all the
signal. A problem left open by this literature, however, is how these p-values can
be used to select a model with inferential guarantees. Our results respond to this
challenge: by applying our generic sequential FDR control rule to the step-specific
p-values, we obtain a stopping rule with a guarantee on the fraction of useless steps
taken by the model selection procedure.

Keywords and phrases: multiple hypothesis testing, stopping rule, false discovery rate, sequen-
tial testing
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TABLE 1
Typical realization of p-values for LARS, as proposed by Taylor et al. (2014).
LARS step 1 2 3 4 5 6 7 8 9 10
Predictor 3 1 4 10 9 8 5 2 6 7
p-value 0.00 0.08 034 0.15 0.93 0.12 064 0.25 0.49

1.1. A first example. To motivate our work further, consider a simple model
selection problem. We have n observations from a linear model with p predictors:

yi =Bo+ Y wi;Bj + Zi with Z; ~ N(0,1), (1)

J

and apply the lasso (¢1-penalized regression) to estimate the parameters. We apply
the least angle regression procedure of Efron et al. (2004), which enters variables in
a forward sequential manner. As explained in Section 4, the recent work of Taylor
et al. (2014) provides a method for computing p-values for this sequence, each one
testing whether the variables not yet in the model have a true coefficient of zero.
Table 1 has a typical realization of these p-values; we generated data with

n =50, p =10, xz‘jiiNdN(Oal)a B1=2,P3=4,52=01=P05...810=0.

These p-values are not exchangeable, and must be treated in the order in which the
predictors were entered: 3, 1, 4 etc.

Figure 1 shows the result of applying one of our new procedures, ForwardStop,
to 1000 realizations from model (1). This procedure, described in the next section,
delivers for each target FDR « a stopping index k along with a guarantee that
the model consisting of the first k(a) predictors entered has FDR at most «. The
left panel shows the number of predictors selected by ForwardStop over the 1000
realizations, while the right panel shows that the achieved FDR is indeed less that
the target level.

1.2. Stopping Rules for Ordered FDR Control. In the ordered testing setting,
a valid rejection rule is a function of py , ..., p,, that returns a cutoff k£ such that
hypotheses Hy,..., H; are rejected. The False Discovery Rate (FDR) is defined

as E [V(l%)/max(l, l%)}, where V (k) is the number of null hypotheses among the

rejected hypotheses Hy, ... , Hj.
We propose two rejection functions for this scenario, called ForwardStop:

k
l%p—max{ke{l,...,m}:;Zlog(lpi)ga}, (2)

and StrongStop:

. " log p; k
ks =max<ke{l, ..., m}:exp E% <= (3)
m
=k
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Fic 1. Small simulated linear model ezample: lasso p-values for forward adaptive regression. The
left panel shows the number of predictors selected by ForwardStop over 1000 realizations, while
the right panel shows that the achieved FDR versus the target level, with the 45° line drawn for
reference.

We adopt the convention that max(()) = 0, so that k = 0 whenever no rejections
can be made. In Section 2 we show that both ForwardStop and StrongStop control
FDR at level a.

ForwardStop first transforms the p-values, and then sets the rejection threshold
at the largest k for which the first k transformed p-values have a small enough
average. If the first p-values are very small, then ForwardStop will always reject the
first hypotheses regardless of the last p-values. The rule is thus moderately robust
to model misspecification, as it will not lose power even if the last p-values are a
little bit too large.

Our second rule, StrongStop (3), comes with a stronger guarantee than Forward-
Stop. As we show in Section 2, provided that the non-null p-values precede the null
ones, it not only controls the FDR, but also controls the Family-Wise Error Rate
(FWER) at level a. Recall that the FWER is the probability that a decision rule
makes even a single false discovery. If false discoveries have a particularly high cost,
then StrongStop may be more attractive than ForwardStop. The main weakness of
StrongStop is that the decision to reject at k depends on all the p-values after k.
If the very last p-values are slightly larger than they should be under the uniform
hypothesis, then the rule suffers a considerable loss of power.

1.3. Related Work. Although there is an extensive literature on FDR control
(e.g., Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001; Efron et al.,
2001; Storey, Taylor and Siegmund, 2004), no definitive procedure for ordered FDR
control has been proposed so far. The best method we are aware of is an adaptation
of the a-investing approach of Foster and Stine (2008). However, this procedure is
not known to formally control the FDR, (Foster and Stine prove that it controls the
mFDR, defined as EV/(ER+n) for some constant n); moreover, in our simulations,
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this approach has lower power than our proposed methods.

The problem of providing FDR control for the lasso has been studied, among
others, by Bogdan et al. (2013), Benjamini and Gavrilov (2009), Lin, Foster and
Ungar (2011), Meinshausen and Bithlmann (2010), Shah and Samworth (2012), and
Wu, Boos and Stefanski (2007), using a wide variety of ideas involving resampling,
pseudo-variables, and specifically tailored selection penalties. The goal of our paper
is not to directly compete with these methods, but rather to provide “theoretical
glue” that lets us transform the rapidly growing family of sequential p-values (Lock-
hart et al., 2014; G’Sell, Taylor and Tibshirani, 2013; Taylor et al., 2013, 2014) into
model selection procedures with FDR, guarantees.

1.4. Outline of this paper. We begin by presenting generic methods for FDR
control in ordered settings. Section 2 develops our two main proposals for sequential
testing, ForwardStop and StrongStop, along with their theoretical justification. We
evaluate these rules on simulations in Section 3. In Section 4, review the recent
literature constructing sequential p-values for model selection problems and discuss
their relation to our procedures. In Section 5, we develop a more specialized version
of StrongStop, called TailStop, which takes advantage of special properties of some
of the proposed sequential tests. We provide demonstrations of all of our procedures
on example model selection p-values in 6, and conclude with a discussion of some
practical considerations in Section 7.

2. False Discovery Rate Control for Ordered Hypotheses. In this sec-
tion, we study a generic ordered layout where we a sequence of hypotheses that
are associated with p-values py, ..., p,m € [0,1]. A subset M C {0, ..., m} of these
p-values are null, with the property that

. iid
{pi:ie M}~U([0,1)). (4)
We can reject the k first hypotheses for some k of our choice. Our goal is to make
k as large as possible, while controlling the number of false discoveries

Vk)=|{ie M:i<k}.

Specifically, we want to use a rule k with a bounded false discovery rate

v (k)
max {]%, 1}

We develop two procedures that provide such a guarantee.

Classical FDR literature focuses on rejecting a subset of hypotheses R € {0, ..., m}
such that R contains few false discoveries. Benjamini and Hochberg (1995) showed
that, in the context of (4), we can control the FDR as follows. Let p(yy, ..., p(m) be
the sorted list of p-values, and let

. al
la —max{l ) < }
m

FDR(k) =E
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Then, if we reject those hypotheses corresponding to I, smallest p-values, we control
the FDR at level . This method for selecting the rejection set R is known as the
BH procedure. The key difference between the setup of Benjamini and Hochberg
(1995) and our problem is that, in the former, the rejection set R can be arbitrary,
whereas here we must always reject the first k£ hypotheses for some k. For example,
even if the p-value corresponding to the third hypothesis is very small, we cannot
reject the third hypothesis unless we also reject the first and second hypotheses.

2.1. A BH-Type Procedure for Ordered Selection. The main motivation behind
our first procedure—ForwardStop—is the following thought experiment. Suppose
that we could transform our p-values pi, ..., p,, into statistics ¢1 < ... < gm, such
that the ¢; behaved like a sorted list of p-values. Then, we could apply the BH
procedure on the ¢;, and get a rejection set R of the form R = {1, ..., k}.

Under the global null where py, ..., pm £ U([0,1]), we can achieve such a transfor-
mation using the Rényi representation theorem (Rényi, 1953). Rényi showed that
if Y7, ..., Y}, are independent standard exponential random variables, then

m

Y, Y Y- Y;
(1 L + 2 ey Z Z) iEl,Wm E2,ma teey Em,m7

m’' m m-1 —~m—i+l
where the F; ,, are exponential order statistics, meaning that the E; ,, have the
same distribution as a sorted list of independent standard exponential random
variables. Rényi representation provides us with a tool that lets us map a list of
independent exponential random variables to a list of sorted order statistics, and
vice-versa.
In our context, let

Y, = 7log(1 7pi)7 (5)

Zi:ZYj/(mfjJrl), and (6)
j=1

g=1—e7. (7)

Under the global null, the Y; are distributed as independent exponential random
variables. Thus, by Rényi representation, the Z; are distributed as exponential order
statistics, and so the ¢; are distributed like uniform order statistics.

This argument suggests that in an ordered selection setup, we should reject the
first l%% hypotheses where

A ak
k%:max{k:qk<m}. (8)

The Rényi representation combined with the BH procedure immediately implies
that the rule kg controls the FDR at level o under the global null. Once we leave
the global null, Rényi representation no longer applies; however, as we show in the
following results, our procedure still controls the FDR.
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We begin by stating a result under a slightly restricted setup, where we assume
that the s first p-values are non-null and the m — s last p-values are null. We will
later relax this constraint. The proof of the following result is closely inspired by
the martingale argument of Storey, Taylor and Siegmund (2004).

LEMMA 1. Suppose that we have p-values p1, ..., pm € (0,1), the last m — s of
which are null (i.e., independently drawn from U([0,1]). Define q; as in (7). Then
the rule k% controls the FDR at level v, meaning that

E @%ASL <a (9)
max{k%,l}

Now the test statistics g; constructed in Lemma 1 depend on m. We can simplify
the rule by augmenting our list of p-values with additional null test statistics (taking
m — 00), and using the fact that % — 1 as « gets small. This gives rise to one
of our main proposals:

PROCEDURE 1 (ForwardStop). Let p1, ..., pm € [0,1], and let 0 < oo < 1. We
reject hypotheses 1, ..., kr, where

k
A 1
kr :max{k‘e{l, . m}kZYQSOZ}, (10)
and Y; = —log(1 — p;).

We call this IIC)rocedure ForwardStop because it scans the p-values in a forward
manner: If % Y i1 Yi < a, then we know that we can reject the first k£ hypotheses
regardless of the remaining p-values. This property is desirable if we trust the first
p-values more than the last p-values. We prove the following result:

COROLLARY 1. Under the conditions of Lemma 1, the ForwardStop procedure
defined in (10) has FDR is controlled at level c.

For simplicity, we have assumed so far that the non-null p-values are all concen-
trated at the beginning of the list. This hypothesis, however, is not required for
FDR control.

THEOREM 1. In the setup described in (4), the ForwardStop stopping rule ke
controls FDR at level o, meaning that

V(kr)

. max {lAcF, 1}

< .

We note that this last property does not hold for the more complicated rule from
Lemma 1; this is a major advantage of the ForwardStop rule.
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2.2. Strong Control for Ordered Selection. In the previous section, we created
the ordered test statistics Z; in (6) by summing transformed p-values starting from
the first p-value. This choice was in some sense arbitrary. Under the global null, we
could just as well obtain uniform order statistics ¢; by summing from the back:

Y; = —log(pi), (11)

Zi=Y_Y;/j, and (12)
j=i

G =e 7. (13)

If we run the BH procedure on these backward test statistics, we obtain another
method for control.

PROCEDURE 2 (StrongStop). Let p1, ..., pm € [0,1], and let 0 < o < 1. We
reject hypotheses 1, ..., k, where

l%szmax{ke{l,...,m}:dk<c:r]f} (14)
and G, is as defined in (13).

Unlike ForwardStop, this new procedure needs to look at the p-values corre-
sponding to the last hypotheses before it can choose to make any rejections. This
can be a liability if we do not trust the very last p-values much. Looking at the last
p-values can however be useful if the model is correctly specified, as it enables us
to strengthen our control guarantees: StrongStop not only controls the FDR, but
also controls the FWER.

THEOREM 2. Suppose that we have p-values py, ..., pm € (0,1), the last m — s

of which are null (i.e., independently drawn from U([0,1]). Then, the rule ks from
(14) controls the FWER at level «, meaning that

P [1%5 > s} < a. (15)

FWER control is stronger than FDR control, and so we immediately conclude
from Theorem 2 that StrongStop also controls the FDR. Note that the guarantees
from Theorem 2 only hold when the non-null p-values all precede the null ones.

3. Simulation Experiments: Simple Ordered Hypothesis Example. In
this section, we demonstrate the performance of our methods in three simulation
settings of varying difficulty. The simulation settings consist of ordered hypotheses
where the separation of the null and non-null hypotheses is varied to determine the
difficulty of the scenario.

We consider a sequence of m = 100 hypotheses of which s = 20 are non-null.
The p-values corresponding to the non-null hypotheses are drawn from a Beta(1, /3)
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Fic 2. Observed p-values for 50 realizations of the ordered hypothesis simulations described in
Section 3. p-values corresponding to non-null hypotheses are shown in orange, while those corre-
sponding to null hypotheses are shown in gray. The smooth black curve is the average proportion of
null hypotheses up to the given index. Non-null p-values are drawn from a Beta(1, 8) distribution,
with B = 23,14,8 for the easy, medium and hard settings, respectively.

distribution, while those corresponding to true null hypotheses are U([0, 1]). At each
simulation iteration, the indices of the true null hypotheses are selected by sampling
without replacement from the set {1,2,...,m = 100} with lower indices having
smaller probabilities of being selected. We present results for three simulation cases,
which we refer to as ‘easy’, ‘medium’, and ‘hard.’ In the easy setup, we have strong
signal § = 23 and all the non-null hypotheses precede the null hypotheses, so we
have perfect separation. In the medium difficulty setup, 8 = 14 and the null and
non-null hypotheses are lightly inter-mixed. In in the hard difficulty setup, 6 = 8
and the two are much more inter-mixed.
For comparison, we also apply the following two rejection rules:

1. Thresholding at o.. We reject all hypotheses up to the first time that a p-value
exceeds a. This is guaranteed to control FWER and FDR at level a.

2. a-investing. We use the a-investing scheme of Foster and Stine (2008). While
this procedure is not generally guaranteed to yield rejections that obey the
ordering restriction, we can select parameters for which it does. In particular,
defining an investing rule such that the wealth is equal to zero at the first
failure to reject, we get

kin'uest = min {k C Pk+1 >

(k+1a }
1+ (k+1laf’

This is guaranteed to control EV/(ER + 1) at level a.

These are the best competitors we are aware of for our problem. Notice that, unlike
ForwardStop and StrongStop, these rules stop at the first p-value that exceeds a
given threshold. Thus, these methods cannot get past a few medium-sized p-values
even if there are many very small p-values further along the sequence.

Figure 2 shows scatterplots of observed p-values for 50 realizations of the three
setups. To help gauge the difficulty of the decision problem, a black curve is overlaid
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Fic 3. Average power and observed FDR level for the ordered hypothesis example. All four stopping
rules successfully control FDR across the three difficulty settings. StrongStop and a-thresholding
are both very conservative in terms of FDR control. Fven though ForwardStop and a-investing
have similar observed FDR curves, ForwardStop emerges as the more powerful method.

to show the average proportion of null hypotheses up to that point. This curve can
be thought of as the FDR of a fixed stopping rule which always stops at exactly
the given index.

Figure 3 summarizes the performance of ForwardStop, StrongStop, a-investing
and a-thresholding averaged over 2000 simulations. The Figure shows plots of power
and observed FDR for target FDR « € [0.05,0.25]. The notion of power used here
is that of average power, defined as the fraction of non-null hypotheses that are
rejected (i.e., (k—V)/s).

Despite being fairly conservative in terms of FDR, the considered stopping rules
perform quite well in terms of average power. ForwardStop is the most powerful
method in the majority of examples. That being said, StrongStop appears to be
more powerful than ForwardStop in the weak signal /low « settings. This may occur
because, unlike the other methods, StrongStop scans p-values back-to-front and is
therefore less sensitive to the occurrence of large p-values early in the alternative.

In our experiments, a-investing and ForwardStop have similar FDR curves, but
ForwardStop tends to have far great power. Thus, although both rules are compa-
rable in terms of reaching the nominal FDR, ForwardStop does better in terms of
a precision-recall tradeoff.
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4. Model Selection and Ordered Testing. In the previous sections, we
developed method for controlling FDR for ordered hypothesis testing, and showed
that our methods out-perform existing alternatives in simulations. This work was
motivated by recent developments in the model selection literature, where a string
of papers following Lockhart et al. (2014) showed that several model selection prob-
lems could be usefully analyzed with ordered hypothesis tests using a “covariance
test statistic.” Here, we provide a brief review of some key results stemming from
that literature.

The original paper of Lockhart et al. constructs asymptotic p-values for steps
along the lasso path. In a similar vein, G’Sell, Taylor and Tibshirani (2013) develop
asymptotic p-values for hierarchical clustering and the graphical lasso. Taylor et al.
(2013, 2014) exit the asymptotic regime, and provide exact finite-sample p-values for
a wider class of selection problems such as the group lasso and principal component
analysis (PCA). Lee et al. (2013) use similar ideas to do inference for the lasso with
a fixed regularization parameter.

The test statistics provided by these methods fall into two categories: Lockhart
et al. (2014) and G’Sell, Taylor and Tibshirani (2013) produce harmonic p-values
that get larger as we get deeper into the null, while Taylor et al. (2013, 2014) give
exact p-values inside the null. In Section 5, we show how we can exploit harmonic
behavior to gain more power in sequential testing.

Finally, we emphasize that our ordered FDR-controlling procedures are not lim-
ited to p-values from the papers described above. In particular, p-values obtained
with permutation or bootstrap based approaches would also feed naturally into our
stopping rules.

4.1. The Covariance Test for the Orthogonal Lasso. Consider a linear regression
model with response y € R™ and predictor matrix X € R"*P:

y=XpB+e, with e ~ N(0,02). (16)

Suppose, moreover, that ¢ is known, and that X is orthogonal. For any given A > 0,
the lasso estimator (Tibshirani, 1996) is

- . 1 2
8= argmingepp 9 |y — Xﬁ”z + A Hﬁ”l :

This solution, as a function of \, gives the lasso path /3 (N).

Lockhart et al. (2014) construct test statistics corresponding to segments of the
lasso path. In the case of orthogonal X, these test statistics have the particularly
simple form

Tk = )\k()\k — )\k+1)7 (17)

where A\; > Ao > ... are the values of the regularization parameter where the
sparsity of B changes.

Suppose that there are s true signal (non-null) variables. At each step along
the lasso path, we consider testing the hypothesis Hy ; that all signal predictors
are contained in the current lasso model (the model with j — 1 predictors). In
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this case, Lockhart et al. show that if the s signal variables are entered into the
model, then when X is orthogonal the subsequent test statistics Tsy1, ..., Tsy¢ are
asymptotically jointly distributed as independent exponential random variables:

(Tut1, ooy Togt) = (Exp(l), Exp (;) ..., Exp @)) , (18)

in the limit where n,p — o0; this result holds for any finite £. Note that the test
statistics T; get smaller as we go deeper into the null. In Section 5, we show how
to exploit this phenomenon to get more power. The test statistics of G’Sell, Taylor
and Tibshirani (2013) exhibit similar harmonic behavior.

4.2. Exact Testing for Least-Angle Regression. Lockhart et al. (2014) also pro-
vide test statistics for non-orthogonal design matrices X. However, in the case of
non-orthogonal designs, we obtained better results using the exact test statistics
for the least-angle path developed by Taylor et al. (2014), called the spacing test
statistics.

The first spacing test statistic 77 has a simple form. Given a standardized design
matrix X Taylor et al. (2014) show that, under the global null hypothesis § = 0,
_ I-@ (ﬁ) Ho,q

_w =" Unif(0, 1) (19)

g

T

Thus T} provides a p-value for a test of the global null hypothesis. Remarkably, this
result holds exactly for any for any design matrix X, and does not require n or p
to be large. The spacing test is asymptotically equivalent to the covariance test for
the first null variable.

Taylor et al. (2014) also derive similar test statistics for subsequent steps along
the least-angle regression path, which can be used for testing whether a partial re-
gression coefficient is zero. Assuming Gaussian noise, all the null p-values produced
by this test are 1-dependent and uniformly distributed over [0, 1]. For the purpose
of our demonstrations, we apply our generic FDR control procedures directly as
though the p-values were independent.

5. False Discovery Rate Control for Harmonic Test Statistics. Our
ForwardStop and StrongStop procedures control the FDR for generic sequential
selection problems where we have uniform p-values, and are appropriate for, e.g.,
the spacing test statistics for the least-angle path. However, in the orthogonal Lasso
and the hierarchical clustering settings, we saw that I-th null test statistic had
Exp(1/¢) distribution. To obtain p-values, one could transform these like Exp(1)
variables, but the results would be wildly conservative. In this section, we design a
stopping rule that is similar to StrongStop, but is able to take full advantage of the
Exp(1/¢) behavior to dramatically increase power.

Suppose that we have a sequence of test statistics 71, ..., T, > 0 correspond-
ing to m hypotheses. The first s test statistics correspond to signal variables; the
subsequent ones are independently distributed as

e T (B0, B0 (1) o (1)),
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where Exp(u) denotes the exponential distribution with mean p. As before, we wish
to construct a stopping rule that controls the FDR.

We could try to apply either ForwardStop or StrongStop, using p-values based on
(20). Of course, doing so would require knowledge of the number of signal variables
s, and hence would not be practical. Fortuitously, however, an extension of this idea
yields a variation of StrongStop that does not require knowledge of s and controls
FDR.

Under (20), we have j - Ts1; ~ Exp(1). Using this fact, suppose that we knew s
and formed the StrongStop rule for the m — s null test statistics. This would suggest
a test based on

" max{1, j — s}
q; =exp |— Z —T; (21)
i=i J
This is not a usable test, since it depends on knowledge of s. Now suppose we set
s =0, giving

qf =exp |— Z T; (22)
j=i
An application of the BH procedure to the ¢ leads to the following rule.

PROCEDURE 3 (TailStop). Let qf be defined as in (22). We reject hypotheses

1, ..., ]AfT, where
R ak
kr = kiqgi<—74. 23
T max{ qar m} (23)

Now the choice s = 0 is anti-conservative (in fact, it is the least conservative pos-
sibility for s), and so as expected we lose the strong control property of StrongStop.
But surprisingly, in the idealized setting of (20), TailStop controls the FDR nearly
exactly.

THEOREM 3. Given (20), the rule from (23) controls FDR at level . More

precisely,
. (kT—s)+ :am_s.

max{l%T,l} m

The name TailStop emphasizes the fact that this procedure starts scanning the
test statistics from the back of the list, rather than from the front. Scanning from
the back allows us to adapt to the harmonic decay of the null p-values without
knowing the number s of non-null predictors. An analogue to ForwardStop for this
setup would be much more difficult to implement, as we would need to estimate s
explicitly.

Remark: Current results yielding Exp(1/¢) null distributions are asymptotic. In
practice, the Exp(1/¢) behavior has been observed to break down in these settings
for large ¢. A practical correction for this is to assume a more conservative null



SEQUENTIAL FDR CONTROL 13

distribution for large values of ¢ by truncating the harmonic decay. Fixing 7 € N
(7 = 10 works well) and letting s be the number of true steps, we assume Tisip ~
Exp(1/¢) for £ < 7, and Ts4, stochastically smaller than Exp(1/7) for £ > 7. The
s %TJ) These g; are strictly
larger than in the original TailStop procedure, so the theoretical guarantees from
Theorem 3 continue to hold.

TailStop rule then becomes ¢; = exp (—Z

6. Model Selection Experiments. In this section, we demonstrate our stop-
ping rules from Section 2 and 5 on sequential p-values for the lasso with orthogo-
nal X and LARS with non-orthogonal X. As discussed in Section 4, these setups
demonstrate the two most common types of distributional guarantees in the recent
literature on sequential tests for model selection.

The goal of these experiments is to see what is the best way of transforming
sequential p-values into a model selection rule with inferential guarantees; thus, we
compare our proposed methods with the baselines discussed in Section 3.

Easy Hard

1.00 - s 1.00 - T e — 1.00 -

0.75

0.50 4

0.25 -+

0.75

0.50

0.25

0.75

0.50

0.25 -+

T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

F1G 4. Observed p-values for 50 realizations of the covariance test (Lockhart et al., 2014) with
orthogonal X . p-values corresponding to mon-null hypotheses are shown in orange, while those
corresponding to null hypotheses are shown in gray. The smooth black curve is the average pro-
portion of null hypotheses up to the given index. Note that these p-values behave very differently
from those in the ordered hypothesis example presented in §3. The null p-values here exhibit
Exp(1/¢) behaviour, as described in §4.1.

6.1. Simulations for the Covariance Test for the Lasso with Orthogonal X. In
this section, we demonstrate these rules on the lasso with orthogonal X. Though we
don’t show it here for space concerns, very similar behavior appears when applying
our rules to the hierarchical clustering setting.

We consider three scenarios which we once again refer to as easy, medium and
hard. In all of the settings we have n = 200 observations on p = 100 variables
of which 10 are non-null, and standard normal errors on the observations. The
non-zero entries of the parameter vector [ are taken to be equally spaced values
from 2+ to v/2log py, where + is varied to set the difficulty of the problem. Figure 4
shows p-values from 50 realizations of each simulation setting; they exhibit harmonic
behavior as described in Section 4.1.



14 M. GRAZIER G’SELL ET AL.

Easy Medium Hard
eI . . . . e fi—e—- . . 2
L@ L. @ . @
o _e o o
% © .- ./“ % © % © «—"°
LS e T S T S —
[} o« [} [} —
g3 g3 | Bz
g = g . g
< o ]2 < o | e < o |
=} =} —t — —— 0 ===1§ =}
= p—t1]
o | o | o |g=—m=0"" o — .
°© T T T T T ° T T T T T °© T T T T T
0.05 0.10 0.15 020 0.25 0.05 0.0 0.15 020 0.25 0.05 0.0 0.15 020 0.25
o o o
o o o
Q- @ @
o o o
4 I x | 4 ]
8 § 8 ] o { 4
5 © 5 © 5 ©
[ — o — o —
2 2 2
L O L O L O
2 = 2 < 2357
o ° __+ ©O° __+ ©O° .
_ ././:/- — ././- = '/-/-
8 Ji—=s—1 . . 8 |t pm—— 8 fs— .. [
o T T T T T © T T T T T © T T T T T
0.05 010 0.15 020 0.25 0.05 0.0 0.15 020 0.25 0.05 0.0 0.15 020 0.25
a a o
Alphalnvesting - ForwardStop = TailStop
AlphaThresholding StrongStop Target FDR

F1c 5. Average power and observed FDR level for the orthogonal lasso using the covariance test
of Lockhart et al. (2014). In the bottom panels, we see that all methods achieve FDR control.
By taking advantage of the Exp(1/€) behaviour of the null p-values, TailStop far outperforms the
other methods in power across all the difficulty settings.

We compare the performance of StrongStop, ForwardStop, a-investing and a-
thresholding. In this comparison, TailStop operates on the raw test statistics of
Section 4.1. All other procedures operate on conservative p-values, p; = exp(—Tj),
obtained by bounding the null distributions by Exp(1).

Figure 5 shows plots of average power and observed FDR level across the three
simulation settings. The FDR plots confirm that all of the procedures control the
FDR. However, in the medium and hard settings TailStop is the only method that
shows sensitivity to the choice of target « level. All other methods have an observed
FDR level that’s effectively 0, irrespective of the target «.

From the power plots we also see that TailStop has far higher power than the
other procedures. The difference in power is particularly pronounced in the medium
signal strength setting, where at low a TailStop achieves almost 10x higher power
than any other method. The superior performance of TailStop is both desirable and
expected, as it is the only rule that can take advantage of the rapid decay of the
test statistics in the null.

6.2. Simulations for the Spacing Test for Least-Angle Regression. As discussed
in more detail in Section 4.2, Taylor et al. (2014) propose a sequence of spacing test
p-values corresponding to each step in the Least Angle Regression (LARS) path.



SEQUENTIAL FDR CONTROL

15

Easy Medium Hard
1.00 - 1,004 1,004
0.75 0.75 0.75
0.50 - 0.50 - 0.50 -
0.25 0.25 0.25
0.00 0.00 0.00 +
T T T T T T T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Index Index Index

F1G 6. Observed p-values for 50 realizations of the spacing test (Taylor et al., 2014) for LARS.
p-values corresponding to mon-null hypotheses are shown in orange, while those corresponding
to null hypotheses are shown in gray. The smooth black curve is the average proportion of null
hypotheses up to the given index. This example is similar to the FEasy setting of the ordered
hypothesis example of §3 in that the null and alternative are nearly perfectly separated. However,
in the LARS setting the p-values under the alternative are highly variable and can be quite large,
particularly in the Hard setting.

These p-values are shown to be independent and uniformly distributed under the
null hypothesis that the given variable has 0 regression coefficient in the model
containing itself and all previously added variables. We compare the performance
of ForwardStop, StrongStop, a-investing and a-thresholding in three settings of
varying signal strength. TailStop is not included in this comparison because it
should only be used when the null p-values exhibit Exp(1/£) behaviour, whereas
the spacing test p-values are uniform.

In all three settings we have n = 200 observations on p = 100 variables of which
10 are non-null, and standard normal errors on the observations. The design matrix
X is taken to have iid Gaussian entries. The non-zero entries of the parameter vector
B are taken to be equally spaced values from 2 to 1/2log py, where ~y is varied to
set the difficulty of the problem.

Figure 6 shows p-values from 50 realizations of each simulation setting. Note
that while all three settings have excellent separation—meaning that LARS selects
all the signal variables before admitting noise variables—the p-values under the
alternative can still be very large.

Figure 7 shows plots of average power and observed FDR level across the three
simulation settings. All four successfully control FDR across the three simulation
settings, and the control becomes increasingly conservative as the signal strength
decreases. Interestingly, StrongStop attains both the highest average power and
the lowest observed FDR level in all three settings. This is not unexpected, as
StrongStop scans the p-values back-to-front and is therefore less hindered by stray
occurrences of large p-values early in the LARS path.

7. Discussion: Practical considerations in model selection. When ap-
plying our procedures to model selection problems in practice, there are several
practical concerns that arise. These can affect the power and FDR-controlling prop-
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F1G 7. Average power and observed FDR level for the spacing test p-values (Taylor et al., 2014).
Even though there is nearly perfect separation between the null and alternative regions, the pres-
ence of large alternative p-values early in the path makes this a difficult problem. StrongStop
attains both the highest average power and the lowest observed FDR across the simulation set-
tings. Unlike the other methods, StrongStop scans p-values back-to-front, and is therefore able to
perform well despite the occurrence of large p-values early in the path.

erties of the procedures from the previous sections, as well as their interpretation.
In this final section, we discuss some of these practical concerns, both in general
and in the special case of the covariance testing literature reviewed above.

7.1. Intermingling of signal and noise. In finite samples with relatively weak
signal, it is common that the signal selections and null selections can be intermingled
in the selection path. In the lasso case, this happens when the signal variables are
weak enough that the lasso path does not actually include the true solution at any
point.

This means that there are two transitions that we could be trying to identify.
One is the first time a noise selection is made. This is the interface between the
region of pure signal and the intermingled region. The other is the last time a
signal selection is made. This is the interface between the intermingled region and
the region of only noise variables. When signal is strong, as in the conditions for
Lockhart et al. (2014) and G’Sell, Taylor and Tibshirani (2013), these occur at the
same point in the path. However, in practical settings they are often separated.

This means that one needs to be careful to specify which transition is intended
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when defining false discovery rates in these problems. This will depend on the spec-
ification of the null hypotheses for the particular test statistics being used. For the
Exp(1/¢) distributions we discuss in this paper, we are referring to selections that
occur after the first noise variable enters as false selections (though the accuracy is
impacted by the distributional distortion discussed later in this section). For some
of the more exact tests and distributional guarantees that are being developed, the
corresponding false discovery rate refers to null variables that enter after the last
signal variable (rather than the first noise variable).

A more concrete impact of this intermingling is that it can theoretically distort
the Exp(1/¢) distributions of Lockhart et al. (2014) and G’Sell, Taylor and Tib-
shirani (2013). The existing theory for the lasso provides insight into the effects
of this intermingling of noise and signal variables, since the noise variables enter
independently of the weak signal variables in the orthogonal lasso.

Suppose that the £ and ¢+ 1 noise variables enter at A\ and A;42, but a weak sig-
nal variable enters at Ag11. According to the theory from Lockhart et al. (2014) for
the noise variables, we actually expect A\ (Ax —Ag+2) to be approximately Exp(1/£).
The observed test statistics, Tx = A\g(Ax — Agt1) and Trr1 = Apr1(Agr1 — Agr2),
satisfy Tk + Tk+1 < )\k(>\k — /\k+2) ~ EXp(]./g)

This is enough for ForwardStop and StrongStop to continue to control FDR (and
FWER for StrongStop), since both T and Tj41 are still dominated by Exp(1).
However, inserting these weak signal variables shifts the distributions in later steps
to have larger means than expected (or equivalently shifts the locations of the
noise variables). In the example above, Ty 2 would be Exp(1/(¢ 4+ 1)) instead of
Exp(1/(¢ 4 2)). Theoretically, this could lead the mean adjustments in TailStop
to be too large, leading to anti-conservative behavior. In simulation, however, this
anti-conservative behavior has been very difficult to produce.

7.2. Correlated predictors in regression: Does FDR make sense as a criterion?.
In regression settings, correlated predictors lead to further complications. While the
Exp(1) bound of Lockhart et al. (2014) allows correlation, its conditions implicitly
rely on those correlations being relatively weak. As a result, the distributional guar-
antee begins to break down in the presence of large correlations, as demonstrated
in Table 2 of their paper. This can lead stopping rules based on these guarantees
to be anti-conservative.

More recent approaches, like those of Taylor et al. (2013) and Taylor et al.
(2014), provide guarantees that continue to hold in the presence of strong correla-
tions. However, when the predictors are highly correlated, the appropriateness (and
definition) of FDR as an error criterion comes into question. If a noise variable is
highly correlated with a signal variable, should we consider it to be a false selec-
tion? This is a broad question that is beyond the scope of this paper, but is worth
considering when discussing selection errors in problems with highly correlated X.
This question is discussed in more detail in several papers (e.g. G’Sell, Hastie and
Tibshirani, 2013; Lin, Foster and Ungar, 2011; Benjamini and Gavrilov, 2009; Wu,
Boos and Stefanski, 2007).
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8. Conclusions. We introduced a new multiple hypotheses testing setting
that has recently become important in some model selection problems. In this set-
ting, the hypotheses are ordered, and all rejections are required to lie in an initial
contiguous block. Because of this constraint, existing multiple testing approaches
do not control criteria like the False Discovery Rate (FDR).

We proposed a pair of procedures, ForwardStop and StrongStop, for testing in
this setting. We proved that these procedures control FDR at a specified level while
respecting the required ordering of the rejections. Two procedures were proposed
because they provide different advantages. ForwardStop is simple and robust to
assumptions on the particular behavior of the null distribution. Meanwhile, when
the null distribution is dependable, StrongStop controls not only FDR, but the
Family-Wise Error Rate (FWER). We then applied our methods to model selection,
and provided a modification of StrongStop, called TailStop, which takes advantage of
the harmonic distributional guarantees that are available in some of those settings.

A variety of researchers are continuing to work on developing stepwise distribu-
tional guarantees for a wide range of model selection problems. As many of these
procedures are sequential in nature, we believe that the stopping procedures from
this paper provide a way to convert these stepwise guarantees into model selection
rules with accompanying inferential guarantees. The simulations and comparisons
in this paper suggest that our procedures perform favorably at this task.

A remaining challenge is to design stepwise p-values that yield particularly favor-
able performance when used in this fashion. For example, we have seen in Section
6 that the Exp(1/k) null distributions available in some settings give a dramatic
boost in power when used with appropriate stopping rules. However, null distribu-
tions of that form are only currently demonstrated in very specialized scenarios.
Constructing stepwise statistics and distributions with such performance in more
generalized scenarios is an important and open problem.
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APPENDIX A: PROOFS

LEMMA 1. We can map any rejection threshold ¢ to a number of rejections k. For
the purpose of this proof, we will frame the problem as how to choose a rejection
threshold ¢; any choice of ¢ € [0, 1] immediately leads to a rule

kr=R({E) = |{i:q <}

Similarly, the number of false discoveries is given by V({) = [{i > s: ¢; < {}|. We
define the threshold selection rule

iy —max{ten1): < 2RO
fremre 220}

m

Here, R(fs) = kp and so this rule is equivalent to the one defined in the hypothesis.
When coming in from 0, R(t) is piecewise continuous with upwards jumps, so

i aR(ty)

o )

m

allowing us to simplify our expression of interest:
Vita)  a V(i)

R(t,) m  iq
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Thus, in order to prove our result, it suffices to show that
E [V(ta)] <m
124

The remainder of this proof establishes the above inequality using Rényi represen-

tation and a martingale argument due to Storey, Taylor and Siegmund (2004).
Recall that, by assumption, psi1, ..., pm“m(fiU([O, 1]). Thus, we can use Rényi

representation to show that

m

Yst1 Y;
Lsi1l — Loy voey oy — Lg) = | ——, ..., _—
(Zsta ) <ms z’:zs-:umZJrl)

d
= (El,mfsa cey Emfs,mfs);

where the E; ,,_, are standard exponential order statistics, and so

(e—<zs+1—zs>’ e—(zm—zs))

are distributed as m — s order statistics drawn from the uniform U (][0, 1]) distribu-
tion. Recalling that
L= gusi = (L= go) e”Zrrem 2,

we see that ¢sy1, ..., ¢m are distributed as uniform order statistics on [gs, 1].
Because the last ¢g; are uniformly distributed,
Vit
M(t) = ®)
(t - QS)

is a martingale on (gs, 1] with time running backwards. Moreover, t, is a stopping
time with respect to the relevant filtration. Thus, by the optional sampling theorem
(plus some integrability arguments),

E [M(ia)ifa > 0] < M(1) = .

For all t > g,

Vit t—qs
VO T2 pr (1) < (1 - g2 (),
and so )
E {V?a);{a > qs} <m-—s.
Meanwhile,
E {Vtgta) |fa < qs} =0, and so, as claimed, E {Vtgta)} <m

O O
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COROLLARY 1. We can extend our original list of p-values p1, ..., p, by append-

ing additional terms
~ - _iid
Pm+1, Pm+25 --+y Pm* ~ U([Oa 1])

to it. This extended list of p-values still satisfies the conditions of Lemma 1, and
so we can apply procedure (8) to this extended list without losing the FDR control
guarantee:

R . m* m™
kg™ :max{k:zk<a}.
As we take m* — oo, we recover the procedure described in the hypothesis:

lim k%™ = kp.
m*—o00

Thus, by dominated convergence, the rule kg controls the FDR at level a. O O

THEOREM 1. The proof of Lemma 1 used quantities

)

Y; ‘ Y,
7, = S A——— —J
¢ Zm—]—i—l jngle{j7 ey m}}

Jj=1

to construct the sorted test statistics ¢;. The key difference between the setup of
Lemma 1 and our current setup is that we can no longer assume that if the ‘"
hypothesis is null, then all subsequent hypotheses will also be null.

In order to adapt our proof to this new possibility, we need to replace the Z;
with

Ly, . ‘
ZiALT:ZT;), where v(j) = |{l € {j, ..., m} : 1 € M}|,
j=1

and M is the set of indices corresponding to null hypotheses. Defining

A
QiLTzl

_gALT
—_ e 7 5

we can use Rényi representation to check that these test statistics have distribution

Y.
1= g T L0(i) (1= Upyan) =exp |[— Y. 2| (1= Uy jan)
(i<ing M}

where the U, ;),|a are order statistics of the uniform U(]0,1]) distribution. Here
r(7) is deterministic in the sense that it only depends on the location and position
of the non-null p-values.

If we base our rejection threshold £4X7 on the qlALT7 then by an argument anal-
ogous to that in the proof of Lemma 1, we see that

v ({2e7)
fALT
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is a sub-martingale with time running backwards. The key step in showing this is
to notice is that, now, the decay rate of V (¢) is accelerated by a factor r=1(i) > 1.
Thus, the rejection threshold fﬁLT controls FDR at level o in our new setup where
null and non-null hypotheses are allowed to mix.

Now, of course, we cannot compute the rule {457 because the ZAXT depend on
the unknown number v(j) of null hypotheses remaining. However, we can apply the
same trick as in the proof of Corollary 1, and append to our list an arbitrarily large
number of p-values that are known to be null. In the limit where we append infinitely
many null p-values to our list, we recover the ForwardStop rejection threshold. Thus,
by dominated convergence, ForwardStop controls the FDR even when null and non-
null hypotheses are interspersed. O O

THEOREM 2. We begin by considering the global null case. In this case, the Y;
are all standard exponential, and so by Rényi representation the ¢; are distributed
as the order statistics of a uniform U ([0, 1]) random variable. Thus, under the global
null, the rule kg is just Simes’ procedure (Simes, 1986) on the ¢;. Simes’ procedure
is known to provide exact a-level control under the global null, so (15) holds as an
equality under the global null.

Now, consider the case where the global null does not hold. Suppose that we have
ks = k > s. From the definition of G, we see that g, depends only on pk, .., Dm,
and so the event ¢ < ak/m is just as likely under the global null as under any
alternative with less than k non-null p-values. Thus, conditional on s,

Yop [12;5 - k}alternative] - Y P [12;5 - k|null] <a,
k=s+1 k=s+1

and so the discussed procedure in fact provides strong control. O O
THEOREM 3. Let Z; = Z;n:z T;. By Rényi representation,

( :+1a ceey Z:%) ~ (Emfs,mfsv ceey El,mfs)7

where the E; ; are exponential order statistics. Thus

(q:+17 ceey q;:w)

are distributed as m — s order statistics drawn from the uniform U (][0, 1]) distribu-
tion.

All the g} corresponding to null variables are jointly distributed as independent
uniform random variables. Thus, by the BH procedure, TailStop controls the FDR.
The exact equality also follows directly from the result of Benjamini and Hochberg
(1995). O O

APPENDIX B: ADDITIONAL SIMULATIONS

In this section we revisit the ordered hypothesis example introduced in section
3 and present the results of a more extensive simulation study. We explore the
following perturbations of the problem:
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(a) Varying signal strength while holding the level of separation fixed. (Figures 8,
9, 10)
(b) Increasing the number of hypotheses while retaining the same proportion of

non-null hypotheses (Figure 11)
(¢) Varying the proportion of non-null hypotheses (Figures 12, 13, 14)

We remind the reader of the three simulation settings introduced in 3, which we
termed Easy, Medium and Hard. These settings were defined as follows

Easy Perfect separation (all alternative precede all null), and strong signal (Beta(1, 23))

Medium Good separation (mild intermixing of hypotheses), and moderate signal
(Beta(1,14))

Hard Moderate separation (moderate intermixing hypotheses), and low signal
(Beta(1,8))

All results are based on 2000 simulation iterations. Unless otherwise specified, the
simulations are carried out with m = 100 total hypotheses of which s = 20 are
non-null.

Alphalnvesting - ForwardStop Target FDR
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Fic 8. Effect of signal strength on stopping rule performance: Perfect separation regime. Forward-
Stop remains the best performing method overall, except at the lowest o level in the moderate and
low signal regimes. All of the methods become more conservative as the signal strength decreases.
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F1c 9. Effect of signal strength on stopping rule performance: Good separation regime. The effect
of signal strength is qualitatively the same as in the perfect separation regime.
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Fi1c 10. Effect of signal strength on stopping rule performance: Moderate separation regime. The
effect of signal strength is qualitatively the same as in the perfect separation and good separation
regimes.
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Alphalnvesting —— ForwardStop Target FDR
= AlphaThresholding == StrongStop
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Fic 11. Effect of increasing the total number of hypotheses. Instead of 100 hypotheses of which
20 are non-null, we consider 1000 hypotheses of which 200 are non-null. With the exception of
a-thresholding, the performance of the methods remains largely unchanged. One small change is
that ForwardStop loses power around o = 0.1 in the Hard setting. The key difference is that
the performance of a-thresholding considerably degrades. This is not surprising when we consider
that a-thresholding is simply a geometric random variable. Thus as we increase the number of
non-null hypotheses we expect the average power of a-thresholding to drop to 0.
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~== Alphalnvesting - ForwardStop Target FDR
= AlphaThresholding == StrongStop
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Fic 12. Effect of varying the number of non-nulls out of m = 100 total hypotheses: Easy regime.
With the exception of a-thresholding, the performance of the methods remains largely unchanged.
The performance of a-thresholding degrades considerably as the mnumber of non-null hypotheses
increases. An explanation for this behaviour is presented in 11.
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Fic 13. Effect of varying the number of non-nulls out of m =
regime. The effect of varying the number of non-null hypotheses
the Easy regime.
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Medium, 50 non-null
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Fic 14. Effect of varying the number of non-nulls out of m = 100 total hypotheses: Hard regime.
The effect of signal strength is qualitatively the same as in the Easy and Medium regimes.
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