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This is a discussion on the work in Javanmard and Montanari (2013). We begin with a short
introduction to statistical inference and then briefly summarize the basic ideas in this paper. We
discuss how they design the novel algorithm to de-biase LASSO to arrives limiting distributions
and what type of tests they have considered in this paper. In the last section, we compare several
common methods in high dimensional inference such as de-baised methods, selective methods
and resampling methods.

1 Introduction to Statistical Inference

This paper deals with statistical inference. Two major topics for statistical inference are hypothesis
test and parameter inference (at some situations like this paper, these two topics coincide). In
what follows we briefly introduce these two topics and show that the limiting distributions for test
statistics and estimated parameter are essential for statistical inference.

1.1 Hypothesis Test

Hypothesis test is the main inferential approach used on the scientific research. Hypothesis test is
essentially a proof by contradiction. We want to prove the alternative hypothesis is correct so we
construct the null hypothesis H0, consists of situations that complement to alternative, and we try
to argue that the null hypothesis contradicts to the data we observed.

The standard approach to conduct hypothesis test is first to find a test statistics Tn that summarize
information from the data. Then we study the behavior of Tn under null hypothesis. When we ob-
served data x1, · · · , xn, we can compute the value of this test statistics, called it tn = Tn(x1, · · · , xn).
If tn is far away from what usually Tn under H0 is, then H0 is unlikely to be true so that we reject
H0. The region that we reject H0 is called rejection region, often denoted as R. However, given a
rejection rule (Tn ∈ R), we may falsely reject H0. That is, H0 is correct but due to the randomness
of sample, our test statistics behaves like H0 is not true. This error rate (falsely reject H0) is called
the type-1 error. Since the hypothesis test is mainly for scientific inference and we are trying to
prove the alternative hypothesis HA. We need to provide ‘sufficient’ evidence to conclude H0 is
incorrect. Controlling the type-1 error provides a quantitative way to require the ‘sufficiency of
evidence’ to reject H0. If we require a smaller type-1 error to reject H0, this means that we need
‘more sufficient’ evidence to do so. The requirement for the sufficiency of evidence, or the level
for type-1 error we wish to constrol is call ‘significance level’, often denoted as α. Thus, given the
significance level α, the rejection region R = Rα depends on α since we need to make sure we have
controlled type-1 error. Note that the significance level α in practice should be determined by the
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scientists. Some common example is α = 0.1, 0.05, 0.01 but at some cases we may require α = 10−5

or even smaller.

The limiting distribution for Tn is vital to the above standard approach for hypothesis test since
we need to find the rejection region Rα under significance level α. However, in general it is hard
to obtain such a nice region unless we know the distribution of test statistics Tn. In many cases,
Tn has a very complicated distribution for finite n. Thus, we are allowed to use the knowledge
of limiting distribution for Tn to construct rejection region Rα. At least the Rα from limiting
distribution asymptotically controls the type-1 error rate. Therefore, we need limiting distribution
to Tn

1.2 P-value

The p-value is an alternative idea that directly measures the ‘support/contradiction’ of null hypoth-
esis H0 given the data and test statistics. In short, p-value is the measure of ‘support’ for H0 by
the test statistics under the data. A smaller p-value indicates less support for H0 and equivalently,
more contradiction to H0. Note that p-value depends on the test statistics; p-value will be different
for two test statistics under the same H0 and data. Computing p-value does not require significance
level α. However, if we want to conduct the test under α, all we need to do is to compare p-value
and α and we reject H0 if p-value is less than α. P-value is like an universal quantity for all the
test statistics. Even we have different test statistics for different hypothesis using different data,
the p-value between all of them are comparable to each other since it is a measure of support for
H0. Thus, this allows us to compare p-values while doing multiple test which is why the False
Discovery Rate (Benjamini and Hochberg, 1995) uses the rank of p-value.

The definition of p-value is from the rejection region Rα so that the computation of p-value requires
the limiting distribution of test statistics. To be short, the p-value from a given data is defined as
follows. Given the data, we realize the test statistics. The p-value is the smallest α that we the
realized test statistics falls within Rα (Wasserman, 2004).

1.3 Confidence Interval/Set

Another topic of statistical inference is parameter inference which concerns how can we construct
a ‘random region’ in the parameter space based on the data such that this random region has
certain probability to cover the true parameter. In usual parametric model, parameters are like
population mean µ or the regression coefficient β. In general, parameter can be a function like
density function p or a set e.g. density level set Lλ = {x : p(x) ≥ λ} or even a manifold M (see
Chen et al. (2014) for an example on constructing confidence set for manifolds). Let θ be the true
parameter (parameter of interest, some characteristics for the population). A valid/proper (1−α)%
confidence set Cn,α = C(X1, · · · , Xn;α) is a random set such that

P(θ ∈ Cn,α) ≥ 1− α+ o(1).

Note that the randomness for the above is from the confidence set Cn rather than the parameter
θ; θ is an unknown but fixed quantity. The quantity (1 − α)% is called coverage/confidence, a
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quality for the ‘procedure’ (for constructing Cn,α), rather than the significance level although in
many cases they coincide. The (1−α)% confidence/coverage is intepreted as follows. Imagine that
we can resample a size n sample from the true population for several times. (Each time while we
are sampling, we allow the parameter changes.) For every size n sample, we use the same procedure
to construct a confidence set. If this procudure has (1 − α)% confidence, then in the long run we
will have (1− α)% ratio of total confidence set that cover the corresponding parameter.

We can (and often) invert the parameter estimate θ̂n to construct confidence set Cn and this requires
the knowledge about the distribution of θ̂n. Let θ0 be the true parameter. The simplest way to
build Cn is first find θ̂n and then study θ̂n − θ0 (or more general, the metric d(θ̂, θ)), and Cn is
the collection of θ such that |θ̂n − θ0| ≤ an,α where an,α is picked from the distribution of θ̂n. The

analytical form of an,α requires the distribution (limiting distribution is allowed) of θ̂n−θ0 and this
is why we need the limiting distribution.

In this paper, we are working on a regression problem and the parameters of interest are the
regression coefficients θ0. The null hypothesis is whether each coefficient is 0 or not. In this case, a
typical test statistics is the estimate for the regression coefficient so that all the above three topics
require the same limiting distribution of θ̂n − θ0. This is a non-trivial problem since most of the
asymptotic theories for regression are valid only for dimension p being fixed and n → ∞. In the
next section, we will show how to find the limiting distribution in high dimensional settings.

2 Basic Ideas for the Paper

Let X1, · · · , Xn ∈ Rp be the feature and Y1, · · · , Yn ∈ R be the response. For simplicity, let
X = [X1, · · · , Xn] ∈ Rn×p and Y = (Y1, · · · , Yn) ∈ Rn. We consider the linear model such that
(Assumption 1) Y = Xθ0 +W, W ∼ N(0, σ2In).
Note we allow p = pn →∞ with sparsity. i.e. supp(θ0) = s << p.

The usual method to attack this problem is by LASSO. Namely,

θ̂n(λ) = argmin
θ∈Rp

1

2n
‖Y − Xθ‖22 + λ‖θ‖1. (1)

In this paper, they propose a de-biased method modified from the LASSO estimate:

θ̂∗(λ,M) = θ̂n(λ) +
1

n
MXT (Y − Xθ̂n(λ)), (2)

where M ∈ Rp×p is an arbitrary matrix. This de-biased method has been proposed by van de Geer
et al. (2013); Zhang and Zhang (2014); in these papers, they used surrogate inverse covariance
matrix (via a method called nodewise regression (Meinshausen and Bühlmann, 2006)) for the
matrix M .

The main breakthrough for this paper is that under suitable choice of M , we can weaken the
coherence assumption on X (for the common conditions in LASSO literatures, see Van De Geer
et al. (2009) for a comparison). Let Σ = Cov(Xi). We assume the following:
(Assumption 2) each row of XΣ−1/2 is independent and has subgaussian norm.
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How do we weaken the coherence assumption? The key is on the quantity

µ∗(X;M) = |M Σ̂n − Ip|∞,

where Σ̂n = 1
nX

TX is the sample covariance matrix. Theorem 2.3 shows that under assumption 1
and 2 and suitable choice of λ = λn,

√
n(θ̂∗ − θ0) = Z + ∆, Z ∼ N(0, σ2M Σ̂nM

T ), ∆ =
√
n(M Σ̂n − Ip)(θ0 − θ̂n). (3)

Thus, once we can show ∆ = oP (1), then by Slutsky theorem we obtain limiting distribution for√
n(θ̂∗ − θ0).

Someone may ask: in general, do we have ∆ = oP (1)?

• For the simple case, p < n, it is not hard to see |M Σ̂n − Ip|∞ = 0 so that we have the desire
result.

• Under RIP condition, this is also true.

• In more general case, when we assume Assumption 2, this is also true.

In the what follows we derive how Assumption 2 helps us to obtain consistency for ∆.

A deeper look at ∆ shows that the key element is M Σ̂n− Ip since the other term involving LASSO

solution is fixed. Thus, this motivates us to pick M minimizing |M Σ̂n − Ip|∞ and this is what
algorithm 1 is doing. Moreover, also in Theorem 2.3, they show a concentration for ∆:

P
(
‖∆‖∞ ≥

4cµ∗σs0
φ20

√
log p

)
≤ 2p−c0 , (4)

where c, c0 are constants. This concentration depends on other 5 terms, namely, noise level σ,
dimension of data p, sparsity s0 and two other terms µ∗ = µ∗(X,M) and compatibility φ20. By
applying algorithm 1, µ∗ can be replaced by µmin and they show in Theorem 4 that both φ0 and
µmin have a concentration bound. φ0 is bounded from belowed by a constant and µmin is at rate

O(
√

log p
n ). Thus, putting altogether, we obtain

‖∆‖∞ = OP

(
s0 log p√

n

)
. (5)

A remark on the proof. The key idea on obtaining the decomposition (3) is as follows:

√
n(θ̂∗ − θ0) =

√
n

(
θ̂n(λ) +

1

n
MXT (Y − Xθ̂n(λ))− θ0

)
=
√
n

(
θ̂n(λ) +

1

n
MXT (Xθ0 +W − Xθ̂n(λ))− θ0

)
=
√
n

(
θ̂n(λ)

[
I − 1

n
MXTX

]
−
[
I − 1

n
MXTX

]
θ0

)
=
√
n

[
I − 1

n
MXTX

](
θ̂n(λ)− θ0

)
+

1√
n
MXTW
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The first term is what we called ∆ and it is bounded using H older’s inequality via

√
n

∥∥∥∥I − 1

n
MXTX

∥∥∥∥
∞

∥∥∥θ̂n(λ)− θ0
∥∥∥
1
.

The 1-norm term is bounded by the existing results for lasso and the entrywise∞-norm is bounded
by inventing a so-called “generalized incoherence condition”. Since W is normal, the second term
is also normal with covariance matrix σ2M

[
1
nX

TX
]
MT . This is what they call Z. Under their

assumption, ∆ goes to 0 faster than Z, therefore we say the estimator is asymptotically unbiased.

3 Statistical Inference

Now we dicuss the statistical inference presented in this paper. We are working on high dimensional
regression and the parameters of interest are the regression coefficients β. In this case, conducting
hypothesis test and constructing confidence sets are equivalent.

For high dimension regression, the hypothesis test has two features

1. Multiple test. i.e. H0,j : βj = 0, for each j = 1, · · · , p.

2. Number of test increases with sample size n.

In this paper, they study three testing scheme:

1. Individual test. We test only one hypothesis H0,j : βj = 0. Note that j = j(n) may change
according to the sample size n.

2. Subset test. We test a fixed size multiple parameters. In particular, they construct a confi-
dence set for the subset of parameters.

3. Multiple test. They constrol FWER (familywise error rate) for multiple testing.

From what we have derived, there are good news and bad news.

• Good news. By the above derivation, we have obtained a limiting distribution.

• Bad news. The limiting distribution involves unknow quantity σ2.

If we somehow get a consistent estimator to σ2 such that | σ̂σ − 1| = oP (1), by Lemma 3.2 we have

lim
n→∞

sup
θ0∈Rp;‖θ0‖0≤s0

∥∥∥∥∥P
( √

n(θ̂∗i − θ0,i)
σ̂[M Σ̂nMT ]

1/2
i,i

≤ x

)
− Φ(x)

∥∥∥∥∥ = 0 a.s. (6)

• This is a pointwise convergence. i.e. convergence in distribution, not Berry-Eseen type bound.
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• This is for i being fixed.

• However, this is uniform in sparsity settings (different combination for θ0).

We can invert this for the confidence interval or do the hypothesis test. They show consistency for
both cases. In particular, they conduct a power analysis for a signal strength γ > 0 case. Let

βi,n(γ) = sup{P(NotRejectH0) : θ0 ∈ Rp, ‖θ0‖0 ≤ s0, |θ0,i| ≥ γ} (7)

be the type 2 errors. Then the power function, which is 1− βi,n(γ), can be shown

lim inf
n

1− βi,n(γ)

1− β∗i,n(γ)
≥ 1, 1− β∗i,n(γ) = G

(
α,

√
nγ

σ[Σ−1i,i ]1/2

)
= 1− o(1),

where G(α, µ) = 2 − Φ(Φ−1(1 − α
2 ) + µ) − Φ(Φ−1(1 − α

2 ) − µ) is the power function for testing
standard normal with mean 0 (null) under the true mean equals µ. Thus, the power is kind of
lower bounded by the power to a known problem and they further show that this power is nearly
optimal (differ by a constant factor).

Subset Test. They do not explicitly frame this problem in terms of hypothesis test but instead
they look for the confidence set for a subset of parameter. Let R ⊂ {1, · · · , p} be a subset of
parameter and |R| = k. i.e. the number of elemtents in R is fixed to be k. Then by simple
generalization from the limiting distribution, we can construct CR(α) such that

P(θ0,R ∈ CR(α)) ≥ 1− α+ o(1),

where θ0,R is the element of θ0 within the subset R.

Multiple Test. For multiple test, they consider two settings: a fixed size simultaneous test and a
test based on FWER (family wise error rate). For the fixed size simultaneous test, the basic idea is
to generalize (6) to multivariate case. Note that they fixed the number of parameter to be tested
when n → ∞. For the FWER test, just simply control FWER to carry out the test. Let T̂F be
their test and FWER(T, n) be the FWER for a test T under sample size n. They show that

lim sup
n→∞

FWER(T̂F , n) ≤ α.

The basic idea for this result follows from the fact that the error decays at exponential rate due
to normality. Even if we have p number of tests to carry out, this is a polynomial factor and is
negligible compared to the exponential rate.

Non-Gaussian Case. The assumption 1 may not be necessary for individual statistical inference
(testing for a given i parameter). The main observation is from the normality term Z in (3). In
the proof of theorem 2.3, they show that Z = MXTW/

√
n. Thus, when we focus on one particular

parameter, say θ0,i, we have

√
n(θ̂∗0,i − θ0,i) =

1√
n
mT
i XTW + oP (1)

=
1√
n
mT
i

n∑
j=1

XjWj + oP (1),

where mi is the i-th column of M . Thus, if the random variable Aj = XjWj satisfies Lindeberg-
Feller’s condition (in CLT), we still have asymptotic normality even if Wj is not normal.
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4 Other High Dimensional Inferences

• De-bias method. A common approach to do inference in regression under high dimensional
setting is to ‘debias’ the LASSO. That is,

θ̂n = θ̂LASSO,n +An, An =
1

n
SXT (Y − Xθ̂LASSO,n(λ)),

where S is some matrix. Note that this is exact the same as in (2). The main issue is how to
construct a data-driven S such that it eliminate the bias in LASSO. For related articles, see
van de Geer et al. (2013); Zhang and Zhang (2014); Caner and Kock (2014). Note that van
de Geer has a series of work on the de-biased method; see Jankova and van de Geer (2014)
for confidence interval and van de Geer (2014) for a summary for their works.

• Selective method. An alternative method to do high dimensional inference by LASSO is a
sequential and selective method called covariance test (Lockhart et al., 2014). Note that this
is sequentially conditional test and the null hypothesis is random (what to test depends on
what passed in previous test). For instance, at step k (λ = λk), we are testing

H0 : supp(θ0) ⊆ Ak,

where Ak is the active set (parameters selected by LASSO) at step k. The covariance test can
be applied to graphical LASSO (G’Sell et al., 2013) and a modified method called spacing
test is recently proposed (Taylor et al., 2014).

• Resampling method. We use resampling method (including data splitting, bootstrap) to
conduct hypothesis test in high dimension. For the sample splitting, Wasserman and Roeder
(2009) splits the data and conduct a screening (using the first two subsample) and cleaning
(use the remaining subsample) to carry out variable selection based on t-test. The screening
and cleaning procedure can also be used in high dimensional estimation; see Jin et al. (2012);
Huang et al. (2014) for example.

The bootstrap can also be applied in inference under high dimensional settings. The theoret-
ical foundation for this idea is given in Chernozhukov et al. (2013). Essentially, they prove
that for two sequences of random vectors X1, · · · , Xn ∈ Rp and Y1, · · · , Yn ∈ Rp such that
each Xi is iid with mean 0 and covariance matrix Σ and each Yi is iid ‘multivariate normal’
with mean 0 and covariance matrix Σ. Let X̄n = 1

n

∑n
i=1Xi ∈ Rp be the mean of Xi’s and

Ȳn is defined similarly. Denote X̄n,j be the j-th component of X̄n for j = 1, · · · , p. Then

sup
t

∥∥∥∥P(√n max
1≤j≤p

X̄n,j ≤ t
)
− P

(√
n max

1≤j≤p
Ȳn,j ≤ t

)∥∥∥∥→ 0.

Note this is a Berry-Esseen type bound. With this result, they further show the bootstrap
consistently approaches the limiting distribution. Wasserman et al. (2013) applied this idea
to estimating undirected graph in high dimension and Zhang and Cheng (2014) extends this
result to high dimensional time series.

• Other testing problems
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– Testing independence. See Han and Liu (2014) for a non-parametric rank test for
testing independence.

– Two sample test. See Hall and Tajvidi (2002) for a permutation test and Reddi et al.
(2014) for a test based on Maximum Mean Discrepancy.

– Testing influential observation. We can also test if an observation is influential or
not in high dimensional settings; see Zhao et al. (2013).
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