
Summary and discussion of: “Controlling the False Discovery

Rate via Knockoffs”

Statistics Journal Club, 36-825

Sangwon “Justin” Hyun and William “Willie” Neiswanger

1 Paper Summary

1.1 Quick intuitive summary of this paper:

• In many settings we have a number of explanatory variables (i.e. “features”) and a
response variable.

• And we want to know which explanatory variables are truly associated with the re-
sponse variable.

• While doing this, we want to bound the false discovery rate (FDR)—the expected
fraction of false discoveries.

• This paper introduces the knockoff filter, a variable selection method that controls the
FDR in linear models when the number of observations is greater than the number of
variables.

• The basic idea is that you construct extra variables, called “knockoff variables”, which
have certain similar correlation structure as existing variables and allow for FDR
control when existing variable selection methods are applied.

• The main advantages of the knockoff filter over competing methods are that it achieves
exact FDR control in finite sample settings, no matter the design matrix, covariates,
number of variables, or size of regression coefficients, and that it empirically shows
more power than existing methods.

1.2 Background, Terminology, and Definitions

Assume a linear model of the form y = Xβ + z, where:

• We have a vector of responses y ∈ Rn

• We have a design matrix X ∈ Rn×p

• We have an (unknown) vector of coefficients β ∈ Rp.

• We have Gaussian noise z ∼ N (0, σ2I)
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Suppose we have a variable selection method that returns a set of indices Ŝ ⊂ {1, . . . , p}.
In the context of variable selection, we define the false discovery rate (FDR) to be the
expected fraction of falsely selected variables, which can be written:

FDR = E

[
#{j : βj = 0 & j ∈ Ŝ}

#{j : j ∈ Ŝ ∨ 1}

]
(1)

where the notation a ∨ b = max{a, b}. When we say that the FDR is controlled at level q,
we mean that the FDR ≤ q for all coefficients β.

1.3 Knockoffs Overview

The goal of the knockoff filter is to provide a variable selection method that controls the
FDR at level q for any finite sample of data whenever the number of observations n is larger
than the number of variables p. This method should hold for any fixed design matrix X
and and coefficients β.

1.3.1 Step 1: constructing the knockoffs

We now describe a general method for constructing knockoffs.
For each feature Xj (i.e. the jth column of design matrix X), construct a “knockoff

copy” X̃j such that:

1. X̃>X̃ = Σ

2. X>X̃ = Σ− diag{s}

where we have the Gram matrix Σ = X>X (after X has been normalized such that each
feature satisfies ‖Xj‖22 = 1), and nonnegative vector s ∈ Rp

+. Note that the above conditions
imply the following two conditions:

1. X>j X̃k = X>j Xk (for all j 6= k)

2. X>j X̃j = Σjj − sj = 1− sj

Note that X>j Xj = X̃>j X̃j = 1.
One basic strategy for computing knockoffs is to carry out the following two steps:

1. Choose s ∈ Rp+ such that diag{s} � 2Σ

2. Set X̃ = X
(
I − Σ−1diag{s}

)
+ ŨC

where Ũ ∈ Rn×p is an orthonormal matrix that is orthogonal to the span of the features of
X, and C is a Cholesky decomposition of the Schur complement of the Gram matrix of the
augmented knockoff design matrix, which we know exists since diag{s} � 2Σ.
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1.3.2 Step 2: calculate statistics for each pair of original/knockoff variables

We define statistics Wj for each variable j = 1, . . . , p such that large positive values give
evidence that variable βj is a true signal.

To calculate these statistics, we need an existing variable selection method. A run-
ning example throughout this document will be the LASSO method, which returns the
coefficients

β̂ = argminb

{
1

2
‖y −Xβ‖22 + λ‖b‖1

}
(2)

as a function of the penalty parameter λ.
We define a statistic Zj to be the point λ where variable j “enters the model” (i.e. where

the LASSO method first returns a non-zero value for βj), i.e.

Zj = sup
{
λ : β̂j(λ) 6= 0

}
(3)

To use the knockoff method, we first run the variable selection method (LASSO, in
this case) on an augmented matrix, which consists of concatenating the original design and

knockoff design matrices, which can be written
[
X, X̃

]
. Running LASSO on this augmented

matrix gives us the 2p statistis (Z1, . . . , Zp, Z̃1, . . . , Z̃p).
We can then compute the p statistics W1, . . . ,Wp as

Wj = Zj ∨ Z̃j ·

{
+1 if Zj > Z̃j

−1 if Zj < Z̃j
=

{
Zj if Zj > Z̃j

−Z̃j if Z̃j > Zj
(4)

1.3.3 Step 3: calculate a threshold of the Wj’s

The Wj ’s are constructed such that higher values give evidence that j is a true signal. We
define a data-dependent threshold T to allow for performing a final variable selection (with
the FDR guarantees).

For a specified level q, we define the data-dependent threshold to be

T = min

{
t ∈ W :

#{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q
}

(5)

or T = +∞ if this set is empty, where W is the set of unique nonzero |Wj |’s, i.e. W =
{|Wj | : j = 1, . . . , p} \ {0}.

1.3.4 The Knockoff and Knockoff+ Procedures

All together, the knockoff procedure can be written as the following: construct the knockoff
matrix X̃, statistics Wj , and threshold T, as in steps 1-3 above, then select the model Ŝ
with

Ŝ = {j : Wj ≥ T}. (6)
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The first main result (called Theorem 1 in the paper) states that the above method
will control a quantity known as the “modified FDR”. More formally, for any q ∈ [0, 1], the
knockoff method above satisfies

E

[
#{j : βj = 0 and j ∈ Ŝ}

#{j : j ∈ Ŝ}+ q−1

]
≤ q (7)

where the expectation is taken over the Guassian noise z, while treating the design matrices
X and X̃ as fixed.

This paper also provides a procedure known as knockoff+, which can be written as
the following: construct the knockoff matrix X̃ and statistics Wj as in steps 1-3 above, and
chose the data-dependent threshold T to be

T = min

{
t ∈ W :

1 + #{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q
}

(8)

or T = +∞ if this set is empty. After, select the model Ŝ with

Ŝ = {j : Wj ≥ T}. (9)

Note that the threshold T chosen by the knockoff+ procedure is always higher (or equal to)
that chosen by the knockoff procedure, and is thus a more conservative procedure.

The second main result (called Theorem 2 in the paper) states that the above method
controls the exact FDR. More formally, for any q ∈ [0, 1], the knockoff+ method above
satisfies

E

[
#{j : βj = 0 and j ∈ Ŝ}

#{j : j ∈ Ŝ} ∨ 1

]
≤ q (10)

where the expectation is taken over the Guassian noise z, while treating the design matrices
X and X̃ as fixed.

1.4 Theory and Extensions

• Why X̃? (and why the conditions?)
The knockoff dataset X̃ can be thought of as the solution to the desired correlation
structure:

[X X̃]T [X X̃] =

[
Σ Σ− diag{s}

Σ− diag{s} Σ

]
= G

for some vector s ∈ Rp.
We can see that X̃ exists iff G � 0. Let us see why. Take G’s Schur complement:1

A = Σ− (Σ− diag{s})Σ−1(Σ− diag{s})
= 2diag{s} − diag{s}Σ−1diag{s}

and we know that G � 0 if and only if A � 0. We can also see that A is the Schur’s
complement of another matrix (G′):

G′ =

[
Σ diag{s}

diag{s} 2diag{s}

]
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G′ � 0 if and only if diag{s} � 0 and Σ−diag{s}12(diag{s})−1diag{s} � 0 (this comes
from another Schur complement of G′). This is the main condition for the existence
of X̃ in the paper. · · · · · ·Cond1

• Constructing X̃: how and why?

1. Let Ũ ∈ Rn×p be an orthonormal basis to the column space spanned by X. The
existence of Ũ is guaranteed because we assume X is full rank (n ≥ 2p). This
implies, by construction, ŨTX = 0

2. Take the Schur complement of G from above:

A = 2diag{s} − diag{s}Σ−1diag{s}

If the conditions Cond1 hold, then A � 0, which is sufficient and necessary to
the existence of a C such that A = CTC, which can be obtained by a Cholesky
decomposition.

3. Now, construct X̃ as:

X̃ = (I − Σ−1diag{s}) + ŨC

4. Then, we can see that we have constructed a knockoff matrix with the desired
correlation structure.

[X X̃]T [X X̃] =

[
XTX XT X̃

X̃TX X̃T X̃

]
=

[
Σ Σ− diag{s}

Σ− diag{s} Σ

]
• Intuitive property of the knockoff variables, in our selection scheme.

Remember, our method is useful (power is high) only if the true variables enter before
the knockoffs do. Otherwise, because we cut off and only select the first consecutive
k variables, we will be selecting few of the true variables, hence low power.

Specifically, if x ∈ S for the support index set S, then it is a desirable trait for Xj to
enter before X̃j ! Thus we want a near-zero correlation (near-orthogonality) between
the original variable Xj and its knockoff X̃j :

Xj ⊥∼ X̃j , j ∈ {1, · · · , p}

The intuition is that, if there is a true relationship between the original variable Xj

and y, then by constructing X̃j to be near-orthogonal with the response y is breaking
the tie between y and X̃j . If Xj is a null variable, then there is no reason why either
Xj or X̃j should be any more related to y than the other. These are good properties
for our selection procedure! Hence, we want:

XT
j X̃j = 1− sj ' 0

1The Schur’s complement of block matrix G =

[
A B
C D

]
with respect to A is D − BA−1C, and we have

the property that G � 0 if and only if A � 0 and D − BA−1C � 0. Similarly, we can obtain the same
condition for the Schur complement with respect to D.
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• How should we choose s?

How to set values of s = (s1, · · · , sp) is a user’s choice. There are two ways to do this:

1. Set all correlations 1− sj to be equally small! We can achieve this by setting:

sj = 2λmin(Σ) ∧ 1

so that for all j, the value of 〈Xj , X̃j〉 = 1− 2λmin(Σ) ∧ 1

2. Set the average correlation across all variables is minimum out of all equal-
correlation s! We can achieve this by solving the program:

minimize
s

∑
j

|1− sj |

subject to sj ≥ 0

diag{s} � 2Σ

which can be solved efficiently (see paper for more details).

• Extensions to p ≤ n ≤ 2p

There are several ways to form the knockoff variables when p ≤ n ≤ 2p. The first idea
is to augment the data with some generated y′ and block matrix 0 so that this is the
approximate model: [

y
y′

]
∼ N

([
X
0

]
β, σ2I

)
Then, we can use the knockoff filter just as in the n ≥ 2p setting; by forming the
knockoffs and finding the data dependent threshold for selection! The main issue with
this method is that we don’t know know σ2, so we need to use an estimate σ̂2 which

comes from ‖y − Xβ̂LS‖22 ∼ σ2χ2
n−p so that σ̂2 ∼ ‖y−Xβ̂LS‖2

E(χ2
n−p)

= ‖y−Xβ̂LS‖2
n−p and the

variance of the estimate is V (σ̂2) = 2σ4

n−p so that your estimate is stable when n− p is

large. Then you can draw y′ ∈ Rn−p from N (0, σ̂2I). Plainly put, we want to generate
dummy y’s that have same noise structure.

Another cool way is to test a subset of size n − p, and cycle through them for high
power. Specifically, let us take an index set I of size |I| = 2p − n. Then, construct
knockoffs for the variables Xi, i ∈ I in the index set as exact copies. and choose
si = 0, i ∈ I. For i 6∈ I, construct the knockoff’s as usual. Then, by applying the
knockoff filter, this only select variables in {1, 2, · · · , p}\I! This has FDR control (by
the theoretical control of FDR on any knockoff procedure) but still has low power
for detecting variables in I. So, a solution is to cycle through disjoint index sets
I1, · · · , Ik ⊆ {1, · · · , p},∪Ii = {1, · · · , p} and at each time select (via knockoff filter) at
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FDR target of q/k, which overall allows FDR control of q and good power. Essentially,
cycle through duplicates with an overall q level of FDR control. 2

• Properties of the statistic W desirable for our selection procedure.

There are some properties that are desirable for the statistic W . Namely, we want to
formW as a function of the augmented design matrix and response data, W ([XX̃], y) ∈
Rp, so that large positive Wj indicate βj 6= 0 and so that two properties hold: suffi-
ciency and anti-symmetry.

Sufficiency means that W depends only on the gram matrix [XX̃]T [XX̃] and the
feature-response inner products[Xx̃]T y:

W = f([X X̃]T [X X̃], [X X̃]T y)

f : S+
2p × R2p → Rp

3

The anti-symmetry is simple: swapping Xj , X̃j has the effect of switching the sign
of the statistic W . This can be satisfied easily by constructing the statistic to reflect
this exactly. For example, our default choice of the statistic

W = 00000

has this property by construction.

If these two properties hold, then the theoretical FDR control guarantees hold when
using this statistic W for variable selection.

1.5 Simulations: Comparison with other methods

We ran simulations on toy data to compare the performance of several methods. Specifically,
we see the observed FDR (actual proportion of false discoveries) and corresponding power
(actual proportion of signals we detect) for each methods in each settings. Specifically, we
generated y ∈ R300 and X ∈ R300×100 according to the following model:

y ∼ N (Xβ, σ2Ik)

where β = (β1 β2 · · ·β30 0 · · · 0)T and βi, i ∈ {1, 2, · · · , 30} were generated as

βi =

{
+b w.p.12
−b w.p.12

The role of b is to make the variables easy or hard to detect, depending on the size
of the variables. We vary b in {1, 2, 5, 10, 20, 50}, and we refer to the order of them as

2Some details when forming knockoffs: we choose s to have nonzero entries in {1, · · · , p}\I so that
A = Schur Complement of G has rank n − p, then find C such that A = CTC, C ∈ R(n−p)×p and find
Ũ ∈ Rn×(n−p) which is orthogonal to X (via SVD) and finally form X̃ = X(I−Σ−1diag{s}+ŨC, then make
data-dependent threshold and select variables!

3S+
2p denotes a cone of 2p× 2p positive semidefinite matrices.
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the signal strength. To illustrate, at b = 20, the signal variables are very apparent (signal
strength is large), so most automatic selection methods (say forward selection) should be
able to detect the majority of the first 30 variables i.e. have high power, even without using
the knockoff threshold. The knockoff filter is tied to our choice of variable selection. We
run the knockoff filter with two variable selection methods (lasso and forward selection)
the Benjamini-Hochberg procedure on linear regression coefficient estimate t-test p-values,
and also the knockoff+ (which gives exact FDR control) with the Lasso. So, in sum, we
compare: FS-Knockoff, lasso-Knockoff, lasso-Knockoff+, and linear-regression-BHq. Note
that the Benjamini Hochberg procedure is expected to perform poorly (low power) because
the p-values under the null are NOT independent.

A summary of the simulation results is in figure 1. We can see that the power for all four
methods increases as we increase the size of the signal k, which agrees with our intuition.
The BHq procedure seems to be controlling the signal strength for signal strengths Several
pending questions remain: all four methods seem to exceed the target 0.2 FDR. knockoff+
applied on the lasso peaks at a moderately weak signal strength (|b| = 2). We expected the
BHq on a forward selection (greedy) to perform not too well, but it is has comparable power
to the and maintains exact FDR control. Also, the knockoff+ is theoretically guaranteed
exact control, but there is an unexpected increase (∼.6) in the observed FDR in athe
moderately weak signal strength (|b| = 2) setting.
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Figure 1: FDR and Power comparison to data generated from model y ∼ N (Xβ, σ2Ik), with
y ∈ R300 and X ∈ R300×100, where β = (β1 β2 · · ·β30 0 · · · 0)T and βi, i ∈ {1, 2, · · · , 30}
were generated as βi ∈ {+b,−b} randomly. Each point plotted is an average over 50
iterations.
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2 Discussion

Here, we list several interesting results from class discussion. The question was raised
whether this data-dependent threshold was needed at all; i.e. if instead of choosing variables
whose Wi are above a threshold, you could pick W’s such that their absolute value was above
a threshold (and perhaps have the same result). There was also a discussion of how this
compares to the Benjamini Hochberg procedure on the p values in variable selection. Also,
how, intuitively, do the knockoffs contribute to the problem of FDR control? An insightful
answer was that the relationship (if it exists) between the response and a given variable
is intentionally broken when constructing a knockoff variable, so that for signal variables,
it will be rare (and by chance) that a knockoff will enter before its original brother, while
for non-signal variables, there is a 50/50 chance they will enter. A good variable selection
method should be able to successfully select original signal variables over their knockoffs,
and select signal variables before the non-signals. While our method has good theoretical
FDR control guarantees, if the selection method is poor in the first place the power (power
to select signal variables) will be low (in the extreme case, a naive selection method that just
selects variable i = 2 every time used with the knockoff filter will select no variables most
of the time). It was also mentioned that for lasso, at each selection time, you can imagine
there is a ‘competition’ between the remaining variables to enter the model by proving they
have a high correlation with y (LARS selects the variable j that has largest correlation
yTXj out of the remaining j’s), and that if the tie is broken between the knockoff and y,
then the knockoff is sure to lose to its original brother most of the time.
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