
Appendix A
Properties of positive (semi)definite matrices

In this appendix we list some well-known properties of positive (semi)definite matrices
which are used in this monograph. The proofs which are omitted here may be found
in [85]. A more detailed review of the matrix analysis which is relevant for SDP is
given by Jarre in [94].

A.1 CHARACTERIZATIONS OF POSITIVE (SEMI)DEFINITENESS

Theorem A.1 Let The following statements are equivalent:

(X is positive semidefinite);

All principal minors of X are nonnegative;

for some

We can replace ‘positive semidefinite’ by ‘positive definite’ in the statement of the
theorem by changing the respective nonnegativity requirements to positivity, and by
requiring that the matrix L in the last item be nonsingular. If X is positive definite

the matrix L can be chosen to be lower triangular, in which
case we call the Choleski factorization of X.

NB: In this monograph positive (semi)definite matrices are necessarily symmetric,
i.e. we will use ‘positive (semi)definite’ instead of ‘symmetric positive (semi)definite’.1

1 In the literature a matrix is sometimes called positive (semi)definite if its symmetric part
is positive (semi)definite.
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230 Aspects of Semidefinite Programming

As an immediate consequence of the second item in Theorem A.1 we have that

for any given, nonsingular

Another implication is that a block diagonal matrix is positive (semi)definite if and
only if each of its diagonal blocks is positive (semi)definite.

A.2 SPECTRAL PROPERTIES

The characterization of positive (semi)definiteness in terms of nonnegative eigenval-
ues follows from the Raleigh–Ritz theorem.

Theorem A.2 (Raleigh–Ritz) Let Then

It is well known that a symmetric matrix has an orthonormal set of eigenvectors,
which implies the following result.

Theorem A.3 (Spectral decomposition) Let Now A can be decomposed as

where is a diagonal matrix with the eigenvalues of A on the
diagonal, and Q is an orthogonal matrix with a corresponding set of orthonormal
eigenvectors of A as columns.

Since if we can define the symmetric square root
factorization of

Note that is the only matrix with this property.

Theorem A.4 Let and Then all the eigenvalues of XS are real
and positive.
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Proof:

The proof is immediate by noting that

We will often use the notation

The eigenvalues of a symmetric matrix can be viewed as smooth functions on
in a sense made precise by the following theorem.

Theorem A.5 (Rellich) Let an interval be given. If   is
a continuously differentiable function, then there exist continuously differentiable
functions such that give the values of
the eigenvalues of for each

The next lemma shows what happens to the spectrum of a positive semidefinite matrix
if a skew symmetric matrix is added to it, in the case where the eigenvalues of the sum
of the two matrices remain real numbers.

Lemma A.1 Let and let be skew–symmetric
One has Moreover, if then

Proof:

First note that is nonsingular since for all nonzero

using the skew symmetry of M. We therefore know that

since remains skew–symmetric. One now has that is a continuous function of
which is nowhere zero and strictly positive for as This shows

To prove the second part of the lemma, assume is such that
It then follows that By the same argument as above we then have

nonsingular, or

This implies that cannot be an eigenvalue of Similarly, cannot have
an eigenvalue smaller than This gives the required result.
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The spectral norm is the norm induced by the Euclidean vector
norm:

By the Raleigh–Ritz theorem, the spectral norm and spectral radius coincide for
symmetric matrices:

The location of the eigenvalues of a matrix is bounded by the famous Gerschgorin
theorem. For symmetric matrices the theorem states that

As a consequence we find that the so–called diagonally dominant matrices are positive
semi-definite.

Theorem A.6 (Diagonally dominant matrix is PSD) A matrix is called di-
agonally dominant if

If A is diagonally dominant, then

A.3    THE TRACE OPERATOR AND THE FROBENIUS NORM

The trace of an matrix A is defined as

The trace is clearly a linear operator and has the following properties.

Theorem A.7 Let and Then the following holds:

The last item shows that we can view the usual Euclidean inner product on as an
inner product on
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The inner product in (A.2) induces the so-called Frobenius (or Euclidean) norm on

It now follows from the first item in Theorem (A.7) that

The Frobenius and spectral norms are sub-multiplicative, i.e.

One can easily prove the useful inequality:

and

that is equivalent to

Inequality (A.4) follows from (A.3) by replacing A by and B by in (A.3).
Conversely, (A.3) follows from (A.4) by replacing A by and B by in (A.4).

Theorem A.8 (Fejer) A matrix is positive semidefinite if and only if
for all In other words, the cone is self-dual.

Proof:

Let and then

Conversely, if and for all then let be given and
set Now

For positive semidefinite matrices, the trace dominates the Frobenius norm, i.e.
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This follows by applying the inequality

to the nonnegative eigenvalues of X. Similarly, one can apply the arithmetic-geometric
mean inequality

to the eigenvalues of to obtain the inequality

where we have used the fact that for any

Lemma A.2 If and and then

Proof:

By the properties of the trace operator

Thus if it follows that Pre-multiplying by and post-
multiplying by yields which in turn implies

The following lemma is used to prove that the search directions for the interior
point methods described in this monograph are well defined. The proof given here is
based on a proof given by Faybusovich [54].

Lemma A.3 Let be linearly independent, and let
The matrix with entries

is positive definite.

Proof:

We prove that the quadratic form
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is strictly positive for all nonzero To this end, note that for given

Denoting (which is nonzero by the linear independence of the
one has:

where the inequality follows from and

A.4 THE LÖWNER PARTIAL ORDER AND THE SCHUR
COMPLEMENT THEOREM

We define a partial ordering on via:

This partial ordering is called the Löwner partial order on (It motivates the alter-
native notation instead of It follows immediately that

One also has

The Schur complement theorem gives us useful ways to express positive semidefinite-
ness of matrices with a block structure.

Theorem A.9 (Schur complement) If

where A is positive definite and C is symmetric, then the matrix

is called the Schur complement of A in X. The following are equivalent:

M is positive (semi)definite;

is positive (semi)definite.
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Proof:

The result follows by setting and noting that

Since a block diagonal matrix is positive (semi)definite if and only if its diagonal
blocks are positive (semi)definite, the proof is complete.



Appendix B
Background material on convex optimization

In this Appendix we give some background material on convex analysis, convex opti-
mization and nonlinear programming. All proofs are omitted here but may be found
in the books by Rockafellar [160] (convex analysis) and Bazaraa et al. [16] (nonlinear
programming).

B.1 CONVEX ANALYSIS

Definition B.1 (Convex set) Let two points and be given.
Then the point

is a convex combination of the two points

The set is called convex, if all convex combinations of any two points
are again in

Definition B.2 (Convex function) A function defined on a convex set is
called convex if for all and one has

The function is called strictly convex if the last inequality is strict.

A function is convex if and only if its epigraph is convex.

Definition B.3 (Epigraph) The epigraph of a function is the
dimensional set
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238 Aspects of Semidefinite Programming

Theorem B.1 A twice differentiable function is convex (resp. strictly convex) on
an open set if and only if its Hessian is positive semidefinite (resp. positive
definite) on

Example B.1 The function defined by has a
positive definite Hessian and is therefore strictly convex. (This is proven in Appendix
C.)

Strictly convex functions are useful for proving ‘uniqueness properties’, due to the
following result.

Theorem B.2  If a strictly convex function has a minimizer over a convex set, then this
minimizer is unique.

Definition B.4 (Convex cone) The set is a convex cone if it is a convex set
and for all and one has

Example B.2 Four examples of convex cones in are:

the symmetric positive semidefinite cone:

the copositive cone:

the cone of completely positive matrices:

the cone of nonnegative matrices:

Definition B.5 (Face (of a cone)) A subset of a convex cone is called a face of
if for all and one has if and only if and
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Example B.3 An example of a face of the cone of positive semidefinite matrices
is

Note that if and then if and only if and

Definition B.6 (Extreme ray (of a cone)) A subset of a convex cone is called an
extreme ray of if it is a one dimensional face of i.e. a face that is a half line
emanating from the origin.

Example B.4 Any defines an extreme ray of the cone of positive semidef-
inite matrices via

Similarly, any defines an extreme ray of the cone of completely positive
semidefinite matrices via

Definition B.7 Let a convex set be given. The point is in the relative interior

The set of relative interior points of the set will be denoted by

Theorem B.3 Assume that and are nonempty convex sets and
Then

Example B.5  Note that the interior of the cone of positive semidefinite matrices
is the cone of positive definite matrices Let denote an affine space.
Assume that there exists an that is also positive definite. Then, by the last
theorem,

since

of if for all there exists and such that
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Theorem B.4 (Separation theorem for convex sets) Let and be nonempty con-
vex sets in There exists a such that

and

if and only if the relative interiors of and are disjoint.

The second inequality merely excludes the uninteresting case where the separating
hyperplane contains both and i.e. it ensures so-called proper separation.

B.2      DUALITY IN CONVEX OPTIMIZATION

We consider the generic convex optimization problem:

where is a convex set and are differentiable convex functions

where and

Definition B.8 A vector pair and is called a saddle
point of the Lagrange function L if

for all and

One easily sees that (B.3) is equivalent with

Lemma B.1 The vector and is a saddle point of
if and only if

s.t.

on (or on an open set that contains the set ).

For the convex optimization problem (CO) one defines the Lagrange function (or
Lagrangian)
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Since we can reformulate (CO) as

it follows that is an optimal solution of problem (CO) if there exists a such
that is a saddle point of the Lagrangian.

To ensure the existence of a saddle point of the Lagrangian, it is sufficient to require
the so-called Slater regularity condition (Slater constraint qualification).

Assumption B.1 (Slater regularity) There exists an such that

if     not linear or affine;

if  is linear or affine.

Under the Slater regularity assumption, we therefore have a one-to-one correspon-
dence between a saddle point of the Lagrangian and an optimal solution of (CO).

Theorem B.5 (Karush–Kuhn–Tucker) The convex optimization problem (CO) is gi-
ven. Assume that the Slater regularity condition is satisfied. The vector is an optimal
solution of (CO) if and only if there is a vector such that is a saddle point of
the Lagrange function L.

The formulation of the saddle point condition in Lemma (B.1) motivates the con-
cept of the Lagrangian dual.

Definition B.9 (Lagrangian dual) Denote

The problem

is called the Lagrangian dual of the convex optimization problem (CO).

It is straightforward to show the so-called weak duality property.

Theorem B.6 (Weak duality) If is a feasible solution of (CO) and then
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and equality holds if and only if

Under the Slater regularity assumption we have a stronger duality result, by the Karush–
Kuhn–Tucker theorem and Lemma (B.1).

Theorem B.7 (Strong duality) Assume that (CO) satisfies the Slater regularity con-
dition, and let be a feasible solution of (CO). Now the vector is an optimal solution
of (CO) if and only if there exists a such that is an optimal solution of the
Lagrangian dual problem and

B.3     THE KKT OPTIMALITY CONDITIONS

We now state the Karush–Kuhn–Tucker (KKT) necessary and sufficient optimality
conditions for problem (CO). First we define the notion of a KKT point.

Definition B.10 (KKT point) The vector is called a Karush–Kuhn–
Tucker (KKT) point of (CO) if

A KKT point is a saddle point of the Lagrangian L of (CO). Conversely, a saddle point
of L, is a KKT point of (CO). This leads us to the following result.

Theorem B.8 (KKT conditions) If is a KKT point, then is an optimal so-
lution of (CO). Conversely — under the Slater regularity assumption — a feasible
solution of (CO) is optimal if there exists a such that is a KKT point.

We say that meets the KKT conditions if there exists a such that
is a KKT point of (CO).

If we drop the convexity requirements on and in the statement of (CO), then
the KKT conditions remain necessary optimality conditions under the Slater regularity
assumption.

(i)

(ii)

(iii)

(iv)



Appendix C
The function log det(X)

In this appendix we develop the matrix calculus needed to derive the gradient and
Hessian of the function log det(X ), and show that it is a strictly concave function.

Lemma C.1 Let be given by

Denoting

one has

Proof:

Let be given and let be such that One has

By the arithmetic-geometric inequality applied to the eigenvalues of one
has
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Using the well-known inequality we arrive at

This shows that is a subgradient of at Since is assumed differentiable,
the subgradient is unique and equals the gradient

The proof of the next result is trivial.

Lemma C.2 Let be given by

where One has

The following result is used to derive the Hessian of the log-barrier function

Lemma C.3 Let be given by

If denotes the derivative of with respect to X, then is
the linear operator which satisfies

for a given invertible X.

Proof:

Let denote the space of linear operators which map to The Frechet
derivative of is defined as the (unique) function such that

We show that satisfies (C.1). To this end, let be
such that is invertible, and consider
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which shows that (C.1) indeed holds.

By Lemma A.3, the Hessian of the function is a positive defi-
nite operator which implies that is strictly convex on We state this observation
as a theorem.

Theorem C.1 The function defined by

is strictly convex.

An alternative proof of this theorem is given in [85] (Theorem 7.6.6).



Appendix D
Real analytic functions

This appendix gives some elementary properties of analytic functions which are used
in this monograph. It is based on notes by M. Halická [76].

Definition D.1 A function is said to be analytic at if there exist
and such that

Remark D.1 Taking the nth derivative in (D.1), it is easy to see that
Hence the series in (D. 1) is the Taylor series of at

Remark D.2 A function that is analytic at is infinitely differentiable
in some neighborhood of a and the corresponding Taylor series converges to
in some neighborhood of a (sometimes this is used as the definition of an analytic
function). If a function is infinitely differentiable, then it is not necessarily analytic. A
well-known example is the Cauchy function for and
for At all derivatives are zero and hence the corresponding Taylor series
converges to the zero function.

Definition D.2 Let be an open interval. Then is analytic on I if it is analytic
at any point

We can extend this definition to closed intervals by making the following changes
to the above.

(a) if is defined for all then is defined to be analytic at a if there
exist an and a series of coefficients such that the equality in (D.1)
holds for all
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(b) if is defined for all then we say that can be analytically extended
to if there exist an and a series of coefficients such that the equality
in (D.1) holds for all

The following result is used in the proof of Theorem 3.6 (that the central path has
a unique limit point in the optimal set).

Theorem D.1 Let be analytic on [0,1). Let and be
an accumulation point of all such that Then for all

Proof:

Since is analytic at there exist and such that

We show that Let be the first non-zero coefficient in (D.2). Hence

Let The series in (D.3) converges at and hence the numbers
are bounded. Let i.e., Then

for all The last expression in (D.4) is positive for all sufficiently small
This is in contradiction with the assumption that has roots arbitrarily close to

Hence and in some right neighborhood of 0. Using the
analyticity in (0,1) it can be shown that it is zero on the whole domain.



Appendix E
The (symmetric) Kronecker product

This appendix contains various results about the Kronecker and symmetric Kronecker
product. The part on the symmetric Kronecker product is based on Appendix D in
Aarts[l].

We will use the vec and svec notation frequently in this appendix, and restate the
definitions here for convenience.

Definition E.1 For any symmetric matrix U, the vector
is defined as

such that

where

The inverse map of svec is denoted by smat.

E.1 THE KRONECKER PRODUCT

Definition E.2 Let and Then is defined as the
matrix with block structure

i.e. the block in position is given by

The following identities are proven in Horn and Johnson [86]. (We assume that the
sizes of the matrices are such that the relations are defined and that the inverses exist
where referenced.)
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Theorem E.1 Let K, L, G and H be real matrices.

The eigenvalues of are given by As a
consequence, if G and K are positive (semi)definite, then so is

If and then is an eigenvector of
with corresponding eigenvalue

As an application of the Kronecker product we can analyse the solutions of so-
called Lyapunov equations.

Theorem E.2 Let and The Lyapunov equation

has a unique symmetric solution if A and –A have no eigenvalues in common.

Proof:

Using the first item in Theorem E.1, we can rewrite (E.1) as

By using the fourth item of Theorem E. 1 we have

In other words, the matrices and commute and therefore share a set of
eigenvectors. Moreover, by the fifth item of Theorem E. 1 we know that the eigenvalues
of and are obtained by taking copies of the spectrum of A. Therefore each
eigenvalue of is given by for some It follows
that the matrix is nonsingular if A and –A have no eigenvalues in
common. In this case equation (E.1) has a unique solution. We must still verify that
this solution is symmetric. To this end, note that if X is a solution of (E.1), then so is

This completes the proof.
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E.2    THE SYMMETRIC KRONECKER PRODUCT

Definition E.3 The symmetric Kronecker product of any two matrices G and
K (not necessarily symmetric), is a mapping on a vector where U is a
symmetric matrix and is defined as

Note that the linear operator is defined implicitly in (E.2). We can give a
matrix representation of by introducing the orthogonal matrix

(i.e. with the property that

Theorem E.3 Let be the unique orthogonal matrix that satisfies
(E.3). For any and one has

Proof:

Let be given and note that

where we have used the first identity in Theorem E. 1 to obtain the third equality.

Definition E.4 If for every vector where U is a symmetric nonzero
matrix,
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then is called positive definite.

Lemma E.1 The symmetric Kronecker product has the following properties.

1.

2.

3.

4.

5.

1.

2.

3.

4.

for two symmetric matrices U and V;

If G and K are symmetric positive definite, then is positive definite;

Proof:

This directly follows from Definition E.3.

Let U be a symmetric matrix, then

See Definition E.1.

For every symmetric nonzero matrix U we have to prove that

where Now

since G and K are symmetric. By using Property 3 we derive

Since U is nonzero and K and G are symmetric positive definite and therefore
nonsingular, we obtain that and thus
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5. Define and for arbitrary symmetric matrices U and L
and Now

and by using Property 3 it follows that

Since we obtain

and from the definition of we derive

and thus

Definition E.5 For every nonsingular matrix P we define the operators and as

By using Property 2 in Lemma E. 1 we obtain

and

We define the operator for any nonsingular matrix P as
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The next theorems are based on Theorem 3.1 and Theorem 3.2 in Todd et al. [173].

Theorem E.4 If the matrices X and S are positive definite and the matrix
is symmetric positive semidefinite, then is positive definite.

Proof:

Consider an arbitrary nonzero vector We now prove that
Defining and where is also nonzero since exists, it
follows by using Property 5 in Lemma E. 1 that

By using Property 2 in Lemma E.1 we derive

Since X and S are symmetric positive definite, and are symmetric
positive definite and by using Property 4 in Lemma E. 1 it follows that

is positive definite. Therefore

By using Property 3 in Lemma E. 1 we now obtain

Since we assumed that is positive semidefinite and the matrix K is symmet-
ric, it follows that the matrix is positive semidefinite. Thus
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Theorem E.5  If the matrices X and S are symmetric positive definite and the matri-
ces and commute, then is symmetric positive definite.

Proof:

If and commute, it follows that

Therefore the matrix is symmetric and

From Theorem A.4 we know that X S — and therefore — have positive
eigenvalues. Since is symmetric it is therefore positive definite.



Appendix F
Search directions for the embedding problem

Conditions for the existence and uniqueness of several search directions for the self–
dual embedding problem of Chapter 4 (Section 4.2) are derived here.

The feasible directions of interior point methods for the embedding problem (4.4)
can be computed from the following generic linear system:

where and

where is the linear transformation given by

for any matrix M, and where the scaling matrix P determines the symmetrization
strategy. The best-known choices of P from the literature are listed in Table F. 1. We
will now prove (or derive sufficient conditions) for existence and uniqueness of the
search directions corresponding to each of the choices of P in Table F. 1. To this end,
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we will write the equations (F.1) and (F.2) as a single linear system and show that the
coefficient matrix of this system is nonsingular.1

We will use the notation

and define by replacing X by and S by in Table F.1. We will rewrite (F.2)
by using the symmetric Kronecker product. For a detailed review of the Kronecker
product see Appendix E; we only restate the relevant definitions here for convenience.

The symmetric Kronecker product of is implicitly defined
via

1The approach used here is a straightforward extension of the analysis by Todd et al. in [173], where this
result was proved for SDP problems in the standard form (P) and (D).

Using the symmetric Kronecker notation, we can combine (F.1) and (F.2) as
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where

By Theorem E.4 in Appendix E we have the following result.

Lemma F.1 (Toh et al. [175]) Let be invertible and and symmetric positive
definite. Then the matrices E and F are invertible. If one also has
then the symmetric part of is also positive definite.

We are now in a position to prove a sufficient condition for uniqueness of the search
direction.

Theorem F.1 The linear system (F.3) has a unique solution if

Proof:

We consider the homogeneous system

and prove that it has only the zero vector as solution.

From (F.4) we have

and

Eliminating from the last two equations gives

System (F.4) also implies
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From (F.6) we have

The first term on the left-hand side is zero, by (F.7), and the second term is zero by the
skew-symmetry of We therefore have

which shows that since is assumed to be (non-symmetric) positive
definite. It follows that by (F.5). Furthermore, by (F.6), since Ã has
full rank (the matrices are linearly independent).

All that remains is to analyze the condition

in the theorem. For the first three choices of in Table F.1, condition (F.8) always
holds (by Theorem E.5 in Appendix E). For (the so-called AHO direction),
(F.8) becomes the condition

An alternative sufficient condition for existence of the AHO direction was derived
by Monteiro and Zanjácomo [126], namely

where



Appendix G
Regularized duals

In this appendix we review some strong duality results for SDP problems that do not
satisfy the Slater condition.

The duals in question are obtained through a procedure called regularization. Al-
though a detailed treatment of regularization is beyond the scope of this monograph,
the underlying idea is quite simple:1 if the problem

is feasible, but not strictly feasible, we can obtain a ‘strictly feasible reformulation’ by
replacing the semidefinite cone by a suitable lower dimensional face (say of
it, such that the new problem

is strictly feasible in the sense that there exists a pair such that and
Problem will have a perfect dual, by the conic duality

theorem (Theorem 2.3). The main point is to find an explicit expression of the dual of
the face The resulting dual problem now takes the form:

where denotes the dual cone of In the SDP case can be described by a
system of linear matrix inequalities. There is more than one way to do this and one
can obtain different dual problems within this framework (see Pataki [144] for details).

1The idea of regularization was introduced by Borwein and Wolkowicz [30]. For a more recent (and sim-
plified) treatment the reader is referred to the excellent exposition by Pataki [144].
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Ramana [153] first obtained a regularized dual for (D);2 the so-called gap-free (or
extended Lagrange–Slater) primal dual of (D) takes the form:

subject to

where the variables are and and

Note that the gap-free primal problem is easily cast in the standard primal form. More-
over, its size is polynomial in the size of (D). Unlike the Lagrangian dual (P) of (D),

has the following desirable features:

(Weak duality) If and is feasible for
then

(Dual boundedness) If (D) is feasible, its optimal value is finite if and only if
is feasible.

(Zero duality gap) The optimal value of equals the optimal value of (D)
if and only if both and (D) are feasible.

(Attainment) If the optimal value of (D) is finite, then it is attained by

The standard (Lagrangian) dual problem associated with is called the corrected
dual The pair and are now in perfect duality; see Ramana and
Freund[154].

Moreover, a feasible solution to (D) can be extracted from a feasible solution to
The only problem is that does not necessarily attain its supremum,

even if (D) does.

2 In fact, Ramana did not derive this dual via regularization initially; it was only shown subsequently that it
can be derived in this way in Ramana et al. [155].
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Example G.1 It is readily verified that the weakly infeasible problem (D) in Example
2.2 has a weakly infeasible corrected problem

The possible duality relations are listed in Table G.1. The optimal value of is
denoted by
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