
Summary and Discussion of: “A Kernel Two-Sample Test”

36-825: Statistics Journal Club

Sam Adhikari and Anthony Platanios

October 14, 2014

1 Introduction

The paper reviewed in this discussion addresses the problem of comparing samples from
two probability distributions, by proposing statistical tests of the null hypothesis that these
distributions are equal against the alternative hypothesis that these distributions are differ-
ent (we call this the two-sample problem). Such tests have application in a variety of areas,
as discussed in Gretton et al. (2012). In bioinformatics, for example, we want to compare
microarray data from identical tissue types as measured by different laboratories, to detect
whether the data may be analyzed jointly, or whether differences in experimental procedures
have caused systematic differences in the data distributions. As a second application exam-
ple, in database attribute matching it is desirable to merge databases containing multiple
fields where it is not known in advance which fields correspond to each other. In that case
the fields are matched by maximizing the similarity in the distributions of their entries.

The ideas presented in the paper can be divided into three main categories mentioned
below:

1. Defining a distance metric for probability distributions based on distances between
their Hilbert space mean embeddings. We call this metric the maximum mean dis-
crepancy (MMD).

2. Computing empirical estimates of the MMD.
3. Performing hypothesis tests using empirical MMD estimates as the test statistic, in

order to determine whether two samples were drawn from the same distribution or
not.

Problem statement: Let x and y be random variables defined on a topological space
X , with distributions p and q. Define X := {x1, . . . , xm} and Y := {y1, . . . , yn} as indepen-
dently and identically distributed samples from p and q respectively. The goal of this paper
is to formulate a test statistic and do hypothesis testing to decide whether p 6= q.

Notation: Throughout this document we use the notation conventions used in the paper.
Define Ex[f(x)] := Ex∼p[f(x)] and Ey[f(y)] := Ey∼q[f(y)], to denote expectations with
respect to p and q respectively.
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2 The Maximum Mean Discrepancy (MMD)

We want to test whether distributions p and q are different on the basis of samples drawn
from each of them, by finding a well behaved (e.g., smooth) function which is large on
the points drawn from p, and small (as negative as possible) on the points drawn from q.
We use as our test statistic the difference between the mean function values on the two
samples; when this is large, the samples are likely from different distributions. We call this
test statistic the Maximum Mean Discrepancy (MMD).

The quality of the MMD as a statistic depends on the class F of smooth functions that
define it. On one hand, F must be “rich enough” so that the population MMD vanishes if
and only if p = q. On the other hand, for the test to be consistent in power, F needs to
be “restrictive” enough for the empirical estimate of the MMD to converge quickly to its
expectation as the sample size increases.

Lets start by reviewing a condition that lets us differentiate between p and q.

Lemma 1. Let (X ,d) be a metric space, and let p, q be two Borel probability measures
defined on X . Then p = q if and only if Ex(f(x)) = Ey(f(y)) ∀f ∈ C(X ), where C(X ) is
the space of bounded continuous functions on X .

Note that while Lemma 1 defines a class of functions to uniquely identify whether p = q,
C(X ) is a very rich function class and it is computationally impractical to work with such
rich class in finite sample settings. This paper aims to present a way to use a more restrictive
functional class F to measure differences between p and q in finite sample settings, in
realizable time.

Definition 1. Let F be a class of functions f : X → R and let p, q, x, y,X, Y be defined as
above. Then, the maximum mean discrepancy (MMD) is defined as:

MMD[F, p, q] := sup
f∈F

(Ex[f(y)]−Ey[f(y)]) . (1)

We want a smooth function f ∈ F that maximizes the difference in the expectations of
the function, where the first expectation is over p and the second expectation is taken over
q. A biased empirical estimate of the MMD can be obtained by replacing the population
expectations with empirical expectations computed on the samples X and Y :

MMDb[F,X, Y ] := sup
f∈F

(

1

m

m
∑

i=1

f(xi)−
1

n

n
∑

i=1

f(yi)

)

. (2)

Note that, E[MMDb[F,X, Y ]] ≥ MMD[F, p, q] by Jensen’s inequality.

The goal is then to identify a function class that is rich enough to uniquely identify whether
p = q, yet restrictive enough to provide useful finite sample estimates.
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3 The MMD in Reproducing Kernel Hilbert Spaces

A unit ball in a reproducing kernel Hilbert space (RKHS) H is used as the MMD function
class F. This class of functions has the following properties:

• The operator of evaluation δx mapping f ∈ H to f(x) ∈ R is continuous.
• By the Riesz representer theorem, we know that there exists a feature mapping φ(x) :

X → R such that f(x) = 〈f, φ(x)〉H. φ(x) takes the canonical form k(x, ·), where
k(x1, x2) : X ×X → R is positive definite, and the notation k(x, ·) indicates the kernel
has one argument fixed at x, and the second free.

• We have that 〈φ(x), φ(y)〉H = k(x, y).

Definition 2. The mean embedding of p is defined as an element µp ∈ H such that Ex[f ] =
〈f, µp〉H for all f ∈ H.

We now define a condition under which the mean embedding µp ∈ H exists and can be used
to later define the MMD in RKHS H.

Lemma 2. If k(·, ·) is measurable and Ex

√

k(x, x) <∞, then µp ∈ H.

The proof for this lemma can be found in the main paper.

Lemma 3. Assuming the condition in Lemma 2 for the existence of mean embeddings µp
and µq is satisfied, we have that:

MMD2[F, p, q] = ‖µp − µq‖2H, (3)

where F = {f : ‖f‖H ≤ 1}.

Proof. We have that:

MMD2[F, p, q] =

[

sup
f :‖f‖H≤1

(Ex[f(y)]−Ey[f(y)])

]2

,

=

[

sup
f :‖f‖H≤1

〈µp − µq, f〉H
]2

,

= ‖µp − µq‖2H,

(4)

where the last step follows from the dual norm definition.

We now establish a condition on the RKHS H under which the mean embedding µp is in-
jective, which indicates that MMD[F, p, q] = 0 is a metric on the Borel probability measures
on X . This condition only holds for universal RKHSs.

Theorem 1. Let F be a unit ball in a universal RKHS H, defined on the compact metric
space X , with associated continuous kernel k(·, ·). Then, MMD[F, p, q] = 0 if and only if
p = q.
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Proof. If p = q then by Lemma 1, Exf(x) = Eyf(y) ⇒ MMD[F, p, q] = 0. We now prove
the converse. By the universality of H, for any given ǫ > 0 and f ∈ C(X ) there exists a
g ∈ H, such that ‖f − g‖∞ ≤ ǫ. Therefore, we have that:

‖Exf(x)−Eyf(y)‖ ≤ |Exf(x) = Exg(x)|+ |Eyg(y)−Eyf(y)|+ |Exg(x) −Eyg(y)|,
≤ Ex|f(x)− g(x)| +Ey|g(y)− f(y)|+ 〈g, µp − µq〉H,
≤ 2ǫ,

(5)

for all f ∈ C(X ) and ǫ > 0, which implies that p = q. In this derivation we made use of
Jensen’s inequality and of the fact that MMD[F, p, q] = 0 ⇒ µp = µq.

While this result establishes the mapping µp is injective for universal kernels on compact
domains, this result can be shown to hold in more general cases, provided that we are using
a characteristic kernel. It has been shown that both the Gaussian and the Laplace kernels
are characteristic on R

d and thus the associated MMD is a metric on distributions for that
domain.

Now we show how we can write the MMD in terms of the kernel function associated with
the RKHS we are dealing with, and how we can estimate it using a finite set of samples
from the two distributions of interest.

Lemma 4. Given x and x′ independent random variables with distribution p, and y and
y′ independent random variables with distribution q, the squared population MMD can be
written as:

MMD2[F, p, q] = Ex,x′ [k(x, x
′

)]− 2Ex,y[k(x, y)] +Ey,y′ [k(y, y
′)], (6)

where x′ is an independent copy of x with the same distribution, and y′ is an independent
copy of y. An unbiased empirical estimate is a sum of two U -statistics and a sample average:

MMD2
u[F,X, Y ] =

1

m(m− 1)

m
∑

i=1

m
∑

j 6=i

k(xi, xj) +
1

n(n− 1)

n
∑

i=1

n
∑

j 6=i

k(yi, yj)

− 2

mn

m
∑

i=1

n
∑

j=1

k(xi, yj).

(7)

Proof. We have that:

MMD2
u[F,X, Y ] = ‖µp − µq‖2H,

= 〈µp, µp〉H + 〈µq, µq〉H − 2〈µp, µq〉H,
= Ex,x′〈φ(x), φ(x′)〉H +Ey,y′〈φ(y), φ(y′)〉H − 2Ex,y〈φ(x), φ(y)〉H,
= Ex,x′ [k(x, x

′

)]− 2Ex,y[k(x, y)] +Ey,y′ [k(y, y
′)].

(8)

The biased MMD estimate of equation 2 can also be written in a similar way, by replacing
the U-statistics with V-statistics:

MMDb[F,X, Y ] =





1

m2

m
∑

i,j=1

k(xi, xj)−
2

mn

m,n
∑

i,j=1

k(xi, yj) +
1

n2

n
∑

i,j=1

k(yi, yj)





1
2

. (9)
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3.1 Witness Function of the MMD for RKHSs

Definition 3. We define f∗ as the RKHS function that attains the supremum in the MMD
definition, and f̂∗ to be the function that attains the supremum in the empirical MMD
definition. Then from Lemma 3:

f∗(t) ∝ 〈φ(t), µp − µq〉H = Ex[k(x, t)]−Ey[k(y, t)], (10)

f̂∗(t) ∝ 〈φ(t), µX − µY 〉H =
1

m

m
∑

i=1

k(xi, t)−
1

n

n
∑

i=1

k(yi, t), (11)

where µX = m−1
∑m

i=1 φ(xi), and µY = n−1
∑n

i=1 φ(yi) similarly. This result follows from
the fact that the vector ν maximizing 〈ν, x〉H in the unit ball we are considering is ν =
x/‖x‖H. We call the function that achieves the supremum, the witness function because it
is the function that witnesses the difference in the two distributions.

Some plots of witness functions for the MMD that help understand the intuition behind it
are shown in figures 1 and 2.
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Figure 1: Our two distributions are a N (0, 1) and a Laplace(0, 1). We drew 20, 000 samples
from each one and we computed the MMD witness function using a Gaussian kernel with
width σ = 0.5. We see that the witness function is positive whenever the Normal probability
is greater than the Laplace probability and negative when the Laplace probability is greater.
The magnitude of the witness function is a direct reflection of the amount by which one
density exceeds the other, insofar as the smoothness constraint permits it. This result is
intuitive and one can easily see why such a function would maximize the mean discrepancy
in the associated RKHS.
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Figure 2: Here we show one-dimensional samples from distribution p as blue circles and
one-dimensional samples from q as green circles and plot the corresponding MMD witness
function for each case in red color. We also mention what kernel width σ was used for the
MMD and whether the null hypothesis was accepted or rejected. We used the Gaussian
kernel to create these simulations. In the top left it is easy to understand why the witness
function looks that way and everything is fine since the null hypothesis is rejected which
seems like the right thing based on the samples distributions. On the top right we have the
same samples, but a very small kernel width was used. In this case the witness function
becomes too “wiggly” and we see that the null hypothesis was accepted. This shows how
important the selection of the kernel width value is. A reasonable choice for the kernel
width is to make it equal to the median distance among all pairwise distances of points in
our two data samples. The bottom figures show a corresponding example for when the two
samples are drawn from the same distribution. Note that hypothesis testing with the MMD
is discussed in section 4.

4 Hypothesis Testing

Given independent and identically distributed samples X ∼ p, Y ∼ q, our goal is to define a
statistical test that distinguishes between the null hypothesis H0 : p = q and the alternative
hypothesis HA : p 6= q. This is performed by comparing test statistic (T ) with a particular
threshold (t) for a given level (α) test such that, if the test statistic exceeds the threshold
the null hypothesis is rejected at the level. For an α level test, t is chosen such that
P (T > t) ≤ α, where P is the distribution of T when null is true. The acceptance region
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of the test is defined as the set of real numbers below the threshold, i.e. the region where
null is more likely. In this section we first present some definitions related to hypothesis
testing and then present some statistical tests that are performed using the MMD as the
test statistic.

Definition 4. A type I error is when H0 is rejected while actually being true.

Definition 5. A type II error is when H0 is accepted while actually being false. The power
of a statistical test is defined as 1 minus the type II error.

Definition 6. For an α-level test, the probability of a type I error is upper bounded by α.

Definition 7. An α-level test is consistent if it achieves a type II error of zero in the limit
of infinite data samples.

Our goal is to create an α-level test, where we bound the type I error and make the type II
error as low as possible.

4.1 Tests Based on Uniform Convergence Bounds

In this section, we first establish guarantees on convergence of empirical estimate of MMD
(both biased and unbiased) to population MMD in probability. Then we proceed by finding
threshold for level α test under the null.

4.1.1 Bound on the Biased Statistic and Test

We first provide a uniform convergence bound for the biased MMD estimate. We then use
that bound to derive a hypothesis test that uses the MMD as its test statistic.

Theorem 2. Let p, q,X, Y be defined as in the previous section, and assume 0 ≤ k(x, y) ≤
K. Then, we have that:

PX,Y

{

|MMDb[F,X, Y ]−MMD[F, p, q]| > 2

(

√

K

m
+

√

K

n

)

+ ǫ

}

≤ 2e
−ǫ

2
mn

2K(m+n) , (12)

where, PX,Y denotes the probability over the m-sample X and the n-sample Y .

We now use Theorem 2 to compute a bound on probability for when p = q and m = n,
which we will use to derive our test threshold for accepting or rejecting the null hypothesis.

Theorem 3. Under the conditions of Theorem 2 where additionally p = q and m = n, we
have that:

MMDb[F,X, Y ] ≤ m−1/2
√

2Ex,x′[k(x, x) − k(x, x′)] + ǫ ≤
√

2K

m
+ ǫ, (13)

with probability at least 1− e−
ǫ
2

4K .

Corollary 4. A hypothesis test of level α for the null hypothesis p = q, that is, for
MMD[F, p, q] = 0, has the acceptance region MMDb[F,X, Y ] <

√

2K/m(1+
√

2 log (α−1)).

This result was obtained by observing that α = e−ǫ2m/4K ⇒ ǫ =
√

4K log (α−1)/m.
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Note that that this test is distribution-free (i.e., the test threshold does not depend on the
particular distribution that generated the sample). Theorem 2 guarantees the consistency
of the test against fixed alternatives, and that the Type II error probability decreases to
zero at rate O(m1/2), assuming that m = n. Proofs for the results presented in this section
are provided in the main paper’s appendix.

4.1.2 Bound on the Unbiased Statistic and Test

By using the large deviation bound on U-statistics of Hoeffding (1963, p. 25) we derive the
following result.

Theorem 5. Assume 0 ≤ k(xi, xj) ≤ K. Then, we have that:

PX,Y

{

MMD2
u[F,X, Y ]−MMD2[F, p, q] > t

}

≤ e
−t

2
m2

8K2 , (14)

where m2 := ⌊m/2⌋ (the same bound applies for deviations of −t and below).

Then, in a similar way as in the previous section, we obtain the following hypothesis test.

Corollary 6. A hypothesis test of level α for the null hypothesis p = q has the acceptance
region MMD2

u < (4K/
√
m)
√

log (α−1).

This is also a distribution-free test. Note that for a sufficiently large m, the threshold in
Corollary 6 will be lower than that in Corollary 4 (it decreases at the rate of O(m−1) instead
of O(m−1/2)), and the type II error of the corresponding test will be lower, for a given type
I error bound.

Note that both bounds we obtained based on uniform convergence bounds are rather con-
servative for a number of reasons; they do not take the actual distributions into account,
and they are finite sample size, distribution-free bounds that hold even in the worst case
scenario.

4.2 Tests Based on the Asymptotic Distribution of the Unbiased Statistic

The tests presented in this section use the asymptotic distribution of MMD2
u under H0,

which can be defined as follows.

Theorem 7. Let k̃(xi, xj) be the kernel between feature space mappings from which the
mean embedding of p has been subtracted:

k̃(xi, xj) := 〈φ(xi)− µp, φ(xj)− µp〉H,
= k(xi, xj)−Exk(xi, x)−Exk(x, xj) +Ex,x′k(x, x′),

(15)

where x′ is an independent copy of x drawn from p. Assume k̃ ∈ L2(X × X , p × p) (i.e.,
the centred kernel is square integrable, which is true for all p when the kernel is bounded),
and that for t = m + n, limn,m→∞m/t = ρx, and limn,m→∞ n/t = ρy := 1 − ρx, for fixed
0 < ρx < 1. Then, under H0, MMD2

u converges in distribution to:

tMMD2
u[F,X, Y ] 

∞
∑

l=1

λl

[

(

al√
ρx

− bl√
ρy

)2

− 1

ρxρy

]

, (16)
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where al ∼ N (0, 1) and bl ∼ N (0, 1) are infinite sequences of independent random variables,
and the λl are the eigenvalues of:

∫

X
k̃(x, x′)ψl(x)dp(x) = λlψl(x

′) (17)

Our goal is to determine whether the empirical test statistic MMD2
u is so large as to be

outside the 1 − α quantile of the null distribution defined in this theorem, which gives an
α-level test. In figure 3 we illustrate the MMD density under both the null and alternative
hypotheses by approximating it empirically for p = q and p 6= q.

4.2.1 Bootstrap Test (Permutation Test)

Under the null hypothesis we know that p = q and so we know that if we shuffle the two
data samples that we have together and draw two new data samples out of them, the MMD
value should not change. Using this reasoning we can estimate the CDF of the MMD under
the null hypothesis by re-shuffling the data samples many times and re-computing the MMD
value. Then, if the original MMD value is higher than the 1 − α quantile of the empirical
CDF we reject the null hypothesis, otherwise we accept it. The more data samples we have
and the more bootstrapping iterations we do, the more powerful our test should become.
Note that this is also a distribution-free hypothesis test.

4.2.2 Pearson Approximation Test

Another approach is to approximate the null distribution by fitting Pearson curves to its
first four moments. Taking advantage of the degeneracy of the U-statistic, for m = n we
have that:

E
[

(

MMD2
u

)2
]

=
2

m(m− 1)
Ez,z′[h

2(z, z′)] and

E
[

(

MMD2
u

)3
]

=
8(m− 2)

m2(m− 1)2
Ez,z′

[

h(z, z′)Ez′′ [h(z, z
′′)h(z′, z′′)]

]

+O(m−4),

(18)

where h(z, z′) = k(x, x′) + k(y, y′)− k(x, y′)− k(x′, y), z = (x, y) ∼ p× q where x and y are

independent, and z′ and z′′ are independent copies of z. The fourth moment, E
[

(

MMD2
u

)4
]

is not computed because it is both very small (i.e., O(m−4)) and very expensive to com-

pute (i.e., O(m4)). Instead we set kurt(MMD2
u) = 2

(

skew
(

MMD2
u

)2
+ 1
)

, which is an

approximation based on the bound kurt(MMD2
u) ≥ skew

(

MMD2
u

)2
+ 1. In figure 4 below

we illustrate the empirical CDFs along with the Pearson approximation CDFs for the same
examples as in figure 3. Using the obtained CDF approximation we can compute an ap-
propriate testing threshold. This hypothesis testing method is faster than the bootstrap
method, described in the previous section, but it is an approximation and is thus expected
to have less power.
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Figure 3: The empirical MMD2
u distribution under both the null and the alternative hypoth-

esis, for several different cases. In order to obtain the empirical distributions we sampled 100
samples from each distribution and computed the MMD value, 2, 000 times independently,
in order to obtain 2, 000 MMD values and construct the histograms. We did that for each
case separately. It can be seen that in most cases the distribution under the null hypothesis
is skewed left towards 0 and is very different than the distribution under the alternative hy-
pothesis. However, in the bottom left plot we show an example where the distribution under
the alternative hypothesis is skewed left towards 0 and is harder to distinguish whether this
is a distribution of the MMD under the null hypothesis or not.

4.2.3 Gamma Approximation Test

An alternative, even more computationally efficient approach for testing than the Pearson
approximation method, is using a two-parameter Gamma approximation for the CDF of
the biased MMD estimate. We have that:

mMMDb ∼
xα−1e−x/β

βαΓ(α)
, (19)
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Figure 4: The empirical MMD2
u distribution under both the null and the alternative hypoth-

esis and the corresponding CDF obtained using the Pearson approximation. For all these
cases it is clear that the Pearson approximation works well for approximating the CDF of
the unbiased empirical MMD estimate when the null hypothesis is true. The plots for the
alternative hypothesis are not that meaningful, because in obtaining that approximation,
it has been assumed that the null hypothesis is true. They have been included here for
completeness, in order to parallel the plots of figure 3. The experiments that we run to
obtain these plots are the same as the experiments we run to obtain the results of figure 3.

where α = (E[MMDb])
2

Var[MMDb]
and β = mVar[MMDb]

E[MMDb]
. This method is less accurate than the Pearson

approximation method, but its computational complexity is O(m2), whereas the computa-
tional complexity of the Pearson approximation method is O(m3).
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4.2.4 Spectrum Approximation Test

In Gretton et al. (2009), it was established that for large sample sizes, the null distribution
of the MMD approaches an infinite weighted sum of independent χ2

1 random variables.
In that paper the authors describe a method of approximating that distribution by using
empirical eigenvalues estimates. We are not going to describe this method here because it
is fairly involved and not described in the main paper, but we are going to use it in our
simulations. Interested readers can refer to Gretton et al. (2009) for further details on the
method.

5 Comparison of the Tests

We performed two experiments to compare the tests described in the previous section as
we vary the dimensionality of the problem at hand. We also compare against Hotelling’s T-
Squared test, which is expected to perform well when our two samples come from Normal
distributions with different mean but same covariance matrices (or simply variance for
the one-dimensional case). We run two separate simulations, which are described in the
following two sections.

5.1 Normal Distributions with Different Mean and Same Covariance

We perform the following experiment for several different problem dimensionalities. For
each problem dimensionality d, we repeat the following steps 100 times:

1. We go through steps 2-4 for 15 different values of µ logarithmically spaced from 0.05
to 50.

2. We sample 250 data samples from a N (0, I), where I ∈ R
d.

3. We sample 250 data samples from a N (µ1/
√
d, I), where 1 is a d dimensional vector

of ones. Note that the division of each element of the mean vector by
√
d retains

the same Euclidean distance between the means for all dimensionalities (i.e., the
hypothesis testing problem remains equivalently difficult to perform – we talk more
about this particular topic in section 6).

4. Perform hypothesis testing using all of the tests described in the previous section.
5. Store the number of times the null hypothesis is accepted (i.e., the number of times

we get a type II error).

In figure 5 we present the results of this experiment. It is clear that power drops with
increasing problem dimensionality, which is expected. Another result that is expected is
that the tests that are based on the uniform convergence bounds of the MMD are very
weak compared to the other tests. That is because the assumptions made when deriving
the testing threshold are too general and conservative. Finally, Hotelling’s T-Squared test
(labeled as “t-test” in the plot in order to follow the main paper naming conventions)
performs better than all tests in low problem dimensions, but its performance degrades
quickly when we consider higher dimensional problems. That is due to the sample covariance
matrix of the data becoming very badly conditioned. This problem could probably be
mitigated by using a good shrinkage method for that matrix. It is important to note here
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Figure 5: Our results for our two-sample test experiment when we consider Normal distri-
butions with different mean and same covariance.

that we expect Hotelling’s T-Squared test to perform that well since it is designed to test
whether the means of two samples with the same covariance are the same or not, and it is
not as general as the MMD-based two-sample test.

5.2 Normal Distributions with Same Mean and Different Covariance

We perform the following experiment for several different problem dimensionalities. For
each problem dimensionality d, we repeat the following steps 100 times:

1. We go through steps 2-4 for 10 different values of σ2 logarithmically spaced from 1.05
to 100.

2. We sample 250 data samples from a N (0, I), where I ∈ R
d.

3. We sample 250 data samples from a N (0, σ2I). Note that in this case, as opposed to
the previous experiment, the hypothesis testing problem becomes easier as we increase
the dimensionality of the problem, because the variance spreads the same amount over
more dimensions and so the power of the test might even increase as we increase the
problem dimensionality (we talk more about this particular topic in section 6).

4. Perform hypothesis testing using all of the tests described in the previous section.
5. Store the number of times the null hypothesis is accepted (i.e., the number of times

we get a type II error).

In figure 6 we present the results of this experiment. First of all, we see that the power
of the MMD tests does not really decrease with increasing dimensionality which could be
explained by the point we made in item 3 of the above list. We discuss this further in the
following section. We also observe that Hotelling’s T-Squared test fails completely in this
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Figure 6: Our results for our two-sample test experiment when we consider Normal distri-
butions with same mean and different covariance.

case, which is expected because it is not designed to deal with this sort of problem. The
tests that are based on the uniform convergence bounds of the MMD are once again very
weak compared to the other tests, which is also expected. Finally, we see that all the other
MMD-based tests perform very well. It might have been more fair to compare them to the
chi-squared test in this case, which is designed to deal with this problem, but unfortunately
there was not enough time for us to implement and perform experiments with that test as
well.

6 Discussion

One of the main points made in the previous section is that we have to be very careful on
how we setup our problem as we increase its dimensionality in order to keep its difficulty
constant (i.e., in order to not make it easier or harder to deal with), so that different
methods become comparable. We showed a simple way in which we can do that for our first
experiment. We could do something similar for the second experiment, by scaling only one
of the diagonal entries of the covariance matrix by σ2, instead of scaling all of them. We did
not do that because we wanted to show how this scaling is important and how our results can
become unintuitive and unreasonable (e.g., test power increasing with increasing problem
dimensionality) if we are not careful enough. We are not going to go into any more detail
about this problem because it deserves a long discussion. However, there is an upcoming
paper at a major machine learning conference this year (2014), where the authors have
proven that in order for the test to be fair, the Kullback-Leibler (KL) divergence of the two
distributions from which our two samples are drawn from should remain constant as we
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increase the problem dimensionality (the paper is currently under review and therefore the
authors need to remain anonymous for now). Our proposed scalings for the mean and the
covariance matrix have that effect for the Normal distribution, but it is more difficult to deal
with other, more complicated, distributions. The authors of that paper manage to show
that the power of the MMD-based test actually drops exponentially as the dimensionality of
the problem increases.

An important point made in the discussion during the class was about the MMD defined
using other functional classes besides the unit ball in an RKHS. A student, Aaditya Ramdas,
pointed out that for different functional classes MMD will still be a distance metric with
some norm defined in that class, but might not necessarily be computationally feasible
or have close form solution. Two examples which are also provided in the paper but not
discussed in this manuscript are: (i) the Kolmogorov-Smirnov test where the MMD is
defined on a Banach space with supremum norm, and (ii) a test based on a metric where
the function class is defined to be the space of bounded Lipschitz functions.

Finally, an interesting comment was made about the MMD uniform convergence bounds.
In section 4 we saw that the uniform convergence bounds of both the biased and the unbiased
MMD estimates depend on the assumption that the kernel function is bounded above. We
are not entirely sure how the results change if this assumption is not satisfied.
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