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1 Introduction

The estimation of model structure from data is an important statistical problem known as
structure learning. The paper that we discussed, written by Meinshausen and Bühlmann,
introduces a new method called stability selection whose goal is to provide an algorithm for
performing model selection in a structure learning problem while controlling the number of
false discoveries. This algorithm can be applied to a number of different structure learning
problems, and has two main advantages over competing approaches:

1. It works in the high-dimensional data setting (p� n), which is currently a very active
area of research in statistics and machine learning.

2. It provides control on the family-wise error rate in the finite sample setting, which is
more practical than an asymptotic guarantee.

1.1 Problem Setting

Before presenting details of the stability selection algorithm, it’s useful to discuss a few
types of problems that can roughly be called “structure estimation” problems, whose goal
is to learn discrete structures from a dataset.

Variable selection. In a penalized regression problem such as the lasso, the goal is to
identify a set of variables that will have nonzero weight in the model. In this case, we
estimate the model parameters β̂ and then define the selection set Ŝ as follows:

β̂λ = arg min
β∈Rp

||y −Xβ||22 + λ||β||1

Ŝλ = {k : β̂λk 6= 0}

where X ∈ Rn×p is the design matrix, y ∈ Rn is a vector of outputs, and λ is a regularization
parameter that controls the size of the selection set.

Network estimation. Network estimation is often formalized as an inverse covariance
estimation problem in a Gaussian graphical model. Assuming we have data drawn from
a multivariate Gaussian distribution, i.e. (X1, . . . , Xp) ∼ N (0,Σ), we can estimate the
pairwise conditional dependencies (which correspond to edges in the network) among the
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variables 1, . . . , p (which correspond to nodes in the network) by estimating the inverse
covariance matrix Θ = Σ−1 and then identifying the entries with nonzero value. In order to
identify some conditional independencies, we must obtain a sparse estimate of the covariance
matrix. In this case, we estimate the model parameters Θ̂ and then define the selection set
Ŝ as follows:

Θ̂λ = arg min
Θ∈Rp×p,Θ�0

− log det(Θ) + tr(SΘ) + λ‖Θ‖1

Ŝλ = {(j, k) : θ̂λj,k 6= 0}

where S = 1
nX

TX ∈ Rp×p is the empirical covariance matrix and λ is a regularization
parameter that controls the size of the selection set.

Clustering. In a clustering problem such as k-means, the goal is to group a set of data
points into k distinct clusters. Here k is a parameter that dictates the number of clusters.
We don’t provide a formal definition of this problem because the authors do not provide a
way to apply stability selection to clustering, but it serves as an additional example of a
structure estimation problem.

We note that in the first two problems described above, and in many other related structure
estimation problems, performing “model selection” is equivalent to choosing the appropriate
amount of regularization (i.e. the value of λ) such that Ŝ is as close as possible to the true
selection set S.

1.2 Existing Methods

In order to put stability selection in context, we first describe several existing methods for
performing model selection.

Cross-validation. A method for choosing the value of λ that minimizes the generalization
error on a held-out test validation set. This approach only works for supervised problems
such as regression. It also doesn’t provide any guarantees on the number of false discoveries
and doesn’t work well in the high-dimensional setting.

AIC/BIC scores. A method for model selection that trades off goodness of fit with
model complexity. This approach tends to perform poorly in the high-dimensional setting.

Hypothesis testing methods. A newer class of methods based on hypothesis testing
that can be used to perform variable selection in certain settings while controlling the false
discovery rate.

Knockoffs. A method for variable selection that provides false discovery rate control in
the finite sample setting. This approach only works for p < n.
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Stability methods. A class of methods for identifying the most “stable” model structure
by using the idea that the same algorithm should yield similar results on similar datasets if
the results are “stable”.

2 Method

Let’s assume that we have a generic structure estimation algorithm that takes a dataset
Z = Z1, . . . , Zn and a regularization parameter λ and returns a selection set Ŝλ. We can
think of this algorithm as a black box. The stability selection algorithm then runs as follows:

1. Define a candidate set of regularization parameters Λ and a subsample number N .

2. For each value of λ ∈ Λ, do:

(a) Start with the full dataset Z(full) = Z1, . . . , Zn

(b) For each i in 1, . . . , N , do:

i. Subsample from Z(full) without replacement to generate a smaller dataset of
size bn/2c, given by Z(i).

ii. Run the selection algorithm on dataset Z(i) with parameter λ to obtain a

selection set Ŝλ(i).

(c) Given the selection sets from each subsample, calculate the empirical selection
probability for each model component:

Π̂λ
k = P{k ∈ Ŝλ} =

1

N

N∑
i=1

I{k ∈ Ŝλi }.

The selection probability for component k is its probability of being selected by
the algorithm.

3. Given the selection probabilities for each component and for each value of λ, construct
the stable set according to the following definition:

Ŝstable = {k : max
λ∈Λ

Π̂λ
k ≥ πthr}

where πthr is a predefined threshold.

Note that this procedure doesn’t simply find the best value of λ ∈ Λ and then use it in
the algorithm, but actually identifies a set of “stable” variables that are selected with high
probability. The authors state that the empirical results vary little for threshold values in
the range (0.6, 0.9), and are also not sensitive to choices of Λ.

3



3 Theory

Before we present the main theorem of this paper, we first introduce some additional no-
tations. Let S be the true variables and N be the noise variables such that S ∪ N =
{1, 2, . . . , p}. Furthermore, let ŜΛ = ∪λ∈ΛŜ

λ be the set of selected structures or variables
if varying the regularization λ in the set Λ. Let qΛ be the average number of selected
variables, qΛ = E(|ŜΛ(I)|). Define V to be the number of falsely selected variables with
stability selection, that is V = |N ∩ Ŝstable|. Then we have the following theorem to control
the expected number of falsely selected variables,
Theorem 1. Assume that the distribution of {1{k∈Ŝλ}, k ∈ N} is exchangeable for all
λ ∈ Λ. Also, assume that the original procedure is not worse than random guessing, i.e.

E(|S ∩ ŜΛ|)
E(|N ∩ ŜΛ|)

≥ |S|
|N |

.

The expected number V of falsely selected variables is then bounded for πthr ∈ (1
2 , 1) by

E(V ) ≤ 1

2πthr − 1

q2
Λ

p
.

The key idea in proving this theorem is that the variables unlikely to be selected using
all the samples would also have small chance of being selected by half sampling. To put it
strictly, let I1 and I2 be two random subsets of {1, 2, . . . , n} with |Ii| = bn/2c for i = 1, 2
and I1 ∩ I2 = ∅. Define the simultaneously selected set as

Ŝsimult,λ = Ŝλ(I1) ∩ Ŝλ(I2)

and define
Π̂simult,λ
K = P (K ⊆ Ŝsimult,λ).

For any K ⊂ {1, 2, . . . , p}, if P (K ⊆ Ŝλ) ≤ ε, then

P (max
λ∈Λ

(Π̂simult,λ
K ) ≥ ξ) ≤ ε2/ξ.

The author mentioned that the expected number of falsely selected variables is called the
per-family error rate or, if divided by p, the per-comparison error rate in multiple testing. To
control the per-comparison error rate, one can either control πthr or qΛ. They also said that
the influence of πthr is very small and for practice, a sensible range would be πthr ∈ (0.6, 0.9).
Once the threshold has been chosen at some default value, the regularization region Λ is
determined by the error control desired. Specifically, for a default cut-off value πthr = 0.9,
choosing the regularization parameters Λ such that say qΛ =

√
0.8p will control E(V ) ≤ 1,

or choosing Λ such that qΛ =
√

0.8αp controls the familywise error rate at level α, i.e.
P (V > 0) = P (V ≥ 1) ≤ E(V ) ≤ α.

However, our simulations indicate that it is not always the case as the authors claimed.
The choice of πthr is actually critical, and in some cases we even need to choose πthr < 0.5
or πthr > 0.9. Choosing qΛ is also not a trivial task since there is no intuitive formula for
the selection of Λ given qΛ. We will give more detailed discussions in section 4 and section
5.
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4 Simulations

4.1 Comparison of Stability Selection and Cross-Validation

In order to understand whether stability selection is an effective method for performing
variable selection in the high-dimensional setting, we ran some experiments on simulated
data. We first generated p predictor variables by drawing each element uniformly at random
to create a design matrix X ∈ Rn×p. We then generated a coefficient vector β ∈ Rp by
setting the first 5 values to either 2 or −2. Finally, we generated the output variable
according to y ∼ N (Xβ, σ2) where σ2 is the variance of the noise.

In order to compare these methods in a variety of conditions, we fixed the sample size
at n = 50 and varied both the noise variance and the dimensionality over σ2 ∈ {1, 9} and
p ∈ {500, 5000}. The regularization paths and stability paths for the data generated in each
of these settings are shown in Figure 1. We then ran both stability selection with threshold
πthr = 0.6 and 10-fold cross-validation. The cutoff selection probability for stability selection
is shown by the horizontal green dashed line on the stability path. The optimal value of
lambda for cross-validation is shown by the vertical blue dashed line on the regularization
path. We also use the vertical purple dashed line to indicate the largest value of lambda
that yields a generalization error within one standard deviation of the minimum for cross-
validation.

These results show that stability selection generally has a lower FDR than cross-validation,
but also achieves a lower power. However, we observe that the overall ranking of variables
appears to be fairly similar between the two methods. As a caveat, we note that we only
tested a limited set of conditions and that each result shown in Figure 1 is based only on
one randomly generated dataset.

4.2 Stability Selection in Low-dimensional Case

Knockoffs method deals with the “p < n” case, so in this simulation, we will be looking at
the low dimensional simulated data to compare stability selection and knockoffs. The data
generation method is the same as before, but the parameters we choose to use is different.
We use n = 500 and p = 50. And the first 25 variables are true variables, which makes it
half of the total variables. σ2 = 9 is chosen to be the variance. Similar results of lasso and
stability selection path for one randomly generated data are shown in Figure 2. We see from
the figure that the behaviors of stability selection is quite different for low dimensional case.
In order to achieve a reasonable FDR, πthr is chosen to be 0.98. In fact, any πthr ≤ 0.9
would result to choosing all the variables, causing FDR to be 0.5. This contradicts the
authors’ suggestion on πthr ∈ (0.6, 0.9).

The power of both methods is 1, but stability selection outperforms cross-validation in
FDR with stability selection being 0.24 and lasso path being 0.36. We also computed the
power and FDR using knockoffs. The FDR for knockoffs is 0.17 (with FDR controlled at
level 0.3) and the power is 0.8. The FDR of knockoffs is lower than stability selection with
the sacrifice of the power. Overall, there does not seem to be any obvious advantages of
stability selection over knockoffs. The choice of which method to use depends on whether
one focus more on FDR or power.
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Figure 1: A comparison of stability selection and cross-validation for variable selection. Red
lines show active variables, black lines show noise variables. All datasets are generated with
n = 50. (a) Data generated with σ2 = 1, p = 500. (b) Data generated with σ2 = 9, p = 500.
(c) Data generated with σ2 = 1, p = 5000. (d) Data generated with σ2 = 9, p = 5000.
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Figure 2: Lasso and stability selection path for n = 500, p = 50, σ2 = 9. The left panel is
lasso and the right panel is stability selection.

5 Discussion

The biggest contribution of this paper comes from the practical use instead of theoretical
support. In fact, we found the theorem presented in this paper with several limitations in
both conditions and results. Firstly, the exchangeability condition of {1{k∈Ŝλ}, k ∈ N} is
rather strong and by no means can be verified. However, this condition is required in terms
of theoretical proof and the we can still perform the procedure without confirming whether
this assumption is fulfilled.

One more important issue is about the result of controlling falsely selected variables. In
most cases, we do not need a strict control on exact how many errors do we make in total.
In practice, false discovery rate (FDR), which computes the proportion of falsely selected
variabls, is of more interest to statisticians. The FDR under the notations of this paper
would be E( V

|Ŝstable|
). Usually, we can substitute it with E(V )

E(|Ŝstable|)
. Stability selections fails

to provide any results on Ŝstable. Therefore, we can not obtain an control on either FDR or
power.

On the other hand, stability selection requires sampling the data enough times and each
time using half of the samples. The repeated sampling procedures make the algorithm slow
in terms of computation time. Besides, using only half of the samples could end up losing
a lot of information, especially for the data that the samples are limited and every sample
actually matters. These might be the reason why stability selection has not been widely
adopted by statisticians and people still prefer to use cross-validation or other methods to
perform model selection.

7


