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1 Summary

1.1 Motivating problem

Gene expression study is well known to focus on finding association between expression
levels of particular genes and some interesting variables, for example, a disease state. In such
studies, besides the primary variable of interest, some other covariates are usually measured
and included in the model of association tests. However, it is not possible to measure all
the variables related to gene expression. In addition to the known and measured variables,
there might be some other unknown and unmeasured factors, which would contribute to the
heterogeneity of expression levels of particular genes. Their effect cannot be simply ignored
as the unmodeled factors, either biological or technical, may induce extra variability in
the gene expression, which would decrease the power to detect the association between
gene expression and the primary variable. Or they might introduce spurious signals of the
association as the variation on the gene expression could be confounded by a unmodeled
factor and the primary variable. The model of Surrogate variable analysis(SVA) was designed
to address this problem. In this paper, SVA was shown to able to identify and estimate
the components of Expression Heterogeneity(EH), and parse the signal and noise more
accurately and reproducibly.

1.2 Explanation of SVA procedure

Generally, there are four steps of a surrogate variable analysis.

First, from the gene expression matrix X we remove the signals due to the primary
variable, to get a residual matrix R. Then the residual matrix R can be decomposed to a
orthogonal basis of singular vectors, which are able to completely reproduce all signatures.
Among all the singular vectors, we test each of them to see if it represents more variation
of expression than by chance. The process is implemented by permutations. And the
significant singular vectors will be picked out. This step would guarantee the signal is not
from the primary variable.

Second, for each selected orthogonal singular vector, we identify a group of genes by
significance analysis, that are significant associated with the vector. As an unmodeled
factor may have an impact on only a subset of genes rather than the whole set of all genes,
this step will lead to a more accurate estimation of a SV.



Third, for each identified group of genes, we built one Surrogate Variable(SV) from the
original Expression matrix on those genes. By using the original expression matrix (full EH
signature), we allow for the correlation between the SV and the primary variable.

Last, we will include the primary variable(PV) and all the significant SVs as covariates
in the final model. For different genes, we allow for different coefficients for the SVs. And
one gene could be affected by more than one SV.

1.3 Simulation studies of SVA

Results of simulation studies were shown to justify that SVA is able to account for unmea-
sured covariate and reduce the heterogeneity of gene expression levels.

1.3.1 Simulation setting

The simulation in the paper was designed to show the performance of SVA in the large-scale
significance testing, i.e., for each gene, they tested whether it is significantly associated with
the PV, disease states. In total, 1,000 studies were simulated, and in each of the studies
there were 1,000 genes on 20 arrays. 10 arrays were from cases and the other 10 were from
controls of a diseases. The first 300 genes were differentially expressed between cases and
controls, and gene 200-500 were affected by an independent unobserved factor.

1.3.2 Results

The simulation results showed that SVA did a good job from the following four perspectives:
(a) Estimation of SV, (b)Distribution of null p-values, (¢)Estimation of FDR, (d)Robustness
of confounding between the PV and SVs.

Accurate estimation of SV In the 1,000 studies, 99.5% of them identified one signif-
icant surrogate variable. And the average correlation between the estimated SV and the
unobserved factor was 0.95 with standard deviation of 0.05. Each SV is a weighted average
of expression over a subset of genes. On average, 30.5% of the 300 truly affected genes
were identified as affected, while only 9.9% of the 700 truly unaffected genes were identified
as affected. We can tell that on average, 160 genes were identified to be affected by the
unobserved factor, and only a little more than half( 56%) are the truly affected genes.

Correct p-value Distribution In a significance analysis, p-values corresponding to the
null hypotheses should be uniformly distributed in [0, 1]. Therefore for each single null gene,
the p-values over the 1,000 studies should be uniformly distributed. However, the p-values
from the 1,000 genes in one study will be different from the p-values from one gene across
1,000 studies. Since in the former setting, there is dependence across the genes, which are
affected by the unmodeled factor. i.e. for the 700 null genes in one simulation study, since
200 genes are affected by the same factor, the distribution of the 700 p-values will deviate
from a uniform distribution. In general, if the unmodeled factor is correlated with the PV,
the null p-values will be biased towards zero. While if the unmodeled factor is uncorrelated
with the PV, the null p-values will be biased towards one.



Plots of 9 simulations studies were shown before and after applying SV, and so was a
plot of p-value quantiles of 1,000 K-S tests. From these plots we can observe, SVA was able
to correct the distribution of null gene p-values towards the uniform distribution. From
Figure S4 in the paper we can see the distribution of p-values is corrected by SVA, where in
the simulation the residuals were drawn from a published microarray study. This confirms
that SVA is robust to the distribution of the gene specific error. The application on DE
genes was shown in Figure 1C. From the simulation study, we can compute the power as
we know which genes are the truly differentially expressed genes. From the plot, we can
see SVA increases the power. However, in practice on the real data, it is hard to tell if
SVA increases or decrease the power. It will depend on whether the null p-values are biased
towards zero or one.

Stable and Accurate Gene Ranking SVA can make reproducible ranking of genes for
differential expression.

Improved FDR estimation Large-scale dependence across genes has been shown to be
a problem for estimating FDR since the dependence increases the variance of FDR. SVA
reduces the variability in both the estimate of the proportion of null hypotheses and the
g-values for each study. See details in Figure S6.

Robustness to confounding Another simulation was conducted to let the unmodeled
factor to be correlated with the PV, with correlation coefficient of 0.5 and a standard devi-
ation of 0.16 across 1,000 simulation studies. Now the unmodeled factor is both correlated
with the PV and affect a subset of genes.

In this setting, SVA identified one SV in 94.5% of the simulation studies. And the
correlation between the estimated SV and the unmodeled factor is 0.94 with a standard
deviation 0.22. The author argued that the results showed SVA is robust to the strong
dependence between the SV and the unmodeled factor. However, the author did not show
for one simulation data set, among the identified genes affected by the SV, how many are
truly affected and how many are not.

1.4 Case Studies on Real Data

In the paper, SVA was applied in three real data sets, for the studies of eQTL mapping and
differential expression analysis.

1.4.1 Genetics of Gene Expression in Yeast: eQTL mapping

In the Yeast Data from Brem et al(2002, 2005), there are 112 segregants of a cross between
two isogenic strains of yeast. And also the genotype data, which covers 99% of the genome,
was also available.

Many of the gene expression traits are cis-linking (i.e. most of the associated loci are
within a short physical distance from that gene, which we call open reading frame), while
some of them are trans-linking (i.e. the associated loci are physically far from the open
reading frame). For the trans-linking pairs of a gene and a genetic locus, there are several



”pivotal” loci, any one of which influences hundreds and thousands genes in their expression.
Then the pivotal loci act as a major source of EH.
They fit two models:

Model 1: Expression of a Gene ~ a Genetic Loci
Model 2: Expression of a Gene ~ a Genetic Loci + SVs

From the results of the two models on all the combination pairs of a gene and a genetic
locus , it showed the effects of the few pivotal loci could be captured and removed by SVA.
See Figure 3A, we can observe by applying SVA, the majority of the trans-linkages to the
pivotal loci were removed.

With the existence of EH caused by the pivotal loci, some cis-linkages, which are more
interesting than trans-linkages, may not be detected as significant ones. They calculated
the p-values from both Model 1 and Model 2, only on the loci within 3 centimorgans of
the open reading frame for each gene. In Table 1, we see at the same FDR cutoff, Model 2
with SVA detected more cis-linkages, which suggests SVA has the potential to increase the
power of eQTL mapping.

1.4.2 Human Expression: Differential Expression between two disease states

There are 15 tumor samples tumor samples in the data from Hedenfalk et al, 2001. 7 of
them are with BRC Almutations and 8 are with BARC A2 mutations. Previous biomedical
research has shown that there are notable substructure within the BRCA2 samples. SAV
was applied to capture this structure.

Model 3: Expression of a Gene ~ Disease State (BRCA1 or BRCA2)
Model 4: Expression of a Gene ~ Disease State (BRCA1 or BRCA2) + SVs

Fit the Model 3 and 4 on all the genes, Model 4 with SVA detected fewer differentially
expressed genes at the same FDR cutoffs. Many of the declared extremely significant DE
genes from Model 3 are highly associated with top SV in Model 4, and we believe the
differential expression of those genes is mainly driven by EH. Figure S8 shows some genes
with low ranks(large rank indices) in the unadjusted model, Model 3, would increase the
ranking to high ranks (small indices) in the adjusted model, Model 4. This suggests that
the small p-values detected from the unjust model would go to be very large in the adjusted
model, i.e., they are not true signals.

1.4.3 Human Expression: Differential Expression on Age

In this study, they used data from Rodwell et al, 2004. There are 133 patients with gene
expression measured in kidney tissue.

Model 5: Expression of a Gene ~ Age + Tissue Type
Model 6: Expression of a Gene ~ Age
Model 7: Expression of a Gene ~ Age + SVs

The top SV estimated has high correlation with 0.86 with Tissue Type. 84% of the
detected genes associated with Tissue Type in Model 5 were also detected to be significantly
associated with the first SV in Model 7.



At the same standard FDR cutoff, all age-associated genes detected in Model 4 were
included in the list of the significant age-associated genes in Model 5. 96% of the age-
associated genes detected in Model 7 with SVA were in the list from Model 5. Furthermore
SVA-adjusted model (Model 7) detected more age-associated DE genes than unadjusted
model(Model 6), among which 116 genes were significant both in Model 5 and 7, but not
in Model 6. This suggests SVA is poetical to increase the power of detecting DE genes.

2 Discussion

In recent years, Surrogate Variable Analysis(SVA) has been very popular in the community
of genetics on associate studies. People prefer using it for many reasons. For example,
applying SVA may lead to increased number of eQTL detections and by the standard in
the biology community more eQTL means improvement. Another truth of most associate
studies is that usually very few related covariates are measured and SVA brings the pos-
sibility of reducing the heterogeneity. However, there are still arguments on that whether
SVA could work in the way as it claimed.

Simulation Study I In Ryan’s simulation (R code attached), he showed if SVA is able
to accurately account for unmeasured covariates. Here are the details of the simulation:
There assumes to be 50 samples (sample size n = 50) with 500 genes (p = 500) expressed,
and 10 (k = 10) out of the 500 genes are affected by unmeasured covariates while the other
490 genes are not affected. More specifically, in those 10 genes, one gene is affected by 10
covariates, and there are 10 hidden covariates in total. None of the genes are affected by
a primary variable Y. In another words, with respective to the primary variable Y, all are
null genes. After applying SVA to this simulated data set, we let it generate 10 estimated
SVs to account for the 10 hidden covariates, and for each gene we fit the model :

Gene Expression ~ PV + SV1 4+ SV2 + ... + SV10

We found that for the 490 gene not affected by the hidden covariates, none of the 10 SVs is
significant for most cases as expected, while for the 10 genes that are affected by the hidden
covariates, some of the SVs estimated are significant. After fitting the linear models, the
sum of squared residuals (SSE) should follow a x? distribution, i.e.

SSE _, 2
o2 Xdf=n—10—1>

We repeat the same simulation 50 times (R = 50). For each gene at one simulation, we
got calculated one statistic X? = SSE, and in total 500 X?’s for the 10 genes affected by
some hidden covariate and 24,500 (i.e. 490 x 50) X?’s for the other 490 genes. With the
X?%’s calculated, we can get the QQ-plot of o2 for two groups, 10 affected genes and 490
unaffected genes.

Figure 1 shows the QQ-plots respectively. From the one on the right, we observe all the
points almost lie on the straight line y = x, which suggests SVA would have little impact
on the unaffected genes. However, in the plot on the left for 10 affected genes, almost all
the points are below the straight line y = x, which suggests by including 10 SVs, more
variation would be removed than it should be in the linear models. From Figure 2 we
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Figure 3: QQ-plot

observe the same pattern as X2 = SSE(in color red) is smaller than yZ,(in color grey) for
the 10 affected genes, but the distributions of them are almost the same (slightly smaller
than theoretical due to the number of SVs) for the 490 unaffected genes.

Simulation Study IT In the last simulation study, we let SVA generate 10 estimated SVs
as we simulated 10 hidden covariates. However, they may not be all significant. Therefore
we conduct almost exactly the same simulation again but using the estimated number of
significant SVs. As a result, only one significant SV is estimated. From the QQ-plot in
Figure 3 for unaffected 490 genes, we find the observed SSFE is perfectly following X?if: 48"
But we also observe deviations of SSE calculated from the linear model for 10 genes from
x? distribution. And also, as for the 490 genes, we observe no deviation at all compared to
the histogram in Figure 2 since in Simulation Study I, we removed a little more variation
when we used 10 SVs.

p-values of Study I and I Besides, the distribution of SSFE in fitting the linear models,
we take a look at the distribution of p-values for the primary variable(PV). Since all of the
500 genes are simulated to be null genes for the PV, we should expect to see a uniform
distribution of p-values. In Figure 5, we can tell that using one estimated SV would generate
closer p-value distributions than applying 10 SVs, although there are 10 hidden covariates.
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Figure 5: QQ-plot for p-values




