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Abstract

We study a new method for estimating the risk of an arbitrary estimator of the mean vector in
the classical normal means problem. The key idea is to generate two auxiliary data vectors, by adding
carefully constructed normal noise vectors to the original data. We then train the estimator of interest on
the first auxiliary vector and test it on the second. In order to stabilize risk estimate, we average this
procedure over multiple draws of the synthetic noise. A key aspect of this coupled bootstrap approach is
that it delivers an unbiased estimate of risk under no assumptions on the estimator of the mean vector,
albeit for a slightly “harder” version of the original problem, where the noise variance is inflated. We
show that, under the assumptions required for Stein’s unbiased risk estimator (SURE), a limiting version
of this estimator recovers SURE exactly. We also analyze a bias-variance decomposition of the error
of our risk estimator, to elucidate the effects of the variance of the auxiliary noise and the number of
bootstrap samples on the accuracy of the estimator. Lastly, we demonstrate that our coupled bootstrap
risk estimator performs quite favorably in simulated experiments and in a denoising example.

1 Introduction

Risk estimation is a central topic in both classical statistical decision theory and modern statistical machine
learning. To fix notation, we consider the classical normal means problem, where we observe a data vector
Y =(Y3,...,Y,) € R distributed according to:

Y ~ N(0,0°1,), (1)

with § € R® an unknown parameter to be estimated. The marginal error variance o? > 0 is assumed to be
known, and I, denotes the n x n identity matrix. An estimator in the context of this problem is simply a
measurable function g : R® — R" that, from Y, produces an estimate 6= g(Y) of the mean vector § € R™.
Given a loss function L : R™ x R™ — R, the risk of ¢ is defined by its expected loss to 6,

Risk(g) = E[L(6, g(Y))]. (2)
In what follows, without further specification, we work under quadratic loss, so that the above becomes:
Risk(g) = 16 — 901} 13 = E| S0~ a:(1)?] 3)
i=1

with g; denoting the ith component function of g. In the discussion, we return to a more general setting and
consider (2) in the case of loss functions defined by a Bregman divergence.

1.1 Prediction error, fixed-X regression

Under quadratic loss (and with known o2), estimating risk in (3) is equivalent to estimating prediction error,
the expected loss between g(Y) and an independent copy of Y, as these two quantities are related via

E||Y — g(Y)|3 = Risk(g) + no?, where Y ~ N(6,0%I,), independent of V. (4)



An important special case of the normal means problem in which a focus on prediction error is particularly
common is fized-X regression: here Y € R™ is viewed as a response vector that comes with a feature matrix
X € R™ P (i.e., the ith row of X is a feature vector associated with Y;), and g typically performs a kind of
regression of Y on X. In treating this as a normal means problem of the form (1), note that we are treating
X as fized (nonrandom); and furthermore, by measuring prediction error as in (4), we are treating X as a
common feature matrix that we use across both training and testing sets (i.e., Y is a new vector of response
values, but observed at the same features as Y).

Much of the classical literature on prediction error estimation in statistics falls in the fixed-X regression
setting, with, e.g., Mallow’s Cp (Mallows, 1973) being a seminal early contribution in this area. In some
applications of regression, the fixed-X perspective is natural; in other applications, where prediction error is
measured with respect to a new feature vector and its associated response value, a random-X perspective is
more natural. It is worth being clear at the outset that estimating prediction error in fixed-X regression and
random-X regression are not equivalent settings and admit critical differences (see, e.g., Rosset & Tibshirani
(2020) for an extended discussion); and therefore, to be clear, the latter does not fall under the umbrella of
risk estimation in a standard normal means problem.

To summarize, in this paper, we choose to focus on risk as in (1), (3) for simplicity, but as the above
discussion explains, our results will also translate over to prediction error in (4), and we will move back and
forth between the two concepts (risk and prediction error) fluidly.

1.2 Stein’s unbiased risk estimator

One of the most well-known and widely-used risk estimators in the normal means problem is due to Stein
(1981). For concreteness, we translate this result into the notation of our paper.

Theorem 1 (Stein 1981). Let Y ~ N(0,0%1,). Let g : R — R" be weakly differentiable', and write V;g; for
the weak partial derivative of component function g; with respect to variable y;. Assume that E||g(Y)||3 < oo,
and E|V;g;(Y)| < o0, fori=1,...,n. Define

SURE(g) = [[Y = g(Y)|3 + 20*(V - 9)(Y) — no?, ()

with V - g =31 V,g; denoting the divergence of g. Then the above provides an unbiased estimator of risk:
E[SURE(g)] = Risk(g).

The estimator defined in (5) is known as Stein’s unbiased risk estimator (SURE). Ignoring the last term:
—no?, a constant not depending on g, the first two terms here are the observed training error: ||[Y — g(Y)||3,
and a measure of complexity: 20%(V - g)(Y). At the heart of Theorem 1 is a result known as Stein’s formula,

which says for weakly differentiable g (Stein, 1981),

1 .
?COV(Y;‘,gi(Y)) =EV,g:(Y)], i=1,...,n. (6)
Recall that the (effective) degrees of freedom of g is defined by (Hastie & Tibshirani, 1990; Ye, 1998):
1 n
df(g) = — > Cov(¥;, g:(Y)). (7)
i=1

This measures complexity based on the association (summed over the training set) between each Y; and the
corresponding estimate g;(Y) of 0; (generally speaking, the more complex g is, the greater this association
will be). Note that, according to (6), (7), the second term in (5) leverages an unbiased estimator for degrees
of freedom: E[(V - ¢)(Y)] = df(g).

1.3 Efron, Breiman, and Ye

For arbitrary g, we can always decompose its risk by:

Risk(g) = E[[Y — g(Y)||3 + 2 Cov(¥;, gi(Y)) — no?, (8)

i=1

1Weak differentiability of g is actually a slightly stronger assumption than needed, but is stated for simplicity; see Remark 3.



which follows from simple algebra (add and subtract Y inside the expectation in E||§ — g(Y)||3, and expand
the quadratic). This is often referred to as Efron’s covariance decomposition (or Efron’s optimism theorem),
after Efron (1975, 1986, 2004). We reiterate that the covariance decomposition in (8) holds for any function
g. The same is true of the definition of degrees of freedom in (7): it applies to any g. In fact, these do not
even require normality of the data vector: (7), (8) only require the distribution of Y to be isotropic (i.e., to
have a covariance matrix 021, ). Meanwhile, Stein’s formula (6), and hence the unbiasedness of SURE (5),
only holds for and weakly differentiable g, and Gaussian Y.

Efron’s covariance decomposition reveals that, to get an unbiased estimator of Risk(g), we only need an
unbiased estimator of the second term: 23" | Cov(Y;, g;(Y)), called the optimism of g. This is because the
first term, the (expected) training error, clearly yields the observed training error as its unbiased estimator.
A natural way to estimate optimism is to use the bootstrap, or more precisely, the parametric bootstrap. This
has been pursued by several authors, notably Breiman (1992); Ye (1998); Efron (2004). In the parametric
bootstrap, we generate samples

Y*|Y ~ N(Y,a0%I,), b=1,...,B (independently), (9)

for some constant 0 < o < 1. We then form the estimates:

B
Cov, = Z (Y = ¥)gu(Y™), i=1,...,n, (10)
where Y;* = £ ZbB:1 Y ®, i =1,...,n are the bootstrap means of the coordinates. Efron (2004) also presents

a more general framework in which, instead of (9), we draw bootstrap samples from N (0, a0?1,), for some
seed estimate 0. As an effort to reduce bias, Efron recommends using a more flexible model for estimating 0
compared to that for = g(Y), where the “ultimate” flexible model (as Efron calls it) reduces to § = Y, in
(9). This is also the choice made in both Breiman (1992) and Ye (1998).

While there are strong commonalities among the parametric bootstrap proposals of Efron, Breiman, and
Ye, all three being centered around (10), there are also noteworthy differences in how these authors use (10)
in order to estimate risk. Efron proposes the risk estimator:

Efra(g) = Y = g(V)I3 +2_ Cov; —no?, (1)
whereas Breiman and Ye effectively propose the risk estimator:
BY.u(g) = [IY —g(Y)II3 + ZCOV —no? (12)

We say “effectively” here because Breiman and Ye consider a slightly different estimator than that in (12).
See Appendix A for details. But for a large number of bootstrap draws B, the proposals of Breiman and Ye
will behave very similarly to (12), and thus we refer to (12) as the Breiman-Ye (BY) risk estimator.

The difference between (11) and (12) is that in the latter the sum of estimated covariances is scaled by
1/c. Efron, Breiman, and Ye each generally advocate for choices of a in between 0.6 and 1. For such a large
value of a, the scaling factor 1/« in (12) will not play a huge role. But for small values of a—a regime that
is of interest in the current paper—this scaling factor will make all the difference.

1.4 What are these bootstrap methods estimating?

The bootstrap methods in (11) and (12) are well-known and widely-used for estimating risk in normal means
problems. Efron’s estimator (11) is natural in that it directly uses the parametric bootstrap to estimate
optimism: 237 ; Cov(Y;, g;(Y)). The BY estimator (12) is arguably equally natural; writing
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we see that it can be motivated from the perspective of estimating degrees of freedom (rather than optimism)
via the parametric bootstrap, since the conditional variance of the bootstrap draws (given Y) is ao?.

Thus on one hand, the estimators (11) and (12) are fairly well-motivated from first principles. But on the
other hand, this motivation is based only on the conditional distribution of bootstrap samples (conditional
on the data vector Y'), and the key to their performance would be how these estimators behave marginally
over Y. Unfortunately, from the marginal perspective, it is not as clear what these estimators are actually

targeting. We discuss this for each method separately.

1.4.1 Efron’s estimator

First, consider Efron’s estimator in (11). Write Y* for a single bootstrap draw, i.e., Y*|Y ~ N (Y, a0?l,).
As this estimator treats Y* as the data vector (in place of Y'), one might suppose that marginally it targets
the optimism of g, but at an elevated noise level (1 + a)o? (instead of 02), because Y* ~ N(0, (1 + a)o?).
However, its expectation does not really support this claim. To see this, first observe that

E[Cov, | Y] = Cov (Y, g:(Y*) | V).

Here we simply used the fact that an empirical covariance computed from i.i.d. samples of a pair of random
variables is unbiased for their covariance (everything here being conditional on Y). Next observe that, by the
law of total covariance,

ZCOV(YZ-*,gi(Y*)):Z [Cov(Yi,g:(Y*) | V)] +ZCOV Yi, gi(Y")), (13)

=1

Aq Ba

where for each summand in the second term we used Cov(E[Y;* | Y], E[g:(Y*)|Y]) = Cov(Y;, g:(Y*)), which
follows from a short calculation. Therefore Efron’s method delivers a covariance term that has a marginal

expectation:
E{Z@:] = [Zcov Y7, gi(Y™) |Y)] (14)
i=1

which only captures a part of the optimism of g at the elevated noise level (1 + a)o?, labeled A, in (13), and
not a second part, labeled B, in (13).

Based on this, we can reason that for small «, the bootstrap estimator > -, Cov will typically be badly
biased for the noise-elevated covariance > Cov( 7, 9:(Y™)), and hence also badly biased for the original
covariance Y .~ Cov(Y;, g;(Y)) (as this will be close to the noise-elevated version). This is because it will be
concentrated around A, in (13), which will typically be small in comparison to the second component B, in
(13). For example, for a linear smoother g(Y) = SY (for a fixed matrix S € R"*™), note that

Ay = ac?tr(S) and B, = o’tr(S), (15)

and the latter term will dominate for small «. Similar arguments hold for locally linear g (well-approximated
by its first-order Taylor expansion).

Meanwhile, for moderate «, the estimator ) ., Cov can have low bias for Y. | Cov(Y;, g;(Y)) (this is
the original covariance and not the noise-elevated version, which will be generally larger for moderate «), if
we are able to choose a such that 4, =~ > ;| Cov(Y], gi(Y)). For linear smoothers, as we can see from (15),
we simply need to take a = 1. In general, however, it will not be at all clear how to choose a appropriately,
as it will be unclear how A, behaves with . More broadly, for any given value of « in hand, it is not clear
precisely what is being targeted in (14), and thus, not clear precisely what risk is being estimated by (11).

1.4.2 Breiman-Ye Estimator

Now, consider the BY estimator in (12). By the same calculations as in the last case, we see that the BY
method uses a covariance term with marginal expectation:

iE{ié&/r] E[ZCOV (Y5, 9:(Y™)

)|- (16)



The sum above only captures one part of the optimism at the elevated noise level (1 + a)o?, labeled A, in
(13), but the sum is also inflated by division by o < 1. This inflation makes the behavior of the BY method
more subtle than that of Efron’s method. We seek to choose a so that A, /o~ Y 1 | Cov(Y;, g:(Y)), yet it is
unclear whether this means that we should choose « to be small or large.

The case of a linear smoother g(Y) = SY is encouraging: recalling (15), we have A,/a = o2tr(S), which
is equal to > | Cov(Y;, gi(Y)) for any value of . Of course, in general we will not be so lucky, and varying
a will vary A, /a, hence vary what we are targeting in (16). This brings us to same general difficulty with
the BY estimator as in the last case: for any given choice of e it is unclear what quantity is actually being
estimated by é >, Cov,, and thus, unclear precisely what risk is being estimated by (12).

1.5 Proposed estimator

The main proposal in this paper is a new estimator for the risk of an arbitrary function g, based on bootstrap
draws as in (9). The key motivation for our estimator is that, for any «, it will be unbiased for an intuitive,
explicit target: the risk of g but at the elevated noise level of (1 + a)o?, which we denote by

Risk,(9) = E||0 — g(Ya)||3, where Y, ~ N(0, (1 + a)o?1,). (17)

To accomplish this, we take an approach that departs in two notable ways from prior work (Efron, Breiman,
and Ye). First, we do not use Efron’s covariance decomposition (8), and do not frame the problem in terms of
directly estimating optimism (or degrees of freedom); this circumvents the need to estimate a covariance with
the bootstrap (and as such, avoids challenges due to the law of total covariance (13)). Second, coupled with
each bootstrap draw in (9), we carefully generate another bootstrap draw that is marginally independent
from it (giving us a total of 2B draws).

In particular, we generate samples according to:

w® ~ N(0,6%I,), b=1,...,B (independently),

18
YP=v +Vaub, Y=Y _-ub/Va, b=1,...,B, (18)
for some constant 0 < o < 1, and based on these samples, we define the risk estimator:
1 *
CBalg) = > (" = gy )13 — "3/ ) = no. (19)

b=1

The intuition here is that each pair (Y**, Y'T*) comprises two independent samples from a normal distribution
with mean 6, and hence each squared error term ||YT? — g(Y*?)||2 imitates the prediction error incurred by
g(Y) at a new copy of Y. Together, the remaining terms —||w”||3/c (in each summand) and —no? adjust for
the fact that Y** and Y* have different variances, and bring us from the prediction scale to the risk scale
(recall (4)). In this paper, we refer to (19) as the coupled bootstrap (CB) risk estimator.

In (19), as g is applied to a noise-elevated draw Y** that has mean 6 and variance (1 + a)o?, one might
conjecture that we are targeting risk (or prediction error) at the noise-elevated level (1 + a)o?. Later, when
we give a more detailed motivation for the construction of the CB estimator (19), we will prove that this is
indeed true, i.e., we prove that E[CB,(g)] = Risk,(g). This is a strong property, and it holds without any
assumptions on g whatsoever.

1.6 Summary of contributions

The following is a summary of our main contributions and an outline for this paper.

e In Section 2, we examine basic properties of the CB risk estimator, which includes proving that for any
g and any «a, the CB estimator is unbiased for Risk,(g).

e In Section 3, we study the behavior of the CB estimator as B — oo and a — 0, and prove that under
the same smoothness assumptions on g as those in Stein (1981) (to guarantee unbiasedness of SURE;
recall Theorem 1), the limiting CB estimator recovers SURE exactly.



e In Section 4, we analyze the bias and variance (quantifying their dependence on a and other problem
parameters) of the CB estimator when it is viewed as an estimator of Risk(g), the original risk. Insights
from this include a recommendation to choose the number of bootstrap draws B to scale with 1/«, for
small «, in order to control the variance of the CB estimator.

e In Section 5, we compare the CB estimator to the existing bootstrap methods (Efron and BY) for risk
estimation in simulations. We find that the CB estimator generally performs favorably, particularly so
when g is unstable.

e In Section 6, we conclude with a discussion, and give an extension of our coupled bootstrap framework
to the setting of structured errors (i.e., a non-isotropic covariance in (1)), as well as extensions to other
loss functions and distributions.

1.7 Related work

Risk (or prediction error) estimation is a well-studied topic and has a rich history in statistics. What follows
is by no means comprehensive, but is a selective review of papers that are most related to our paper, apart
from Breiman (1992); Ye (1998); Efron (2004), which have already been discussed in some detail.

In a sense, covariance penalties originated in the work of Akaike (1973) and Mallows (1973), who focused
on classical likelihood-based models and fixed-X linear regression, respectively. Stein (1981) greatly extended
the scope of models under consideration (or in our notation, functions g whose risk is to be estimated) with
SURE, which applies broadly to models whose predictions vary smoothly with respect to the input data Y;
recall Theorem 1. Stein’s work has had a huge impact in both statistics and signal processing, and SURE is
now a central tool in wavelet modeling, image denoising, penalized regression, low-rank matrix factorization,
and other areas; see, e.g., Donoho & Johnstone (1995); Cai (1999); Johnstone (1999); Blu & Luisier (2007);
Zou et al. (2007); Zou & Yuan (2008); Tibshirani & Taylor (2011, 2012); Candes et al. (2013); Ulfarsson &
Solo (2013a,b); Wang & Morel (2013); Krishnan & Seelamantula (2014).

A downside of SURE is that it cannot be applied to various models of interest (e.g., tree-based methods,
certain variable selection methods, and so on), as it requires g to be weakly differentiable, which is generally
violated when ¢ is discontinuous. Meanwhile, even when SURE is applicable, it is often highly nontrivial to
(analytically) calculate the Stein divergence V - g; in fact, the key contribution in many of the papers given in
the last set of references is that the authors were able to calculate this divergence for an interesting class of
models (e.g., wavelet thresholding, total variation denoising, lasso regression, and so on).

These shortcomings of SURE are well-known. Extensions of SURE to accommodate discontinuities in g
were derived in Tibshirani (2015); Mikkelsen & Hansen (2018); see also Tibshirani & Rosset (2019). While
useful in some contexts, these extensions are generally far more complicated (and harder to compute) than
SURE. On the computational side, Ramani et al. (2008) proposed a Monte Carlo method for approximating
SURE that only requires evaluating ¢g (and not its partial derivatives). This has since become quite popular
in the signal processing community, see, e.g., Chatterjee & Milanfar (2009); Lingala et al. (2011); Metzler
et al. (2016); Soltanayev & Chun (2018) for applications of this idea and follow-up work.

As it turns out, the Monte Carlo SURE approach of Ramani et al. (2008) is precisely the same as the
bootstrap method of Breiman (1992). It is thus also highly related to the work of Ye (1998), and essentially
equivalent to what we call the BY risk estimator in (12); recall the discussion in Section 1.3. It seems that
Ramani et al. were unaware of the past work of Breiman and Ye. That being the case, their work provided
an important new perspective on this methodology: they show that for infinite bootstrap samples (B = o0)
and with appropriate smoothness conditions on g, Monte Carlo SURE (and thus the BY estimator in (12))
converges to SURE in (5) as & — 0. Breiman and Ye, on their part, seemed unaware of this connection, as
they both cautioned against choosing small values of «, advocating for choices of o upwards of 0.5.

We finish by mentioning the recent work of Tian (2020), which inspired us to pursue the current paper.
Tian proposed the coupled bootstrap scheme in (18) (albeit with B = 1) to estimate the fixed-X regression
error of prediction rules that perform feature selection in a linear model (including discontinuous ones such
as best subset selection). Her focus was different than ours; she focused on the working linear model setting
(and on finer-grained targets such as the prediction error conditional on a model selection event) whereas we
focus on a more general setting, where g is essentially arbitrary.



2 Basic properties

In this section, we investigate basic properties of the CB estimator in (19), beginning with its unbiasedness
for the noise-elevated risk in (17).

2.1 Unbiasedness for noise-elevated target

The unbiasedness of CB estimator for the appropriate noise-elevated risk stems from a simple “three-point”
formula under squared error loss. Here and subsequently, we use (a,b) = a'b for vectors a, b.

Proposition 1. Let U, V,W € R™ be independent random vectors. Then for any g,
E[[V - g(U)]3 — E[W - g(U)I3 = E|VI3 - EIW|3 + 2(E[g(U)], E[W] — E[V]). (20)
In particular, if E[V] = E[W] and U,V are i.i.d., then
E|lV - g(U)I3 = EIW — g(U)|3 +E[|U]3 — E[W]]3. (21)

Proof. The first statement (20) simply follows from expanding the quadratic terms and using independence
of U,V,W. The second (21) follows from the first statement by noting that if E[V] = E[W], then the last
term on the right-hand side in (20) is zero, and if U,V are i.i.d., then the first term is E||U]||3. O

The statements in Proposition 1 are the result of somewhat trivial algebraic manipulations. Nonetheless,
they are useful observations: to recap, the second display (21) says that given a random vector U, if we can
generate another random vector W that is independent of U and shares the same mean (importantly, we do
not require it to be i.i.d.), then we can unbiasedly estimate the predicion error (or risk) of g applied to U.

This is the basis for the CB risk estimator. By carefully adding and substracting noise to Y, we generate
a pair of random vectors (U, W) = (Y*?, Y?) that are independent of each other and have a common mean
f. Then we pivot slightly from the original problem and now seek to estimate the risk of g when it is applied
to U, which has marginal distribution N (6, (1 + a)o?). For this task, we have a simple unbiased estimator
using W = Y1 following (21).

Corollary 1. Let Y ~ N(0,02I,). Then for any g, any o > 0, and any B > 1, the CB estimator defined by
(18), (19) is unbiased for the noise-elevated risk in (17): E[CB4(g)] = Riska(g).

Proof. For each b, note that Y**, Y'* are independent since they are marginally normal and uncorrelated:

Cov(Y 4+ Vaw’, Y —w’/va) = Cov(Y,Y) + (vVa — 1/v/a)Cov(Y,w’) — Cov(w®,w?)
2

=no? +0—no
=0.
They also clearly have the same mean, thus we can apply (21) with U = Y**, W = Y. This shows that
YT = g(Y=) 15 + Y *[13 — 1Y ™13 (22)

is unbiased for E||Y** — g(Y*)||3, where Y*? is an independent copy of Y**. Now, note that we can replace
[Y*?]|3 — [Y®[3 in the above display by anything with the same expectation, no?(a — 1/a), and the result
will still be unbiased for E[|[Y** — g(Y*?)||2. One such option is

Y™ = g(¥**) |13 + no*a — [|w’||3/a (23)
and equivalently, after subtracting off no?(1 + «),
Y™ = g(¥ )13 — lw’(13/a — no

is unbiased for Risk,(g) in (17). The CB estimator in (19), being an average of such terms over b=1,..., B,
is therefore also unbiased for Risk,(g). O



Remark 1. In Proposition 1, we require that U, W are independent so that we can factorize E{g(U), W) =
(E[g(U)], E[W]) in (20), and hence cancel out this term with (E[g(U)], E[V]), when E[V] = E[WW], to achieve
(21). This is the only reason that we require a normal data model Y ~ N (6, 021I,,) for the unbiasedness result
in Corollary 1; we can construct U = Y** W = Yt to be uncorrelated, but it is only under normality that
this will imply independence.

When g(Y) = SY is linear, if U, W are merely uncorrelated then we still get the desired factorization:

E(SU, W) = Etr(SUW ) = tr(SE[UW ")) = tr(SE[U]E[W]") = (SE[U], E[W]),
so the unbiasedness result in Corollary 1 still holds under the weaker conditions: E[Y] = 6, Cov(Y) = ¢21,.

Remark 2. As alluded to in the proof of the proposition, various options are available in the construction of
the CB estimator; starting from (22), we can replace two rightmost terms by anything that has the same
mean. One might wonder why we therefore do not just use the exact mean itself, no?(a — 1/a), to define the
risk estimator; as we discuss later (see Remark 7 after Proposition 5), this not a good choice, as it would lead
to a much larger variance for the risk estimator when « is small.

2.2 Smoothness of noise-elevated target

Now that we have shown that CB,(g) is unbiased for Risk,(g), it is natural to ask is whether Risk, (g) will
generally be close to the original target of interest Risk(g). Our next result provides a basic answer to this
question: we show that if g satisfies a certain moment condition, then the map « — Risk,(g) is continuous
on an interval containing o = 0. In fact, if g satisfies a certain kth order moment condition, then this map is
k times continuously differentiable around o = 0.

Proposition 2. For a > 0, let Risk,(g) be as defined in (17). If, for some 8 > 0 and integer k > 0,
E[llg(Ys)[3I[Ys — 0137 < oo, m=0,....k
where recall Yy, ~ N (0, (14 «)o?1,,), then the map o — Risk,(g) has k continuous derivatives on [0, B).

The proof is not conceptually difficult but a bit technical and deferred to Appendix B. It is worth noting
that Proposition 2 shows Risk,(g) is continuous in « under only a moment condition, and not a continuity
condition, on g. Intuitively, it is reasonable to expect that continuity of g would not be needed, as evaluating
the risk of g at an inflated noise level (1 + «)o? is akin to mollifying g, i.e., convolving it with a Gaussian
kernel of bandwidth ac?, which renders the result smooth even if g was nonsmooth to begin with.

3 Noiseless limit

Here we study the infinite-bootstrap version of the CB estimator, CBS’(g) = limp_00 CB4(g). Equivalently
(by the law of large numbers), we can define this via an expectation over w, CB:’(g9) = E[CB,(g) | Y], i.e.,

CB (9) = E[IYT = g(¥ )3 — llwl3/a [ Y] = no™. (24)

where w,Y*, YT denote a triplet sampled as in (18). Adding and subtract Y in the first quadratic term, and
expanding, we get

CBX(g) = E[|Y — (¥ + vaw)[3| Y] + %E[w,g(y T vaw)| Y] - no?, (25)
where we used the fact that the inner product of w and Y has zero conditional expectation.

Our particular interest in this section is the behavior of CB2’(g) as a — 0, which we call the noiseless
limit (veferring here to the amount of auxiliary noise). The key is the middle term in (25). Under a moment
condition on g, the first term will converge the observed training error ||Y — g(Y')||3, by an argument similar
to that used for Proposition 2. As for the middle term in (25), Ramani et al. (2008) show that if g admits a
well-defined second-order Taylor expansion, then this same term converges to a (scaled) divergence evaluated
at Y: 202(V - g)(Y). Note that, in this case, the limit of CBX°(g) as o — 0 is precisely SURE in (5).

In fact, as Ramani et al. also note, the middle term in (25) converges to 202(V - g)(Y) even if g is only
weakly differentiable. (They do not consider this extended case in their main paper, and refer to an online
supplement for details.) For completeness, we give a self-contained proof of our next result in Appendix C.



Theorem 2. Assume the conditions of Theorem 1 (Stein’s result), but with the moment conditions holding
at an elevated noise level: El|g(Y3)||3 < oo and E|V,g;(Y3)| < oo, fori=1,...,n, and some 3 > 0. Then
the infinite-bootstrap version (24) of the CB estimator (equivalently, the formulation in (25)) satisfies

liirb CBX(g) = |Y — g(V)||2 + 20%(V - g)(Y) = SURE(g), almost surely. (26)

Therefore, by Stein’s result, the noiseless limit of CB. (g) is unbiased for Risk(g).

Remark 3. Recall that a real-valued function f: R"™ — R is called weakly differentiable, with weak partial
derivatives V; f, i =1,...,n, provided that for each compactly supported and continuously differentiable test
function ¢ : R™ — R, it holds that

/f(a:)V@(:t) dr = — / Vif(x)p(z)dx, i=1,...,n. (27)

Equivalently (e.g., Theorem 4.21 of Evans & Gariepy (2015)), a real-valued function is weakly differentiable if
it is absolutely continuous on almost every line segment parallel to the coordinate axes.

Meanwhile, a vector-valued function g : R™ — R"™ is said to be weakly differentiable if every one of its
component functions g;, i = 1,...,n are. Equivalently, by the “absolute continuity on lines” formulation of
weak differentiability, this means that for each i =1,...,nand j=1,...,n,

y; — ¢;(y) is absolutely continuous on compact subsets of R, for almost every y_; € R,

where y_; denotes the vector y with the ith component removed. This is a stronger condition than what is
really required in Theorems 1 or 2. Each result in fact only requires that for each i = 1,...,n,

y; — gi(y) is absolutely continuous on compact subsets of R, for almost every y_; € R™L.

Effectively, each component function g; only needs to be weakly differentiable with respect to the ith variable
(not all of the other variables), for almost every choice of y_; € R"~!. While this is technically weaker than
weak differentiability, it is also harder to explain, and not clear whether this distinction is all that meaningful.
For simplicity, we thus state the assumption as weak differentiability of g in both Theorems 1 and 2.

Remark 4. The limiting result in (26) also holds for the infinite-bootstrap version of the BY estimator in
(12), which is the estimator studied in Ramani et al. (2008) (as we mentioned in Section 1.7, these authors
seemed to be unaware of the prior work of Breiman and Ye, and independently proposed the same estimator).
In fact, the infinite-bootstrap formulation of the CB estimator given in (25), BY (g9) = E[BY4(g) | Y], can
be expressed as
oo 2

BY(9) = [IY — g(Y)I3 + ﬁE[@,g(Y +Vaw)) | Y] = no?, (28)
which is very similar to the analogous representation (25) for the infinite-bootstrap CB estimator. From this
B = oo perspective, the only difference between the estimators (25) and (28) is the first term; and as « — 0,
the first term in (25) will converge to that in (28) if E||g(Y)||3 < co (even for nonsmooth g).

Remark 5. The limiting equivalence to SURE in Theorem 2 assumes g is weakly differentiable. When this
condition is violated, it still may be the case that the noiseless limit of the infinite-bootstrap CB estimator is
SURE, but it would no longer be generally true that this noiseless limit is unbiased for Risk(g), because the
SURE itself requires weak differentiability of g. (Of course, the same can be said about the infinite-bootstrap
BY estimator, since, as the previous remark explains, it has the same limit as o — 0.)

As a simple example, consider the hard-thresholding estimator g, which is discontinuous (and not weakly
differentiable), with component functions ¢;(Y) =Y; - 1{|Y;| > t}, i = 1,...,n, for some fixed ¢ > 0. In this
case, we can check by direct computation (see Appendix D) that

L2 AN n
Olllg%) ﬁEKw,g(y +Vaw))| =20 Zl 1{ly;| > t}, for almost every y € R™. (29)
The right-hand side is again the (scaled) divergence of ¢ evaluated at y, which is well-defined for almost every
y; however, it is known that the divergence does not lead to an unbiased estimate of risk for hard-thresholding,
due to the discontinuous nature of this estimator; see, e.g., Tibshirani (2015).



4 Bias and variance

In this section, we analyze a bias-variance decomposition of the mean squared error of CB,/(g) in (19), when
we measure its error to the original risk Risk(g). For any estimator R(g) of Risk(g), recall:

E[R(g) - Risk(g)]? = [E[R(9)] - Risk(g)]” + E[R(g) — E[R(9)]]".

Bias2(R(g)) Var(R(g))

Applying this decomposition to the CB estimator CB,(g), we get:

E[CB,(g) — Risk(g)]> = [Riska(g) — Risk(g)]” + E[Var(CB,(g) | Y)] + Var(E[CBa4(g)|Y]) . (30)

Bias?(CBa(9)) RVar(CBq4(9)) IVar(CB4(9))

Here, for the bias term, we used the fact that CB,/(g) is unbiased for the noise-elevated risk Risk,(g) from
Corollary 1; and for the variance term, we used the law of total variance, and denote the two terms that fall
out by RVar(CB,(g)) (expectation of the conditional variance) and IVar(CB,/(g)) (variance of the conditional
expectation), which we will call the reducible and irreducible variance of CB,(g), respectively. This is meant
to reflect the effect of the number of bootstrap draws B: the reducible variance will shrink as B grows, but
the irreducible variance does not depend depend on B at all, and in fact, it can be viewed as the variance of
the infinite-bootstrap version of the risk estimator, CBg (¢) = E[CB4(g) | Y].

The goal of this section is to develop a precise understanding of how the individual terms in (30) behave
as a function of « and B, the two key parameters of the CB estimator that are specified by the user. (We are
particularly interested in the behavior for small o and large B.)

4.1 Bias

The next result provides an exact expression for Bias(CB,(g)) = Risk,(g) — Risk(g), and some bounds for
its magnitude.

Proposition 3. Assume E[||g(Y5)3]Ys — 0]13™] < oo for m = 0,1 and some 3 > 0. Then for all a € [0, 3),

Risk (g) - Risk(g) = | f\f VVar(l0 = g() 1) Cor (0 — gV, Vi — 018) de. (31)

If Var(||0 — g(Y3)|13) is increasing with t on [0, ], then a simple upper bound is

|Risk, (g) — Risk(g \/Var (160 — g(Ya)l3)- (32)

If in addition E[||g(Ys)|[3]|Ys — 0]|3™] < oo for m = 0,1, then for all a € [0, ),

Riska )~ Risk(g)] < L2 Var(16 — o)) + O(a*") 3

where here and throughout, we use the asymptotic notation f(a) = O(h(w)) to mean that there is a constant
C > 0 such that f(a) < Ch(a) for small enough o.

The proof of Proposition 3 is deferred to Appendix E. The upper bound in (32) shows that the absolute
bias has a near-linear decay with «, where “near” reflects that Var(||0 — g(Y4)||3) also depends on . Under
additional moment conditions on g, we see from (33) that the bias indeed decays linearly with «. Empirical
examples that assess the bias bounds from Proposition 3 are given in Appendix F.

Remark 6. With regard to the bound in (33), observe that

VVar(16 — g()[3) < \JE[I6 — g(¥)]J} < Risk(g). (34)
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with the last step holding by Jensen’s inequality, and thus to leading order, we can interpret (33) as providing
for us an upper bound on the relative bias:

Riskq (g) — Risk(g)| _ vna

Risk(g) ~ V2

where < means that we omit all terms with a lower-order dependence on «. This suggests that to achieve a
relative bias of x, we should choose a = v/2z/v/n (e.g., for x = 10%, we set o ~ 14//n).

We must note that (35) will be often conservative in practice. This is due to of looseness in the inequality

v/ Var(]|0 — g(Y)]?2) < Risk(g) derived in (34), and looseness in the bound Cor(||0 — g(Y)|13, ||Y: — 0]12) < 1

used to derive (32), (33). For example, when g(Y) = SY and S projects onto a p-dimensional linear suspace

(as in linear regression), one can check that

(35)

\/Var (10 — g(Y)|13) = \/2po? < ||0 — SO||3 + po? = Risk(g) when p < n (or 6 is far from S6),

and
Cor (|10 — g(Yo)3, Vs — 0]13) = V/p/n < 1 when p < n.

4.2 Reducible variance
The next result gives a simple bound on the reducible variance RVar(CB,/(g)).

Proposition 4. Assume E||g(Y3)||3 < oo for some 8> 0. Then for all o € [0, B),

RVar(CBa(0)) = g EIY (V) + O (30)

5e)
The proof of Proposition 4 is in Appendix E. Empirical examples that investigate the reducible variance
and the dominance of the leading term 40°E||Y — ¢g(Y)||3/(Ba) in (36) are given in Appendix F.

Remark 7. The dependence of the leading term in (36), which scales as 1/« is a consequence of a careful
construction for the CB estimator. Recall that in Remark 2, we explained that various options are available
for the last two terms in (22). One can check that choosing the exact mean no?(a — 1/a) would lead to an
estimator that has irreducible variance 2no?/(Ba?) + O(1/(Ba)), whose leading term scales as 1/a?. This is
due to the conditional variance of ||YT||2 given Y, where Y =Y —w/\/a is as in (18). Both of the options
n (22) and (23) (the second one here being the basis for the CB estimator) substantially improve upon this,
bringing down the order of dependence to 1/a, as they each subtract off a term that effectively cancels out
the variation of ||Y'f||3. The differences between (22) and (23) are much less pronounced; the former yields a
reducible variance with leading term 402E| g(Y)|3/(Bc), whereas the latter yields a reducible variance (36)
with leading term 40%E|Y — g(Y)||3/(Ba), which can often be smaller. For this reason, we choose to define
the CB estimator as in the latter case.

Remark 8. For the BY estimator in (12), the same arguments as in the proof of Proposition 4 show that,
under the same conditions on g, the reducible variance satisfies

0.2
RVar(BY, () = - Ela1)13 + 0( 3 (37)

7)

Note that the order of dependence here is 1/, as in the CB estimator. However, the factor E||g(Y)||3 that
multiplies the leading order in (37) can often be larger than the factor E||Y — g(Y)||3 in (36) (as just noted
at the end of the last remark).

Remark 9. If we are using risk estimation to choose in between models (functions) g and g, where each of
these satisfy the conditions of Proposition 4, and importantly, we use the same bootstrap draws in (18) for
constructing CB,(g) and CB,(g), then the same arguments as in the proof of Proposition 4 show that

RVax (CBals) — CBa(9)) = 1-Elo(¥) - 50V} + O 5= ). (39)

Note that the factor in E||g(Y) — g(Y)||3 multiplying the leading order in (38) can be even smaller than the
factor E||Y — g(Y)||3 in (36), when g and g are similar.
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4.3 Irreducible variance

Recalling the expression for the infinite-bootstrap version of the CB estimator in (25), observe that we can
always write the irreducible variance, for any g and any a > 0, as

IVar(CB,(g)) = Var <]E[||Y —g(Y + Vaw)[3 | Y] + 2 ——E[(w, g(Y + Vaw)) | Y]). (39)

Va
The following result studies the behavior of IVar(CB,(g)) for small «, under a suitable condition on g.

Proposition 5. Assume that

h(y) = lim —]E[(w, g9(y + Vaw))] emists for almost every y € R™, (40)
a—0 f

and this convergence comes with a dominating function H with E[H(Y)] < co such that
4
—E[(w,g(y + J&w))]Q < H(y) for almost everyy € R™ and a < f3, (41)
o

for some 3> 0. Assume also that g satisfies E||g(Ys)||3 < co. Then
WVar(CBa(g)) = Var([[Y — g(Y)|3 + h(Y)) + o(1), (42)
where o(1) denotes a term that converges to zero as a — 0.

The proof of Proposition 5 is in Appendix E. Empirical examples that examine the irreducible variance
for small o can be found in Appendix F.

Remark 10. For the BY estimator, recall, its infinite-bootstrap version takes the form (28), which means
that its irreducible variance is

IVar(BYq(g)) = Var <]E[Y —g(V)IE] + —=E[(w, g(Y + Vaw)) |Y]> (43)

f
This is just as in (39), but in the first term (inside of the variance), we are measuring the error between Y’
and ¢(Y), rather than Y and g applied to the noise-elevated data. The result of Proposition 5 carries over
to the BY estimator: under (40), (41), and the moment condition on g, the same small-a representation in
(42) holds for IVar(BY,(g)). The subtle difference between (39) and (43) can indeed materialize in practice,
especially when the estimate g is nonsmooth and unstable. See Figure 2 and the accompanying discussion in
Section 5.1.

Remark 11. As we showed in Theorem 2 (a similar result appears in Ramani et al. (2008)), when g is
weakly differentiable and its weak partial derivatives are integrable, the limit in (40) exists, and equals

h(y) = o*(V - g)( 72022vvgz

which is the divergence of g (scaled by 20%). Furthermore, one can check that condition (41) is implied by
squared integrability of the divergence at an elevated noise level: E[(V - g)(Y,)?] < oo for some a > 0. The
result in (42) then reads

IVar(CBa(g)) = Var(|[Y — g(Y)|[3 +20*(V - 9)(Y)) +o(1),
i.e., the irreducible variance of the CB estimator converges to the variance of SURE, as a — 0.

Remark 12. It is worth emphasizing that the dominating condition in (41) is key: without it, the result in
the proposition is not true in general. As an example, consider the hard-thresholding function, which, recall,
has components ¢;(Y) =Y; - 1{|Y;| > ¢}, i = 1,...,n. This satisfies the limit condition in (40), where the
limiting function h is 202V - g, as in (5). However, in a sense we already know that the limiting irreducible
variance of hard-thresholding should not simply be the variance of SURE, due to the bias of SURE for the
risk in this case (Tibshirani, 2015). Indeed, a direct calculation (building off that in Appendix D) confirms
that (41) fails for the hard-thresholding function.
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Bias to Riska(g) ‘ Bias to Risk(g) Reducible variance Irreducible variance

CB estimator 0 hS a\/%Var(HG —gWM3) | £ %EHY —g(Y)||3 | stable when g is smooth
BY estimator ? ? < %EHg(Y)H% stable when g is smooth

Table 1: Summary of bias and variance results described across Propositions 3—5 and enswing remarks. Above, <
means that we omit all terms with a lower-order dependence on .

4.4 Summary of bias and variance results

Table 1 summarizes the bias and variance results from this section. We use: “stable when g is smooth” for
the irreducible variance to reflect the fact that it is not clear in what general settings this will be stable as
a — 0, for the CB and BY methods; recall, for either method, the conditions in (40), (41) are sufficient to
ensure that the limiting irreducible variance satisfies (39). While these conditions are met (and the limiting
irreducible variance is the variance of SURE) in the case of weakly differentiable g (Remark 11), the extent
to which these conditions apply beyond weak differentiability remains unclear, and for hard-thresholding as a
key non-weakly differentiable example, the second condition fails (Remark 12).

The lack of clarity on the irreducible variance prevents us from reasoning holistically about the behavior
of the CB or BY methods in the infinitesimal « regime (beyond the case of smooth g). However, practically
speaking, for a given data set at hand, we would of course choose « to be small but non-infinitesimal, such as
a = 0.01, or « = 0.05. This brings us to a primary advantage of the CB estimator in particular, reflected in
the first column of the table: it is always unbiased for Risk,(g), the risk of g at the noise-elevated level of
(1 + a)o?. Therefore, provided that we have a sense—practically, conceptually, or theoretically (first column,
see also Remark 6)—that Risk,(g) is a reasonable target of estimation, we do not have to concern ourselves
with the infinitesimal « regime.

5 Experiments

In this section, we study the performance of the CB method empirically. The first two subsections compare
the CB and BY estimators in simulations (results for Efron’s method are deferred until the appendix). The
third studies the use of the CB estimator for parameter tuning in an image denoising application. Code to
reproduce all experimental results in this section is available online at https://github.com/nloliveira/
coupled-bootstrap-risk-estimation.

5.1 Comparison of CB and BY

We compare the CB estimator (19) to the BY estimator (12) in simulations, deferring the results for Efron’s
estimator (11) to Appendix F (since it is largely outperformed by the BY method in the setups we consider).
Throughout, we fix n = 100 and p = 200, and generate data Y € R™ from a linear model with feature matrix
X € R"*P. At the outset, we draw the entries of X from N(0,1), and we draw the coefficient vector in the
linear model 8 € RP to have s nonzero entries from Unif(—1,1). The features X and coefficients 5 are then
fixed for all subsequent repetitions of the given simulation. For each repetition r = 1,...,100, we generate a
response vector
vy — X8+ 6(f’)7

where the error vector (") € R™ has i.i.d. entries from N (0,0?), and the error variance o2 is chosen to meet a
desired signal-to-noise ratio SNR = Var,,(X3)/o? (where Var,(-) denotes the empirical variance operator on
n samples). We then apply each risk estimator (CB or BY) to Y(") with a particular function g, number of
bootstrap draws B, and auxiliary noise parameter «, in order to produce a risk estimate. Finally, we report
aggregate results over all repetitions r = 1,...,100.

The number of bootstrap draws is fixed at B = 100 throughout. We consider four different functions g:

(a) ridge regression, with a fixed tuning parameter A = 5;

(b) lasso regression, with a fixed tuning parameter A\ = 0.31;
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(c) forward stepwise regression, with a fixed number of steps k = 2;
(d) lasso regression, with A chosen by cross-validation.

These are implemented by glmnet (Friedman et al., 2010) for ridge and lasso, and bestsubset (Hastie et al.,
2020) for forward stepwise. (The particular tuning parameter values for ridge and lasso were chosen because
they were close to the middle, roughly speaking, of their effective solution paths.) It should be noted that the
functions g in (a) and (b) are weakly differentiable, but those in (¢) and (d) are not. Lastly, we consider six
values for a: 0.05, 0.1, 0.2, 0.5, 0.8, and 1.
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Figure 1: Comparison of risk estimators for different functions g, when s =5 and SNR = 0.4.

Figure 1 shows the results for when the underlying linear model has sparsity s = 5, and SNR = 0.4. The
figure displays the average risk estimate from each method, CB and BY, as well as standard errors of these
risk estimates. Each panel (a)—(d) corresponds to one of the four functions g described above. In each panel,
the black horizontal line represents Risk(g), and the black dots represent Risk,(g) (which are themselves
estimated via Monte Carlo). We can see that, for each function g, the CB method is unbiased for Risk,(g),
as expected. Meanwhile, the bias of the BY method varies dramatically depending on g. In panel (a), where
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g is a linear smoother (ridge), the average BY estimate matches Risk(g), regardless of «, as expected. In (b),
where ¢ is nonlinear but still weakly differentiable (lasso), it overestimates Risk, (¢), and thus also Risk(g),
dramatically so at the larger values of «. In panel (c¢), where ¢ is nonlinear and nonsmooth (forward stepwise),
it underestimates Risk,(g), and yet overestimates Risk(g), for larger a; and in (d), where g is again nonlinear
and nonsmooth (lasso tuned by cross-validation), it underestimates both Risk,(g) and Risk(g) for larger «.
In short, there is no single consistent behavior for the bias of BY,(g) across all scenarios. While for small a,
the average BY estimate appears to be empirically close to Risk(g) in all scenarios (as does the average CB
estimate), we reiterate that there is no guarantee this will be true in general for nonsmooth g (as in panels
(c) and (d)); however, the average CB estimate will always be close to Risk,(g), which will be in turn close
to Risk(g) for small a, regardless of the smoothness of g (Propositions 2 and 3).
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Figure 2: Comparison of risk estimators when g is the lasso tuned by cross-validation, s = 200, and SNR = 2.

In the previous figure, the variability of the BY and CB estimates (reflected in the standard error bars)
appears roughly similar throughout. In Figure 2, we demonstrate that this need not be the case in general.
By increasing the true sparsity level to s = 200 (the true linear model is dense) and the signal-to-noise ratio
to SNR = 2, we see that the BY estimates appear much more volatile than those from CB, when we take g
to be the lasso tuned by cross-validation. This holds across all values of a. In Appendix F, we show that the
larger variance of BY in this setting is due to its irreducible variance, and in particular, just one part of its
irreducible variance: comparing (39) and (43), we see that the only difference between the two is the first
term (inside the variance). In CB, this is the conditional expectation of the noise-added training error, and
in BY, it is the training error itself. When g is unstable, as in the current setting (the use of cross-validation
for tuning induces instability into the ultimate prediction function), the latter can be much more variable.

5.2 Degrees of freedom

Recalling Efron’s covariance decomposition (8), and the definition of degrees of freedom (7), it is clear that
estimating Risk(g) and estimating df(g) are equivalent problems, in the normal means setting. Thus, parallel
to the perspective and development used in this paper, where the CB method (19) is crafted as an unbiased
estimator of Risk, (g), the risk of g at the inflated noise level of (1 + a)o?, we can equivalently view:

B * *
CBa(g) — 5 2y [V —g(V*)|I3 + no®(1 + a)
202(1+ «)

dfa(g) = (44)

as an unbiased estimator of df,(g), the degrees of freedom of g at the inflated noise level (1 + a)o?. For the
BY method, meanwhile, one can proceed similarly in moving from (12) to an estimator of degrees of freedom
(by subtracting off training error and rescaling); however, there is an alternative, more direct estimator that
stems from this method, which was the original proposal of Ye (1998), namely:

B
~ 1 S
dfa(g) = o Z; Cov,, (45)
where 6(;/:, t=1,...,n, are as in (10).

15



In Figure 3, we evaluate the performance of these two degrees of freedom estimators (44), (45) using the
same simulation framework as that described in the last subsection, with s = 5 and SNR = 2. We consider
two functions g: lasso and forward stepwise, and for each, we vary their tuning parameters over their effective
ranges. Lastly, we fix & = 0.1. The figure displays the estimated degrees of freedom from CB (44) or BY
(45), against the support size of the underlying fitted sparse regression model (for the lasso, we take this to
be the average support size for the given value of X over all 100 repetitions): the bands represent the degrees
of freedom estimate plus and minus one standard error, over the 100 repetitions. The true degrees of freedom
(itself estimated via Monte Carlo) is shown as a dashed line; note, this is the degrees of freedom df(g) at
the original noise level, not the noise-inflated degrees of freedom df,(g). We see that both methods provide
reasonably accurate estimates of degrees of freedom throughout, albeit slightly biased upwards at various
points along the path (support sizes), due to the use of & = 0.1. Reducing « would reduce the bias, but also

increase the variability in the estimates. We also see that the CB method delivers more variable estimates of
degrees of freedom across the whole lasso path, most noticeably so at the smallest support sizes.
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Figure 3: Comparison of degrees of freedom estimators applied to the full forward stepwise and lasso paths,

when s =5, SNR = 2, and a = 0.1.

5.3 Image denoising

As a last example, we consider using the CB method for tuning parameter selection in image denoising. In
image denoising, and signal processing more broadly, SURE has become a central method for risk estimation
and parameter tuning (see Section 1.7 for references). We focus on the 2-dimensional fused lasso (Tibshirani
et al., 2005; Hoefling, 2010) as an image denoising estimator, as it is weakly differentiable and its divergence
can be computed in explicit form (Tibshirani & Taylor, 2011, 2012), and SURE take the simple form:

— TLO'2.

SURE(g) = ||Y — g(Y)||3 + 20° (# of fused groups in g(Y'))

To compare the CB estimator (19) and SURE (above) empirically, we start with the standard “Lena” image
used in image processing (leftmost panel of Figure 5), and generate data Y by adding i.i.d. normal noise to
each pixel (second from the left in Figure 5). Figure 4 compares SURE (dashed line) and the CB estimator
(solid lines) across several values of «, each as functions of the underlying tuning parameter A in the 2d fused
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lasso lasso optimization problem. The true risk is also plotted (dotted line). The primary conclusion is that,
for all values of « (even the largest one o = 0.5), the minimizers of the CB,(g) curve are all close to that of
SURE(g), which means that the subsequent CB-tuned and SURE-tuned estimates are themselves all quite
similar (second to right and rightmost panels of Figure 5). This speaks—informally—to model selection being
“easier” than risk estimation in this context, since we can get away with larger values of o and still make the
relevant risk comparisons needed in order to accurately select a model (indexed by a tuning parameter).

0.04
0.03
i a=0.1
% 0.02 : — a=03
w - z o=
x i
— SURE

log A
Figure 4: Comparison of the CB estimator and SURE for image denoising.

Original Noisy CB-denoised SURE-denoised

Figure 5: Original “Lena” image (leftmost), and a noisy version (second from left) used for image denoising.
The CB-tuned (second from right, using o = 0.1) and SURE-tuned (righmost) estimates look very similar.

6 Discussion

In this work, we proposed and studied a coupled bootstrap (CB) method for risk estimation in the standard
normal means problem. Our estimator is on one hand similar to bootstrap-based proposals for risk estimation
(via a covariance decomposition) in this setting from Breiman (1992); Ye (1998); Efron (2004). On the other
hand, it is different in a key way: for any value of the auxiliary (bootstrap) noise parameter o > 0, the CB
estimator is unbiased for Risk, (g), the risk of the function ¢ in question, when the noise level in the normal
means problem is inflated from o to (14 a)o?. We proved that for a weakly differentiable function g, the CB
estimator (with infinite bootstrap iterations) reduces to SURE as az — 0, just like the Breiman-Ye estimator
does in this noiseless limit. However, for nonsmooth g, and arbitrary non-infinitesimal «, the CB estimator
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still tracks an intuitively reasonable target: Risk,(g).

The unbiasedness of the CB estimator for Risk,(g) makes no assumptions on g whatsoever. As such, it
can be applied to arbitrarily complex functions g, such as those with some sort of internal tuning parameter
selection steps. Along these lines, an interesting use case of the CB estimator to consider for future study
would be estimation of excess optimism and excess degrees of freedom, as in Tibshirani & Rosset (2019).

We finish by describing two extensions of the CB framework that may be of interest for future work.

6.1 Structured errors
Consider, instead of (1), data drawn according to:
Y ~ N(6,%), (46)

for a positive definite covariance matrix ¥ € R™*". In such a structured error setting, it may be of interest
to measure loss according to a generalized quadratic norm, thus we introduce the notation ||z||% = 2TA™
for a vector x and positive semidefinite matrix A. For example, we may choose to measure loss according to
|6 — g(Y)||%, since the curvature in this loss takes ¥ into account, just like the negative log-likelihood in the
model (46).

We extend the CB estimator so that it applies to an arbitrary positive semidefinite matrix A defining the
risk, and an arbitrary positive semidefinite matrix 3 in (46). The next result is a straightforward extension
of Proposition 1.

Proposition 6. Let U, V,W € R™ be independent random vectors. Then for any g, and positive semidefinite
matric A € R™"*"™

E|lV —gU)I% —EIW - gU)II4 = E[VI — EIW|% + 2(AE[g(U)], E[W] — E[V]). (47)
In particular, if E[V] = E[W] and U,V are i.i.d., then
E|V - g(U)|4 =EIW - g(U)|4 +E|UI% - E[W]. (48)
And in turn, the next result is a straightforward extension of Corollary 1.

Corollary 2. Let Y ~ N(0,%). Given any function g, a positive semidefinite matriz A € R™*™ that will be
used to measure risk, and an auziliary noise level o > 0, consider defining a CB estimator according to:

W’ ~ N(0,%), b=1,...,B (independently),

49
=Y +vaut, Y=Y _-uwt/Va, b=1,...,B, (49)
and:
B
CBaale) = 3 (V" gV A — W[ /0) — tr(A~'S). (50)

b=1

Then this is unbiased for risk at the noise-elevated level (1 + o)X measured with respect to A, i.e.,
E[CB4.o(g)] = Riska a(g9) = E||0 — g(Ya) |4, where Y, ~ N(0,(1+a)X).

Of course, the main challenge in using the extended estimator CB 4 o(g) defined in the above corollary is
that it requires knowledge of the full error covariance matrix X. However, in some settings, e.g., time series
problems, it may be reasonable to assume that X or its inverse is highly structured and therefore estimable.
It may be interesting to rigorously study how risk estimation is affected by upstream estimation of ¥ in this
and related problem settings.
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6.2 Bregman divergence

Lastly, we present a further extension of the simple and yet key results in Proposition 6 underpinning the
construction of the CB estimator, to the case in which a Bregman divergence is used to measure error:

Errg(g) = E[Dg(Y,g(Y))], where Y is an i.i.d. copy of Y. (51)

Here Dy is the Bregman divergence with respect to a strictly convex and differentiable function ¢ : R™ — R,
which recall is defined by:

Dy(a,b) = ¢(a) — ¢(b) — (Vé(b),a —b).
When ¢(z) = ||z|3, it is easy to check that

Dy jz(a,b) = [lall3 = [Ib]|3 — 2(b,a — b) = [la = b3,

and hence (51) reduces to prediction error as measured by squared loss in (4). In fact, properties (47), (48)
are entirely driven by the above “Bregman representation” of squared error. This immediately leads to the
following extension.

Proposition 7. Let U,V,W € R" be independent random vectors. For any g, and Bregman divergence D,
E[Dy(V,9(U))] — E[Dg(W, g(U))] = E[¢(V)] — E[p(W)] + (E[V(U)], E[W] — E[V]). (52)

In particular, if B[V] = E[W] and U,V are i.i.d., then
E[Dy(V, g(U))] = E[Dg(W, g(U))] + E[¢p(U)] — E[¢(W)]. (53)

Proposition 7 is, in principle, a powerful tool: it provides “one half” of a recipe to move the CB estimator
beyond the Gaussian setting, to a setting in which data follows (say) an exponential family distribution and
loss is measured by the out-of-sample deviance. This is because for every exponential family distribution,
there is a natural function ¢ (defined in terms of the log-partition function of the distribution) that makes
(51) the deviance.

The “other half” of the recipe needed to arrive at a CB estimator is a mechanism for generating relevant
bootstrap draws, as in (49) in the previous subsection. Specifically, for a given problem setting with data Y
(exponential family distributed or otherwise) we must be able to design a pair of bootstrap draws (Y *?, Y1)
that adhere to three criteria:

1. Y** Y1 are independent of each other;
2. E[Y*"] = E[Y"]; and
3. E[Dy(Y*?, g(Y*))] is an “interesting” pseudo-target to estimate, where Y** is an i.i.d. copy of Y*’.

Criteria 1 and 2 are straightforward enough to understand, and they should be possible to fulfill in certain
exponential family models with various noise augmentation tricks. However, criterion 3 deserves a bit more
explanation. With U = Y**, V = Y** and W = Y, assumed to fulfill criteria 1 and 2, note that (53) says
Dy (YT g(Y*")) is unbiased for E[Dy(Y*?, g(Y*))]. That is, we originally wanted to estimate the quantity
in (51), and have now pivoted to estimating E[Dy(Y*?, g(Y*))] instead.

In the Gaussian setting studied throughout this paper, this meant estimating risk based on data from a
Gaussian distribution with the same mean but an inflated noise level. In a more general setting, the noise
augmentation strategy used to generate Y** may in fact bring us outside of the distributional family assumed
for the original data Y, and it may even alter non-nuisance parameters of the distribution; this would still
altogether be fine, as long as E[Dy(Y*?, g(Y**))] it still an “interesting” target (i.e., for error assessment or
model selection), as per criterion 3.
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A  More details on Breiman’s and Ye’s estimators

Instead of defining C/(;/:, i=1,...,n as in (10), Breiman uses
B
— % “b b .
COVZ-:B 1b§_1Y Yi)g:(Y*), i=1,...,n,

which are just inner products between the noise increments {Y;** — Y;}Z | and fitted values {g;(Y**)}Z |,
instead of an empirical covariances.
Furthermore, instead of dividing the whole sum by «, Ye divides each summand Cov in (12) by

1 B

(Sf)2 “B_1 Z(Yi*b - 571'*)2,

b=1

the bootstrap estimate of the variance of Y;, rather than dividing the entire sum by «. In fact, Ye actually
formulates his estimator in terms of the slopes from linearly regressing the fitted values {g;(Y**)}£_| onto
the noise increments {Y;** — Y;}2 || but it is equivalent to the form described here.

It is worth pointing out that equality asserted in Definition 1 of Ye (1998) cannot be true in general. This
is exactly Stein’s formula (6) (though Ye does not mention this connection) which is known to fail outside of
weak differentiability; see, e.g., Tibshirani (2015). (The problematic step in Definition 1 of Ye (1998) appears
to be the third equality in this chain of reasoning, which exchanges differentiation and integration, and this
requires conditions—as in, say, the Leibniz rule—and is not true in general.)

B Proof of Proposition 2

The proposition follows from an application of the next lemma, as we can take f(y) = || — g(y)||%, and then
the moment conditions on f will be implied by those on ||g||3, via the simple bound f(y) < 2|62 + 2|lg(»)||3.

Lemma 1. For a > 0, denote Yo, ~ N(0, (1 + a)o?l,). Let f : R™ — R be a function such that, for some
B >0 and integer k > 0,
E[f(Ya)IVs - 0]3"] < o0, m=0,....k

Then, the map o — E[f(Y,)] has k continuous derivatives on [0, 3).

Proof. First, we prove that this map is continuous. Fix « € [0, 3). Observe that

. L f(y) —lly —61I°
}E%E[f(ytﬂ = tlg% (27T(1 + t)g2)n/2 P { 2(1 + t)02 }
- f(y) —lly —61I°
B /35% @r(1+ 00?2 P { 2(1 +t)o? } N

=E[f(Ya)],

where in the second line we used Lebesgue’s dominated convergence theorem (DCT), applicable because the
integrand is bounded by
) { —lly — 0|17 }
(2mo2)n/2 P 2(1+a)o? [’

which is integrable by assumption. Now for the first derivative, note that

0 n 1

—E[f(Ya)] = —mE[f(Ya)] + WE[f(Ya)||Ya — ]3],

where we used the Leibniz integral rule, applicable because the integrands (when we write these expectations
as integrals) are bounded by
f(y)

_p2m —lly — 01>
(27702)”/2”y 9”2 exp{2(1+a)0'2 )
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for m = 0,1, again integrable by assumption. Another application of DCT proves the derivative in the second
to last display is continuous on [0, 8). For a general number of derivatives k, the argument is similar, and the
integrability of the dominating functions in the above display, for m = 0, ..., k, ensures that we can apply
the Leibniz rule and DCT to argue continuity of the kth derivative on [0, 3). O

C Proof of Theorem 2

C.1 Proof of theorem

Observe that, writing E,, for the conditional expectation operator on Y = y (i.e., the operator that integrates
over w),

CBX(9) = Eu[lly — w/vVea — g(y + vaw) |5 — [lw||3/a] — no?
=Eully — 9(y + Vaw) |3 — %]Edw,g(y + Vaw)) —no®.

a b

It is not hard to show that for almost every y € R™, it holds that a — ||y — g(y)||3 as a — 0, by Lemma 3. It
remains to study term b.
Denote by ¢,, 2 the density of a Gaussian with mean p and variance o?. Then,

b= % ; EW*'iEwi [wigi (y + \/&UJ)]
- ﬁ Z w_; /wigi(y + Vaw)pg 52 (w;) dw;

2 n
-2 ZEw_,; /gz(y + Vaw) @y 42 (wi) dw;

n

= —952 Z E,_, /gi (u)¢67a02 (Uz - yi) dw;

i=1

- 202 Z Eu,i /vzgz (u)¢0,a02 (ui - yz) dwi
=1

=20" Z / Vigi(w)$o,a02 (v — y) du.
i=1
The second to last line holds by Lemma 2. Now, by Lemma 3, for almost every y € R™,

lim 202 / Vi) 60 02 (1 — 1) du = 20° " Vigi(y),
=1 =1

a—0

which completes the proof.

C.2 Supporting lemmas

Here we state and prove supporting lemmas for the proof of Theorem 2. The first lemma shows that for a
weakly differentiable function, the integration by parts property in (27) still holds when we take the test
function to be a normal density (which is continuously differentiable by not compactly supported).

Lemma 2. If f : R — R is weakly differentiable, with (f¢, ,2) € L*(R) and (f'¢, ,2) € L*(R), then
[ 1@ @ do == [ £/@)6000)
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Proof. Let ¢, : R — [0,1], n = 1,2,3,... be a sequence of continuously differentiable functions such that for
each z € R,

lim v, (z) =1, lim ¢ (2) =0, and [¢)(2)] <C forn=1,2,3,... and a constant C' < oc.
n—oo

n—oo
One example of such a sequence is

1
1 — (2 — nsign

1/}”(2’) = 1(—n,n)(z) =+ exp ( (Z)))1[—n—1,—n]u[n,n+1](z)a n=123,....
Now let &,(2) = ¥n(2)¢u,02(2). Note that

lim gn(z) = d)u,oQ (Z) nlggo wn(z) = ¢u702 (Z)a

T €,(2) = 1 ,(2)0y02(2) + .02 (2) T G(2) = 6 (2).

Turning to the result we want to prove,
[ 1@z = [ 1) lim )z

— lim [ f(2)€(2) dz

n— oo

— —1im [ f(2)€n(2) dz

The second and fourth lines here can be verified using Lebesgue’s dominated convergence theorem (DCT),
and the third uses (27), applicable because each &, is compactly supported. This completes the proof. [

The next lemma essentially shows that the notion of a Lebesgue point can be extended to the Gaussian
kernel (beyond the uniform kernel, as it is traditionally defined).

Lemma 3 (Adapted from Theorem 1.25 of Stein & Weiss 1971). Let ¢ : R™ — R be the Gaussian density
with mean zero and identity covariance, and denote ¢, = o~ "P(x/a). Let f : R™ = R be a function such
that (f¢g) € LY(R™) for some B > 0. Then, limq—o(f * ¢o)(z) = f(x) for almost every z € R™.

Proof. Let x € R™ be a Lebesgue point of f. We will prove that the desired result holds for z, which will
imply that it holds almost everywhere (because any function in L] (R™) has the property that almost every
point is a Lebesgue point; see, e.g., Theorem 1.32 of Evans & Gariepy (2015)).

Fix € > 0. By the definition of a Lebesgue point, there exists p > 0 such that

6" xz—t)— f(x)|dt < Ck, 54
/ltwf( )~ f(o)|dt < (54)

for all 6 € (0, p] and a constant C' > 0 to be specified later. In what follows, we will show that there exists
B > 0 such that |(f * ¢a)(z) — f(x)] < € for all a € (0,5]. To do so, we decompose

I(f*cba)(x)f(w)lé‘ / (f(xt)f(x))¢a(t)dt‘+‘ [ te-0-s@eal. 6
Itll2<6 It]l2>6

I Iy

We study each term above separately.
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Term I1. Let g(r) = [, |f(z —rt) — f(2)|dt and G(r) = Jo s"'g(s)ds. Note that (54) translates into
the statement
G(r) < Cer™, (56)

for all r € (0, p].
For notational convenience, we write ¢(r) = ¢(u) whenever ||u|ls = r, where ¢ is the univariate standard
normal density. Observe that for any ¢ < p,

I x—1t)— f(z)|la™" a)d
1§/t|2<6|f( 1)~ f()la " o(t/a) di
5
:/ r"lg(r)a"e(r/a) dr
0
:G(r)of (T/Oz /G T/a))
< Ce(5/a)"p(5/a) — o~ /G (p(r/a))

6/

= Ce(6/a)"p(6/a) —a | Glas)d(p(s)

;;a
< Ce(8/a) p(6/a) + Ce /0 s™ [d(g(s))]
< Ce(en + mpy1)-

In the fourth and sixth lines, we used (56). In the last line, we used the fact the map z — 2 <p( ) attains a
maximum of ¢, = /n" ¢(y/n) at z = \/n, as well as the bound f‘s/a N < J7 8" o(s) ds < mipyt,
where m,, 11 uncentered, absolute moment of order n + 1 of the standard normal dlstrlbutlon By choosing
C <1/(2(en + mpy1)), we see that Iy < €/2 for any § < p, and any « > 0.

Term I;. Consider

B= [ ife=0l6a()dt+ 7o) balt) dt
[[t]]2>8 [tl|2>0
I Ia2
Clearly
lim I = |f(2)] lim ¢(u) du =0,

=0 S )jull2>6/a

so there exists 31 > 0 such that for o < 81, we have Iy; < €/4. As for Iy, we have

lim Loy = lim @ — 8)]ga(t) dt = / lim | £z — £)|a(t) dt = 0,

=0 J)1t)2>5 l[t]|2>6 «—0

where the interchange between integration and the limit as &« — 0 can be shown using DCT. Thus there is
B2 > 0 such that for a < B, we have Iy < €/4.

Completing the proof. Putting the above parts together, we get that Iy + Io < €/2+¢€/4 +¢/4 = ¢, for
all § < p and o < = min{p, B2}. Recalling (55), this gives the desired result and completes the proof. [

D Noiseless limit for hard-thresholding

The limit in question is that of

Z Wz yz"‘fwz) 1{|yz+\fw1| >t}]

5l
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as a — 0. Inspecting term 7,

E [wilys + vaw) - ly: + vaw] > t}] = %(E[‘” ' 1{%‘ < ‘t;zfiﬂ +E[“” ' 1{“” - t;g}D ’

st oo 2]

To compute the above, we recall the identities, for Z ~ N(0,72),

E[Z - 1{Z < a}] = —7¢(a/7),
E[Z - 1{Z > b}] = T¢(b/T),
] =
] =

E[Z% 1Z < a}] = —rad(a/7) + T*®(a/T),
E[Z? 1{Z > b}] = 7bp(b/T) + T*®(b/T),

where ¢ and ® denote the standard normal density and distribution function, respectively, and ® =1 — &
the standard normal survival function. Thus we find that the second to last display equals

Elwi(yi + vaw:)-1{|y; + _\/&wi| > t}]
AL A o) o) w2
) o2

ot [ [t+y t—y t —t

() ()| 2 () o ()

— 021{|yi| >t}, fory; # £t

[N~}

where the last line is the limit as @ — 0. In other words, we have shown

: _ 2
(il_%TZ]E wi(yi + \/>w1) Hly: + \/>Wz| > t} =20 Zl{‘y1| >ty fory; #+t, i=1,.

i=1

which proves (29).

E Proof of bias and variance results

E.1 Proof of Proposition 3

Under the given assumptions on g, the map o — Risk,(g) is continuously differentiable, and as shown in the
proof of Proposition 2, we can use the Leibniz integral rule, to compute for ¢ € [0, @),

1 IIYz —0lI3
_ 1 Y — 0|3
= MCOV<||0 g(Yt)H2 >

o?(1+1)
_L ar(110 — 2) Cor (110 — 2 2
—\/5(1”)\/\/ (10 = g(¥2)[3) Cor(ll6 — g(Y2) I3, Yz — 0]2),

0.
aRlSkt(g) =

where in the second line we used the fact that ||Y; — 0||3/(6%(1 +t)) ~ x2 and thus has mean n, and in the
third line we used that its variance is 2n. Applying the fundamental theorem of calculus gives the result in
(31). The bound in (32) is obtained by bounding the correlation (between ||§ — g(Y;)||3 and ||Y; — 6]|3) by 1,
and then using the assumed monotonicity of the resulting integrand.
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For the second bound, in (33), observe that under the additional (higher-order) moment conditions on g,
the map « +— Var(]|0 — g(Y4)|3) is continuously differentiable on [0, 3) by an application of Lemma 1. Thus
we get Var(]|0 — g(Ya)||3) = Var(]|0 — g(Y)]|3) + O() (say, by the fundamental theorem of calculus), which,
along with the simple inequality va + b < \/a + Vb for a,b > 0, gives the desired result.

E.2 Proof of Proposition 4
Let w,Y*, YT denote a triplet as in (18), hence Y* =Y + y/aw and YT =Y — w/\/a. Consider

E[Var(CBa(g) | V)] = ZE[Var(IVT —g(V)[3 ~ [wl3/a | V)],

where we used the independence of the bootstrap samples across b = 1,..., B. We can therefore study the
reducible variance for a single bootstrap draw, and then for the final result, we simply need to divide by B.
To this end, let a = (2/y/a)(w,Y — g(Y™*)), b= ||Y — g(Y*)||3, and write E,, Var,,, Cov,, for the expectation,
variance, and covariance operators conditional on Y. Then

Var(|[YT = g(¥ )3 = |wll3/a|Y) = Var(|YT =Y +Y — g(¥")|3 — |wll3/e| V)
= Var([|[Y = g(Y")I3 - (2/Va)(w,Y — g(Y")) |Y)
= Var, (a) + Var, (b) — 2Cov,,(abd).

The first term in the previous line Var, (a) will end up having the dominant dependence on «, since by the
law of total variance,

E[Var,, (b)] = E[Vary, (|[Y — g(Y")[I3| V)] < Var(|[Y — g(¥")]3),

and the right-hand side above is continuous in « over [0, 8), by the condition E[g(Y3)||3 < oo and Lemma 1,
which means E[Var,, (b)] < Var(||[Y — g(Y)||3) + O(c). Thus it remains to study Var,(a). Introducing more
notation, ¢ = (2/y/a){w,Y — g(Y)) and d = (2/v/a){w, g(Y) — g(Y*)), observe that

Var, (a) = Var,(c) + Var, (d) + 2Cov,,(cd).
Once again, the first term here will have the dominant dependence on «;, as
oy 4 o NP
Vary(d) < Eo[d°] < —no"Eulg(Y) — g(Y)I2,
and the last factor on the right-hand side, after integrating over Y, satisfies E[|g(Y) — g(Y*)|3 = O(«) from

another application of Lemma 1. Finally,

4dno?

Var,(c) = 1Y —g(M)|3,

e’
and integrating with respect to Y, then dividing by B, gives the desired result in (36).
E.3 Proof of Proposition 5

Observe that (39) equals, for a = [E[|Y — g(Y + v/aw)||3]? and b = [E(w, (Y + Vaw))]?/«,

/ ((Ey — gy + Va3 + @/VaE[w, oy + vaw))]) ~ (a+ b)) G O {lly"ll} ay.

202
Abbreviating ¢ 425, (y) = (2702) "2 exp(—|y — 0]|?/(20%)), the integrand above is bounded by
8 2
2Ely — 9(y + Vaw)l2 @021, (v) + ~E[{w, 9y + Vaw))]"bo.021, ()-

Note that the second term is dominated by 2H (y)¢g »21, (y), due to (41), which is integrable by assumption
(E[H(Y)] < o0). The first term above is dominated by

4yl13 ¢o.021,, (¥) + 4E|g(y + vVaw)||3 ¢e.021, (1),

g(Y5)||3 < 00). Using Lebesgue’s dominated convergence theorem

which is also integrable by assumption (E|
(DCT) and (40) completes the proof.
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F Additional experiments

F.1 Bias

We study the bias empirically, and investigate the tightness of the bound in (33) in Proposition 3. Under the
simulation setup described in Section 5, with s = 5 and SNR = 2, Figure 6 displays the true bias (computed
via Monte Carlo) and (33) each as functions of «, when g is forward stepwise regression estimator at different
steps along its path: k£ = 3, 10, and 90. We see that, within each panel, the bias decreases approximately
linearly with «, meaning the linear rate of decay in the bound (33) is roughly accurate. However, the slope in
the bound is too large, and loosest when g is defined by the smallest number of steps along the path. This is
consistent with the fact that bound (33) is based on applying the inequality Cor(||6 — g(Y;)|I3,||Y; — 0]13) < 1
to the integrand in (31). This inequality is generally tightest when ¢(Y;) = Y;, which occurs at k = 100 steps
(overfitting), and loosest at the beginning of the path.

k=3 k=10 k=90
0.6
»
0.4 :
,“‘(
— Bias
- Bound
0.2
0.0

0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100 0.000 0.025 0.050 0.075 0.100
a

Figure 6: Comparison of the true bias and the bound in (33) for forward stepwise regression with k = 3, 10,
and 90 steps. The simulation setup is as in Section 5 with s = 5 and SNR = 2.

F.2 Reducible variance

Now we examine the reducible variance empirically, and compare the bound in (36) in Proposition 4. We
again use the simulation setup from Section 5, with s = 5 and SNR = 2, with Figure 7 displays contour plots
of the true reducible variance (computed via Monte Carlo) and the dominant term in (36) as functions of
B and a, when g is the lasso estimator with A = 0.31. The two panels appear qualitatively quite similar,
confirming that the dominant term in (36) indeed captures the right dependence of the reducible variance on
B, «. (Note that each panel is given its own color scale, which means that any potential looseness in the
constant multiplying 1/(Ba) in the bound (36) is not being reflected.)

F.3 Irreducible variance

Lastly, we examine the behavior of the irreducible variance and its components empirically. Following (39),
observe that we can write

IVar(CB,(g)) = Var(IE[HY —g(Y + \/aw)H% ‘ Y]) —I—Var(\/QaE[(w,g(Y +vaw)) ’ Y]) +

IVar,
IVars

2Cov(E[||Y — gV + Vaw)|3| Y], 2=E[(w, (¥ + vaw)) | Y]) .

7o

COV172
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Figure 7: Comparison of the true reducible variance and the bound in (36) for the lasso with A = 0.31. The
simulation setup is as in Section 5 with s = 5 and SNR = 2.

We can similarly define analogous components for IVar;,IVary, Covy o for IVar(BY,(g)) in (43). Note that
between the CB and BY estimators, IVars is shared (equal), but IVar; and Covy o are different: where BY
uses the original training error |Y — g(Y)||3, CB substitutes the conditional expectation of the noise-added
training error E[||Y — g(Y + /aw)||3] Y].

Figure 8 plots these three components of the irreducible variance for BY and CB (computed via Monte
Carlo), under the same simulation setup as that from Figure 2. The figure also plots the reducible variance
for reference. We can see that the main contributor to the large variance exhibited by BY in comparison to
CB in Figure 2 is in fact the first component of the irreducible variance IVar;. This is intuitive, because for
an unstable function ¢ (such as the one in the current simulation), the observed training error can have a
high degree of variability, but taking a conditional expectation over a noise-adding process acts as a kind of
regularization, reducing this variability greatly.

Covl,2 IVarl IVar2 RVar

Variance

< BY 4 CB

Figure 8: Comparison of the irreducible variance, broken down into its three main components, and also the
reducible varaince, for the BY and CB estimators, under the same simulation setup as that in Figure 2.
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