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Abstract

In this paper we study the statistical proper-
ties of Laplacian smoothing, a graph-based
approach to nonparametric regression. Under
standard regularity conditions, we establish
upper bounds on the error of the Laplacian
smoothing estimator f̂ , and a goodness-of-fit
test also based on f̂ . These upper bounds
match the minimax optimal estimation and
testing rates of convergence over the first-
order Sobolev class H1(X ), for X ⊆ Rd and
1 ≤ d < 4; in the estimation problem, for
d = 4, they are optimal modulo a log n fac-
tor. Additionally, we prove that Laplacian
smoothing is manifold-adaptive: if X ⊆ Rd
is an m-dimensional manifold with m < d,
then the error rate of Laplacian smoothing
(in either estimation or testing) depends only
on m, in the same way it would if X were a
full-dimensional set in Rm.

1 INTRODUCTION

We adopt the standard nonparametric regression setup,
where we observe samples (X1, Y1), . . . , (Xn, Yn) that
are i.i.d. draws from the model

Yi = f0(Xi) + εi, εi ∼ N(0, 1), (1)

where εi is independent of Xi. Our goal is to per-
form statistical inference on the unknown regression
function f0, by which we mean either estimating f0 or
testing whether f0 = 0, i.e., whether there is any signal
present.

Laplacian smoothing [Smola and Kondor, 2003] is a
penalized least squares estimator, defined over a graph.
Let G = (V,W ) be a weighted undirected graph,
where the vertices V = {1, . . . , n} are associated with
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{X1, . . . , Xn}, and W ∈ Rn×n is the (weighted) adja-
cency matrix of the graph. The Laplacian smoothing
estimator f̂ is given by

f̂ = argmin
f∈Rn

n∑
i=1

(Yi − fi)2 + ρ · f>Lf. (2)

Here L is the graph Laplacian matrix (defined formally
in Section 3), G is typically a geometric graph (such
as a k-nearest-neighbor or neighborhood graph), ρ ≥ 0
is a tuning parameter, and the penalty

f>Lf =
1

2

n∑
i,j=1

Wij(fi − fj)2

encourages f̂i ≈ f̂j when Xi ≈ Xj . Assuming (2) is a
reasonable estimator of f0, the statistic

T̂ =
1

n
‖f̂‖22 (3)

is in turn a natural test statistic to test if f0 = 0.

Of course there are many methods for nonparametric
regression (see, e.g., Györfi et al. [2006], Wasserman
[2006], Tsybakov [2008]), but Laplacian smoothing has
its own set of advantages. For instance:

• Computational ease. Laplacian smoothing is fast,
easy, and stable to compute. The estimate f̂ can
be computed by solving a symmetric diagonally
dominant linear system. There are by now various
nearly-linear-time solvers for this problem (see e.g.,
the seminal papers of Spielman and Teng [2011,
2013, 2014], or the overview by Vishnoi [2012] and
references therein).

• Generality. Laplacian smoothing is well-defined
whenever one can associate a graph with observed
responses. This generality lends itself to many
different data modalities, e.g., text and image clas-
sification, as in Kondor and Lafferty [2002], Belkin
and Niyogi [2003], Belkin et al. [2006].

• Weak supervision. Although we study Laplacian
smoothing in the supervised problem setting (1),
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the method can be adapted to the semi-supervised
or unsupervised settings, as in Zhu et al. [2003],
Zhou et al. [2005], Nadler et al. [2009].

For these reasons, a body of work has emerged that ana-
lyzes the statistical properties of Laplacian smoothing,
and graph-based methods more generally. Roughly
speaking, these works can be divided into two cate-
gories, based on the perspective they adopt.

• Fixed design perspective. Here one treats the de-
sign points X1, . . . , Xn and the graph G as fixed,
and carries out inference on f0(Xi), i = 1, . . . , n.
In this problem setting, tight upper bounds have
been derived on the error of various graph-based
methods (e.g., Wang et al. [2016], Hütter and Rigol-
let [2016], Sadhanala et al. [2016, 2017], Kirichenko
and van Zanten [2017], Kirichenko et al. [2018])
and tests (e.g., Sharpnack and Singh [2010], Sharp-
nack et al. [2013a,b, 2015]), which certify that such
procedures are optimal over “function” classes (in
quotes because these classes really model the n-
dimensional vector of evaluations). The upside of
this work is its generality: in this setting G need
not be a geometric graph, but in principle could
be any graph over V = {1, . . . , n}. The downside
is that, in the context of nonparametric regression,
it is arguably not as natural to think of the eval-
uations of f0 as exhibiting smoothness over some
fixed pre-defined graph G, and more natural to
speak of the smoothness of the function f0 itself.

• Random design perspective. Here one treats the
design points X1, . . . , Xn as independent samples
from some distribution P supported on a domain
X ⊆ Rd. Inference is drawn on the regression func-
tion f0 : X → R, which is typically assumed to be
smooth in some continuum sense, e.g., it possesses
a first derivative bounded in L∞ (Hölder) or L2

(Sobolev) norm. To conduct graph-based inference,
the user first builds a neighborhood graph over the
random design points—so that Wij is large when
Xi and Xj are close in (say) Euclidean distance—
and then computes e.g., (2) or (3). In this context,
various graph-based procedures have been shown
to be consistent : as n → ∞, they converge to a
continuum limit (see Belkin and Niyogi [2007], von
Luxburg et al. [2008], Garćıa Trillos and Slepčev
[2018] among others). However, until recently such
statements were not accompanied by error rates,
and even so, such error rates as have been proved
[Lee et al., 2016, Garćıa Trillos and Murray, 2020]
are not optimal over continuum function spaces,
such as Hölder or Sobolev classes.

The random design perspective bears a more natural
connection with nonparametric regression (the focus

in this paper), as it allows us to formulate smoothness
based on f0 itself (how it behaves as a continuum func-
tion, and not just its evaluations at the design points).
In this paper, we will adopt the random design perspec-
tive, and seek to answer the following question:

When we assume the regression function f0 is
smooth in a continuum sense, does Laplacian
smoothing achieve optimal performance for
estimation and goodness-of-fit testing?

This is no small question—arguably, it is the central
question of nonparametric regression—and without an
answer one cannot fully compare the statistical proper-
ties of Laplacian smoothing to alternative methods. It
also seems difficult to answer: as we discuss next, there
is a fundamental gap between the discrete smoothness
imposed by the penalty f>Lf in problem (2) and the
continuum smoothness assumed on f0, and in order to
obtain sharp upper bounds we will need to bridge this
gap in a suitable sense.

2 SUMMARY OF RESULTS

Advantages of the Discrete Approach. In light
of the potential difficulty in bridging the gap between
discrete and continuum notions of smoothness, it is
worth asking whether there is any statistical advan-
tage to solving a discrete problem such as (2) (setting
aside computational considerations for the moment).
After all, we could have instead solved the following
variational problem:

f̃ = argmin
f :X→R

n∑
i=1

(
Yi−f(Xi)

)2
+ρ

∫
X
‖∇f(x)‖22 dx, (4)

where the optimization is performed over all continuous
functions f that have a weak derivative ∇f in L2(X ).
Analogously, for testing, we could use:

T̃ = ‖f̃‖2n :=
1

n

n∑
i=1

f̃(Xi)
2. (5)

The penalty term in (4) leverages the assumption that
f0 has a smooth derivative in a seemingly natural way.
Indeed, the estimator f̃ and statistic T̃ are well-known:
for d = 1, f̃ is the familiar smoothing spline, and for
d > 1, it is a type of thin-plate spline. The statistical
properties of smoothing and thin-plate splines are well-
understood [van de Geer, 2000, Liu et al., 2019]. As we
discuss later, the Laplacian smoothing problem (2) can
be viewed as a discrete and noisy approximation to (4).
At first blush, this suggests that Laplacian smoothing
should at best inherit the statistical properties of (4),
and at worst may have meaningfully larger error.

However, as we shall see the actual story is quite dif-
ferent: remarkably, Laplacian smoothing enjoys opti-
mality properties even in settings where the thin-plate
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Dimension Laplacian
smoothing (2)

Thin-plate
splines (4)

d = 1 n−2/3 n−2/3

d = 2, 3 n−2/(2+d) 1
d = 4 n−1/3(log n)1/3 1
d ≥ 5 (log n/n)4/(3d) 1

Table 1: Summary of estimation rates over first-order
Sobolev balls. Black font marks new results from this
paper, red font marks previously-known results; bold
font marks minimax optimal rates. Although we sup-
press it for simplicity, in all cases the dependence of the
error rate on the radius of the Sobolev ball is also opti-
mal. The rates for thin-plate splines with d ≥ 2 assume
the estimator f̃ interpolates the responses, f̃(Xi) = Yi
for i = 1, . . . , n; see the discussion in Section 2. Here,
we use “1” to denote inconsistency (error not converg-
ing to 0). Lastly, when X is an m-dimensional mani-
fold embedded in Rd, all Laplacian smoothing results
hold with d replaced by m, without any change to the
method itself.

spline estimator (4) is not well-posed (to be explained
shortly); Tables 1 and 2 summarize. As we establish in
Theorems 1-5, when computed over an appropriately
formed neighborhood graph, Laplacian smoothing esti-
mators and tests are minimax optimal over first-order
continuum Sobolev balls. This holds true either when
X ⊆ Rd is a full-dimensional domain and d = 1, 2, or 3,
or when X is a manifold embedded in Rd of intrinsic di-
mension m = 1, 2, or 3. Additionally, the estimator f̂ is
nearly minimax optimal (to within a (log n)1/3 factor)
when d = 4 (or m = 4 in the manifold case).

By contrast, smoothing splines are optimal only when
d = 1. When d > 1, the thin-plate spline estimator (4)
is not even well-posed, in the following sense: for any
(X1, Y1), . . . , (Xn, Yn) and any δ > 0, there exists (e.g.,
Green and Silverman [1993] give a construction using
“bump” functions) a differentiable function f such that
f(Xi) = Yi, i = 1, . . . , n, and∫

X
‖∇f(x)‖22 ≤ δ.

In other words, f achieves perfect (zero) data loss and
arbitrarily small penalty in the problem (4). This will
clearly not lead to a consistent estimator of f0 across
the design points (as it always yields Yi at each Xi).
In this light, our results when d > 1 favorably distin-
guish Laplacian smoothing from its natural variational
analog.

Future Directions. To be clear, there is still much
left to be investigated. For one, the Laplacian smooth-
ing estimator f̂ is only defined at X1, . . . , Xn. In this

Dimension Laplacian
smoothing (3)

Thin-plate
splines (5)

d = 1 n−4/5 n−4/5

d = 2, 3 n−4/(4+d) n−1/2

d ≥ 4 n−1/2 n−1/2

Table 2: Summary of testing rates over first-order
Sobolev balls; black, red, and bold fonts are used as
in Table 1. The rates for thin-plate splines with d ≥ 2
assume the test statistic T̃ is computed using an f̃ that
interpolates the responses, f̃(Xi) = Yi for i = 1, . . . , n.
Rates for d ≥ 4 assume that f0 ∈ L4(X ,M). Lastly,
when X is an m-dimensional manifold embedded in Rd,
all rates hold with d replaced by m.

work we study its in-sample mean squared error

∥∥f̂ − f0∥∥2n :=
1

n

n∑
i=1

(
f̂i − f0(Xi)

)2
. (6)

In Section 4, we discuss how to extend f̂ to a function
over all X , in such a way that the out-of-sample mean
squared error ‖f̂ − f0‖2L2(X ) should remain small, but
leave a formal analysis to future work.

In a different direction, problem (4) is only a special,
first-order case of thin-plate splines. In general, the kth
order thin-plate spline estimator is defined as

f̃ = argmin
f :X→Rd

n∑
i=1

(
Yi−f(Xi)

)2
+ρ
∑
|α|=k

∫
X

(
Dαf(x)

)2
dx,

where for each multi-index α = (α1, . . . , αd) we write
Dαf(x) = ∂kf/∂xα1

1 · · · ∂x
αd

d . This problem is in gen-
eral well-posed whenever 2k > d. In this regime, as-
suming that the kth order partial derivatives Dαf0 are
all L2(X ) bounded, the degree k thin-plate spline has
error on the order of n−2k/(2k+d) [van de Geer, 2000],
which is minimax rate-optimal for such functions. Of
course, assuming f0 has k bounded derivatives for some
2k > d is a very strong condition, but at present we do
not know if (adaptations of) Laplacian smoothing on
neighborhood graphs achieve these rates.

Notation. For an integer p ≥ 1, we use Lp(X ) for
the set of functions f such that

‖f‖pLp(X ) :=

∫
X
|f(x)|p dx <∞,

and Cp(X ) for the set of functions that are p times
continuously differentiable. For sequences an, bn, we
write an . bn to mean an ≤ Cbn for a constant C > 0
and large enough n, and an � bn to mean an . bn and
bn . an. Lastly, we use a ∧ b = min{a, b}.
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3 BACKGROUND

Before we present our main results in Section 4, we de-
fine neighborhood graph Laplacians, and review known
minimax rates over first-order Sobolev spaces.

Neighborhood Graph Laplacians. In the graph-
based approach to nonparametric regression, we first
build a neighborhood graph Gn,r = (V,W ), for V =
{1, . . . , n}, to capture the geometry of P (the design
distribution) and X (the domain) in a suitable sense.
The n×n weight matrix W = (Wij) encodes proximity
between pairs of design points; for a kernel function
K : [0,∞)→ R and radius r > 0, we have

Wij = K

(
‖Xi −Xj‖2

r

)
,

with ‖ · ‖2 denoting the `2 norm on Rd. Defining D as
the n×n diagonal matrix with entries Dii =

∑n
j=1Wij ,

the graph Laplacian can then be written as

L = D −W. (7)

We use L =
∑n
k=1 λkvkv

>
k for an eigendecomposition

of L, and we always assume, by convention, ordered
eigenvalues 0 = λ1 ≤ · · · ≤ λn, and unit-norm eigen-
vectors.

Sobolev Spaces. We step away from graph-based
methods for a moment, to briefly recall some classical
results regarding minimax rates over Sobolev classes.
We say that a function f ∈ L2(X ) belongs to the first-
order Sobolev space H1(X ) if, for each j = 1, . . . , d,
the weak partial derivative Djf exists and belongs to
L2(X ). For such functions f ∈ H1(X ), the Sobolev
seminorm |f |H1(X ) is the average size of the gradient
∇f = (D1f, . . . ,Ddf),

|f |2H1(X ) :=

∫
X

∥∥∇f(x)
∥∥2
2
dx,

with corresponding Sobolev norm

‖f‖H1(X ) := ‖f‖L2(X ) + |f |H1(X ).

The Sobolev ball H1(X ,M) for M > 0 is

H1(X ,M) :=
{
f ∈ H1(X ) : ‖f‖2H1(X ) ≤M

2
}
.

For further details regarding Sobolev spaces see, e.g.,
Evans [2010], Leoni [2017].

Minimax Rates. To carry out a minimax analysis
of regression in Sobolev spaces, one must impose reg-
ularity conditions on the design distribution P . We
shall assume the following.

(P1) P is supported on a domain X ⊆ Rd, which is an
open, connected set with Lipschitz boundary.

(P2) P admits a density p such that

0 < pmin ≤ p(x) ≤ pmax <∞, for all x ∈ X .

Additionally, p is Lipschitz on X , with Lipschitz
constant Lp.

Under conditions (P1), (P2), the minimax estimation
rate over a Sobolev ball of radius M ≥ n−1/2 is (e.g.,
Tsybakov [2008]):

inf
f̂

sup
f0∈H1(X ,M)

E
[
‖f̂−f0‖2L2(X )

]
�M2d/(2+d)n−2/(2+d).

(8)
(Throughout we assume M ≥ n−1/2, as otherwise the
trivial estimator f̂ = 0 achieves smaller error than the
parametric rate n−1, and the problem does not fit well
within the nonparametric setup.)

As minimax rates in nonparametric hypothesis test-
ing are (comparatively) less familiar than those in
nonparametric estimation, we briefly summarize the
main idea before stating the optimal error rate. In
the goodness-of-fit testing problem, we ask for a test
function—formally, a Borel measurable function φ tak-
ing values in {0, 1}—which can distinguish between the
hypotheses

H0 : f0 = f?0 , versus Ha : f0 ∈ F \ {f?0 }. (9)

Typically, the null hypothesis f0 = f?0 ∈ F reflects the
absence of interesting structure, and F \{f?0 } is a set of
smooth departures from this null. In this paper, as in
Ingster and Sapatinas [2009], we focus on the problem
of signal detection in Sobolev spaces, where f?0 = 0 and
F = H1(X ,M) is a first-order Sobolev ball. This is
without loss of generality since our test statistic and
its analysis are easily modified to handle the case when
f?0 is not 0, by simply subtracting f?0 (Xi) from each
observation Yi.

The Type I error of a test φ is E0[φ], and if E0[φ] ≤ α
for a given α ∈ (0, 1) we refer to φ as a level-α test.
The worst-case risk of φ over F is

Rn(φ,F , ε) := sup
{
Ef0 [1−φ] : f0 ∈ F , ‖f0‖L2(X ) > ε

}
,

and for a given constant b ≥ 1, the minimax criti-
cal radius ε(F) is the smallest value of ε such that
some level-α test has worst-case risk of at most 1/b.
Formally,

ε(F) := inf
{
ε > 0 : inf

φ
Rn(φ,F , ε) ≤ 1/b

}
,

where in the above the infimum is over all level-α tests
φ, and Ef0 [·] is the expectation operator under the
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regression function f0.1 See Ingster [1982, 1987], Ingster
and Suslina [2012] for a more extended treatment of the
minimax paradigm in nonparametric testing.

Testing f0 = 0 is an easier problem than estimating
f0, and hence the minimax testing rate over H1(X ,M)
is smaller than the minimax estimation rate. For 1 ≤
d < 4, the squared critical radius is (see Ingster and
Sapatinas [2009]):

ε2
(
H1(X ,M)

)
�M2d/(4+d)n−4/(4+d). (10)

When d ≥ 4 the functions in H1(X ) are very irregular;
formally speaking H1(X ) does not continuously embed
into L4(X ) when d ≥ 4, and the minimax testing rates
in this regime are unknown.

4 MINIMAX OPTIMALITY OF
LAPLACIAN SMOOTHING

We now formalize the main conclusions of this paper:
that Laplacian smoothing methods on neighborhood
graphs are minimax rate-optimal over first-order con-
tinuum Sobolev classes. We will assume (P1), (P2) on
P , and the following condition on the kernel K.

(K1) K : [0,∞) → [0,∞) is a nonincreasing function
supported on [0, 1], its restriction to [0, 1] is Lips-
chitz, and K(1) > 0. Additionally, it is normalized
so that ∫

Rd

K(‖z‖2) dz = 1.

We assume σK = 1
d

∫
Rd ‖x‖22K(‖x‖2) dx <∞.

This is a mild condition: recall the choice of kernel is
under the control of the user, and moreover (K1) covers
many common kernel choices.

Estimation Error of Laplacian Smoothing. Un-
der these conditions, the Laplacian smoothing estima-
tor f̂ achieves an error rate that matches the minimax
lower bound over H1(X ,M). This statement will hold
whenever the graph Gn,r is computed with radius r in
the following range.

(R1) For constants C0, c0 > 0, the neighborhood graph
radius r satisfies

C0

(
log n

n

) 1
d

≤ r ≤ c0 ∧M
d−4
4+2dn−

3
4+2d .

Next we state Theorem 1, our main estimation result.
Its proof, as with all proofs of results in this paper, can
be found in the supplementary document.

1Clearly, the minimax critical radius ε(F) depends on α
and b. However, we adopt the typical convention of treating
α ∈ (0, 1) and b ≥ 1 as fixed positive constants; hence they
will not affect the testing error rates, and we suppress them
notationally.

Theorem 1. Given i.i.d. draws (Xi, Yi), i = 1, . . . , n
from (1), assume f0 ∈ H1(X ,M) where X ⊆ Rd has
dimension d < 4 and M ≤ n1/d. Assume (P1), (P2) on
the design distribution P , and assume the neighborhood
graph Gn,r is computed with a kernel K satisfying (K1).
There are constants N,C,C1, c, c1 > 0 (not depending
on f0) such that for any n ≥ N , and any radius r as
in (R1), the Laplacian smoothing estimator f̂ in (2)
with ρ = M−4/(2+d)(nrd+2)−1n−2/(2+d) satisfies∥∥f̂ − f0∥∥2n ≤ C

δ
M2d/(2+d)n−2/(2+d),

with probability at least 1 − δ − C1n exp(−c1nrd) −
exp(−c(M2n)d/(2+d)).

To summarize: for d = 1, 2, or 3, with high probability,
the Laplacian smoothing estimator f̂ has in-sample
mean squared error that is within a constant factor of
the minimax error. Some remarks:

• The first-order Sobolev space H1(X ) does not con-
tinuously embed into C0(X ) when d > 1 (in gen-
eral, the kth order space Hk(X ) does not contin-
uously embed into C0(X ) except if 2k > d). For
this reason, one really cannot speak of pointwise
evaluation of a Sobolev function f0 ∈ H1(X ) when
d > 1 (as we do in Theorem 1 by defining our tar-
get of estimation to be f0(Xi), i = 1, . . . , n). We
can resolve this by appealing to what are known as
Lebesgue points, as explained in the supplement.

• The assumption M ≤ n1/d ensures that the upper
bound provided in the theorem is meaningful (i.e.,
ensures it is of at most a constant order).

• The lower bound on r imposed in condition (R1)
is compatible with practice, where by far the most
common choice of radius is the connectivity thresh-
old r � (log(n)/n)1/d, which makes Gn,r as sparse
as possible while still being connected, for maxi-
mum computational efficiency. The upper bound
may seem a bit more mysterious—we need it for
technical reasons to ensure that f̂ does not overfit,
but we note that as a practical matter one rarely
chooses r to be so large anyway.

• It is possible to extend f̂ to be defined on all of X
and then evaluate the error of such an extension
(as measured against f0) in L2(X ) norm. When f̂
and f0 are suitably smooth, tools from empirical
process theory (see e.g., Chapter 14 of Wainwright
[2019]) or approximation theory (e.g., Section 15.5
of Johnstone [2011]) guarantee that the L2(X )
error is not too much greater than its in-sample
counterpart. In fact, as we show in the supplement,
if f0 is Lipschitz smooth and we extend f̂ to be
piecewise constant over the Voronoi tessellation
induced by X1, . . . , Xn, then the out-of-sample
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error ‖f̂ − f0‖L2(X ) is within a negligible factor of
the in-sample error ‖f̂ − f0‖n. We leave analysis
of the Sobolev case to future work.

• When f0 is Lipschitz smooth, we can also replace
the factor of δ in the high probability bound by
a factor of δ2/n, which is always smaller than δ
when δ ∈ (0, 1).

When d = 4, our analysis results in an upper bound
for the error of Laplacian smoothing that is within a
(log n)1/3 factor of the minimax error rate. But when
d ≥ 5, our upper bounds do not match the minimax
rates.

Theorem 2. Under the assumptions of Theorem 1, if
instead X has dimension d = 4, r � (log n/n)1/4 and
ρ = M−2/3(nr6)−1(log n/n)1/3, then we obtain

∥∥f̂ − f0∥∥2n ≤ C

δ
M4/3

(
log n

n

)1/3

,

with the same probability guarantee as in Theorem 1.
If the dimension of X is d ≥ 5, r � (log n/n)1/d and
ρ = M−2/3(nr2+d)−1n−4/(3d), then

∥∥f̂ − f0∥∥2n ≤ C

δ
M4/3

(
log n

n

)4/(3d)

,

again with the same probability guarantee.

This mirrors the conclusions of Sadhanala et al. [2016]
who investigate estimation rates of Laplacian smooth-
ing over the d-dimensional grid graph. These authors
argue that their analysis is tight, and that it is likely
the estimator, not the analysis, that is deficient when
d ≥ 5. Formalizing such a claim turns out to be harder
in the random design setting than in the fixed design
setting, and we leave it for future work.

However, we do investigate the matter empirically. In
Figure 1, we study the (in-sample) mean squared error
of the Laplacian smoothing estimator as the dimension
d grows. Here X1, . . . , Xn are sampled uniformly over
X = [−1, 1]d, and the regression function is taken as
f0(x) ∝ Πd

i=1 cos(aπxi), where a = 2 for d = 2, and
a = 1 for d ≥ 3. This regression function f0 is quite
smooth, and for d = 2 and d = 3 Laplacian smoothing
appears to achieve or exceed the minimax rate. When
d = 4, Laplacian smoothing appears modestly subopti-
mal; this fits with our theoretical upper bound, which
includes a (log n)1/3 factor that plays a non-negligible
role for these problem sizes (n = 1000 to n = 10000).
On the other hand, when d = 5, Laplacian smoothing
seems to be decidedly suboptimal.

Testing Error of Laplacian Smoothing. For a
given 0 < α < 1, define a threshold t̂α as

t̂α =
1

n

n∑
k=1

1

(ρλk + 1)2
+

1

n

√√√√ 2

α

n∑
k=1

1

(ρλk + 1)4
,

where we recall λk is the kth smallest eigenvalue of L.
The Laplacian smoothing test is then simply

ϕ̂ = 1
{
T̂ > t̂α

}
.

We show in the supplement that f̂ is a level-α test.
In the next theorem, we upper bound the worst-case
risk Rn(ϕ̂,H1(X ,M), ε) of ϕ̂, whenever ε2 is at least
(a constant times) the squared critical radius given
in (10). For this to hold, we will require a tighter range
of scalings for the graph radius r.

(R2) For constants C0, c0 > 0, the neighborhood graph
radius r satisfies

C0

(
log n

n

) 1
d

≤ r ≤ c0 ∧M
(d−8)
8+2d n

d−20
32+8d .

We will also require that the radius of the Sobolev
class not be too large. Precisely, we will require M ≤
Mmax(d), where we define

Mmax(d) :=

{
n1/8 d = 1

n(4−d)/(4d) d ≥ 2.

We now give Theorem 3, our main testing result.

Theorem 3. Given i.i.d. draws (Xi, Yi), i = 1, . . . , n
from (1), assume f0 ∈ H1(X ,M) where X ⊆ Rd with
d < 4, and M ≤ Mmax(d). Assume (P1), (P2) on
the design distribution P , and assume Gn,r is com-
puted with a kernel K satisfying (K1). There exist
constants N,C,C1, c1 > 0 such that for any n ≥ N ,
and any radius r as in (R2), the Laplacian smooth-
ing test ϕ̂ based on the estimator f̂ in (2), with
ρ = (nrd+2)−1n−4/(4+d)M−8/(4+d), satisfies the follow-
ing: for any b ≥ 1, if

ε2 ≥ CM2d/(4+d)n−4/(4+d)
(
b2 + b

√
1

α

)
, (11)

then the worst-case risk satisfies the upper bound:
Rn(ϕ̂,H1(X ,M), ε) ≤ C/b+ C1n exp(−c1nrd).

Some remarks:

• As mentioned earlier, Sobolev balls H1(X ,M) for
d ≥ 4 include quite irregular functions f 6∈ L4(X ).
Proving tight lower bounds in this case is nontriv-
ial, and as far as we understand such an analy-
sis remains outstanding. On the other hand, if
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Figure 1: Mean squared error of Laplacian smoothing (LS) as a function of sample size n. Each plot is on the
log-log scale, and the results are averaged over 5 repetitions, with Laplacian smoothing tuned for optimal average
mean squared error. The black line shows the minimax rate (in slope only; the intercept is chosen to match the
observed error).

we explicitly assume that f0 ∈ L4(X ,M), then
Guerre and Lavergne [2002] show that the test-
ing problem is characterized by a dimension-free
lower bound ε2(L4(X ,M)) & n−1/2. Moreover, by
setting ρ = 0 so that the resulting estimator f̂
interpolates the responses Y1, . . . , Yn, the subse-
quent test ϕ̂ will achieve (up to constants) this
lower bound. That is, for any f0 ∈ L4(X ,M) such
that ‖f0‖2L2(X ) ≥ C(b2 +

√
1/α)n−1/2, we have

that E0[ϕ̂] ≤ α and

Ef0
[
1− ϕ̂

]
≤ C(1 +M4)

b2
. (12)

• To compute the data-dependent threshold t̂α, one
must know all of the eigenvalues λ1, . . . , λn. Com-
puting all these eigenvalues is far more expensive
(cubic-time) than computing T̂ in the first place
(nearly-linear-time). But in practice we would not
recommend using t̂α anyway, and would instead we
make the standard recommendation to calibrate
via a permutation test [Hoeffding, 1952]. Recent
work Kim et al. [2020], has shown that in a va-
riety of closely related settings, calibration of a
test statistic via the permutation test often retains
minimax-optimal power, and we expect similar
results to hold for the Laplacian smoothing-based
test statistic.

More Discussion of Variational Analog. With
some results in hand, let us pause to offer some ex-
planation of why Laplacian smoothing can be optimal
in settings where thin-plate splines are not even con-
sistent. First, we elaborate on why this difference in
performance is so surprising. As mentioned previously,
the penalties in (2), (4) can be closely tied together:

Bousquet et al. [2004] show that for f ∈ C2(X ),

lim
1

n2rd+2
f>Lf =

∫
X
f(x) ·∆P f(x)p(x) dx

=

∫
X
‖∇f(x)‖22p2(x) dx.

(13)

In the above, the limit is as n→∞ and r → 0, ∆P is
the (weighted) Laplace-Beltrami operator

∆P f := −1

p
div
(
p2∇f),

and the second equality follows using integration by
parts.2 To be clear, this argument does not formally
imply that the Laplacian smoothing estimator f̂ and
the thin-plate spline estimator f̃ are close (for one, note
that (13) holds for f ∈ C2(X ), whereas the optimiza-
tion in (4) considers a much broader set of continuous
functions with weak derivatives in L2(X )). But it does
seem to suggest that the two estimators should behave
somewhat similarly.

Of course, we know this is not the case: f̂ and f̃ look
very different when d > 1. What is driving this differ-
ence? The key point is that the discretization imposed
by the graph Gn,r—which might seem problematic at
first glance—turns out to be a blessing. The problem
with (4) is that the class H1(X ), which fundamentally
underlies the criterion, is far “too big” for d > 1. This
is meant in various related senses. By the Sobolev em-
bedding theorem, for d > 1, the class H1(X ) does not
continuously embed into any Hölder space; and in fact
it does not even continuously embed into C0(X ). Thus
we cannot really restrict the optimization to continuous
and weakly differentiable functions, as we could when
d = 1 (the smoothing spline case), without throwing
out a substantial subset of functions in H1(X ). Even

2Assuming f satisfies e.g., Dirichlet boundary conditions.
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among continuous and differentiable functions f , as we
explained previously, we can use “bump” functions (as
in Green and Silverman [1993]) to construct f that in-
terpolates the pairs (Xi, Yi), i = 1, . . . , n and achieves
arbitrarily small penalty (and hence criterion) in (4).
In this sense, any estimator resulting from solving (4)
will clearly be inconsistent.

On the other hand, problem (2) is finite-dimensional.
As a result f̂ has far less capacity to overfit than does
f̃ , for any given sample size n. Discretization is not the
only way to make the problem (4) more tractable: for
instance, one can replace the penalty

∫
X ‖∇f(x)‖22 dx

with a stricter choice like ess supx∈X ‖∇f(x)‖2, or con-
duct the optimization over some finite-dimensional lin-
ear subspace of H1(X ) (i.e., use a sieve). While these
solutions do improve the statistical properties of f̃ for
d > 1 (see e.g., Birgé and Massart [1993, 1998], van de
Geer [2000]), Laplacian smoothing is generally speaking
much simpler and more computationally friendly. In
addition, the other approaches are usually specifically
tailored to the domain X , in stark contrast to f̂ .

Overview of Analysis. The comparison with thin-
plate splines highlights some surprising differences be-
tween f̂ and f̃ . Such differences also preclude us from
analyzing f̂ by, say, using (13) to establish a coupling
between f̂ and f̃—we know this cannot work, because
we would like to prove meaningful error bounds on f̂
in regimes where no such bounds exist for f̃ .

Instead we take a different approach, and directly an-
alyze the error of f̂ and T̂ using a bias-variance de-
composition (conditional on X1, . . . , Xn). A standard
calculation shows that∥∥f̂ − f0∥∥2n ≤ 2ρ

n

(
f>0 Lf0

)
︸ ︷︷ ︸

bias

+
10

n

n∑
k=1

1

(ρλk + 1)2︸ ︷︷ ︸
variance

,

and likewise that ϕ̂ has small risk whenever

∥∥f0∥∥2n ≥ 2ρ

n

(
f>0 Lf0

)
︸ ︷︷ ︸

bias

+
2
√

2/α+ 2b

n

√√√√ n∑
k=1

1

(ρλk + 1)4︸ ︷︷ ︸
variance

.

The bias and variance terms are each functions of the
random graph Gn,r, and hence are themselves random.
To upper bound them, we build on some recent works
[Burago et al., 2014, Garćıa Trillos et al., 2019, Calder
and Garćıa Trillos, 2019] regarding the consistency of
neighborhood graphs to establish the following lemmas.
These lemmas assume (P1), (P2) on the design distri-
bution P , and (K1) on the kernel used to compute the
neighborhood graph Gn,r.

Lemma 1. There are constants N,C2 > 0 such that
for n ≥ N , r ≤ c0, and f ∈ H1(X ), with probability at

least 1− δ, it holds that

f>Lf ≤ C2

δ
n2rd+2|f |2H1(X ). (14)

Lemma 2. There are constants N,C1, C3, c1, c3 > 0
such that for n ≥ N and C0(log n/n)1/d ≤ r ≤ c0, with
probability at least 1− C1n exp(−c1nrd), it holds that

c3An,r(k) ≤ λk ≤ C3An,r(k), for 2 ≤ k ≤ n, (15)

where An,r(k) = min{nrd+2k2/d, nrd}.

Lemma 1 gives a direct upper bound on the bias term.
Lemma 2 leads to a sufficiently tight upper bound on
the variance term whenever the radius r is sufficiently
small; precisely, when r is upper bounded as in (R1) for
estimation, or (R2) for testing. The parameter ρ is then
chosen to minimize the sum of these upper bounds on
bias and variance, as usual, and some straightforward
calculations give Theorems 1-3.

It may be useful to give one more perspective on our
approach. A common strategy in analyzing penalized
least squares estimators is to assume two properties:
first, that the regression function f0 lies in (or near) a
ball defined by the penalty operator; second, that this
ball is reasonably small, e.g., as measured by metric
entropy, or Rademacher complexity, etc. In contrast, in
Laplacian smoothing, the penalty induces a ball

H1(Gn,r,M) := {f : f>Lf ≤M2}

that is data-dependent and random, and so we do not
have access to either of the aforementioned properties
a priori, and instead, must prove they hold with high
probability. In this sense, our analysis is different than
the typical one in nonparametric regression.

5 MANIFOLD ADAPTIVITY

The minimax rates n−2/(2+d) and n−4/(4+d), in estima-
tion and testing, suffer from the curse of dimensionality.
However, in practice it can be often reasonable to as-
sume a manifold hypothesis : that the data X1, . . . , Xn

lie on a manifold X of Rd that has intrinsic dimension
m < d. Under such an assumption, it is known [Bickel
and Li, 2007, Arias-Castro et al., 2018] that the optimal
rates over H1(X ) are now n−2/(2+m) (for estimation)
and n−4/(4+m) (for testing), which are much faster than
the full-dimensional error rates when m� d.

On the other hand, a theory has been developed [Belkin,
2003, Belkin and Niyogi, 2008, Niyogi et al., 2008,
Niyogi, 2013, Balakrishnan et al., 2012, 2013] establish-
ing that the neighborhood graph Gn,r can “learn” the
manifold X in various senses, so long as X is locally lin-
ear. We contribute to this line of work by showing that
under the manifold hypothesis, Laplacian smoothing
achieves the tighter minimax rates over H1(X ).
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Error Rates Assuming the Manifold Hypothe-
sis. The conditions and results presented here will be
largely similar to the previous ones, except with the am-
bient dimension d replaced by the intrinsic dimension
m. For the remainder, we assume the following.

(P3) P is supported on a compact, connected, smooth
manifold X embedded in Rd, of dimension m ≤ d.
The manifold is without boundary and has positive
reach [Federer, 1959].

(P4) P admits a density p with respect to the volume
form of X such that

0 < pmin ≤ p(x) ≤ pmax <∞, for all x ∈ X .

Additionally, p is Lipschitz on X , with Lipschitz
constant Lp.

Under the assumptions (P3), (P4), and (K1), and for a
suitable range of r, the error bounds on the estimator
f̂ and test ϕ̂ will depend on m instead of d.

(R4) For constants C0, c0 > 0, the neighborhood graph
radius r satisfies

C0

(
log n

n

) 1
m

≤ r ≤ c0 ∧M
(m−4)
(4+2m)n

−3
(4+2m) .

Theorem 4. As in Theorem 1, but where X ⊆ Rd
is a manifold with intrinsic dimension m < 4, the
design distribution P obeys (P3), (P4), and M ≤ n1/m.
There are constants N,C, c > 0 (not depending on f0)
such that for any n ≥ N , and any r as in (R4), the
Laplacian smoothing estimator f̂ in (2), with L = Ln,r
and ρ = M−4/(2+m)(nrm+2)−1n−2/(2+m), satisfies∥∥f̂ − f0∥∥2n ≤ C

δ
M2m/(2+m)n−2/(2+m),

with probability at least 1 − δ − Cn exp(−cnrm) −
exp(−c(M2n)m/(2+m)).

In a similar vein, we obtain results for manifold adap-
tive testing under the following condition on the graph
radius parameter.

(R5) For constants C0, c0 > 0, the neighborhood graph
radius r satisfies

C0

(
log n

n

) 1
m

≤ r ≤ c0 ∧M
(m−8)
8+2m n

m−20
32+8m .

Theorem 5. As in Theorem 3, but where X ⊆ Rd
is a manifold with intrinsic dimension m < 4, M ≤
Mmax(m), and the design distribution P obeys (P3),
(P4). There are constants N,C, c > 0 such that for
any n ≥ N , and any r as in (R5), the Laplacian
smoothing test ϕ̂ based on the estimator f̂ in (2), with

ρ = (nrm+2)−1n−4/(4+m)M−8/(4+m), satisfies the fol-
lowing: for any b ≥ 1, if

ε2 ≥ CM2m/(4+m)n−4/(4+m)

(
b2 + b

√
1

α

)
, (16)

then the worst-case risk satisfies the upper bound:
Rn(ϕ̂,H1(X ,M), ε) ≤ C/b+ Cn exp(−cnrm).

The proofs of Theorems 4 and 5 proceed in a similar
manner to that of Theorems 1 and 3. The key difference
is that in the manifold setting, the equations (14) and
(15) used to upper bound bias and variance will hold
with d replaced by m.

We emphasize that little about X need be known for
Theorems 4 and 5 to hold. Indeed, all that is needed
is the intrinsic dimension m, to properly tune r and
ρ (from a theoretical point of view), and otherwise f̂
and ϕ̂ are computed without regard to X . In contrast,
the penalty in (4) would have to be specially tailored
to work in this setting, revealing another advantage of
the discrete approach over the variational one.

6 DISCUSSION

We have shown that Laplacian smoothing, computed
over a neighborhood graph, can be optimal for both esti-
mation and goodness-of-fit testing over Sobolev spaces.
There are many extensions worth pursuing, and several
have already been mentioned. We conclude by men-
tioning a couple more. In practice, it is more common
to use a k-nearest-neighbor (kNN) graph than a neigh-
borhood graph, due to the guaranteed connectivity and
sparsity of the former; we suspect that by building on
the work of Calder and Garćıa Trillos [2019], one can
show that our main results all hold under the kNN
graph as well. In another direction, one can also gen-
eralize Laplacian smoothing by replacing the penalty
f>Lf with f>Lsf , for an integer s > 1. The hope is
that this would then achieve minimax optimal rates
over the higher-order Sobolev class Hs(X ).
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