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Abstract

We derive the degrees of freedom of the lasso fit, placing no assumptions on the predictor
matrix X. Like the well-known result of Zou et al. (2007), which gives the degrees of freedom
of the lasso fit when X has full column rank, we express our result in terms of the active set of
a lasso solution. We extend this result to cover the degrees of freedom of the generalized lasso
fit for an arbitrary predictor matrix X (and an arbitrary penalty matrix D). Though our focus
is degrees of freedom, we establish some intermediate results on the lasso and generalized lasso
that may be interesting on their own.
Keywords: lasso, generalized lasso, degrees of freedom, high-dimensional

1 Introduction

We study degrees of freedom, or the “effective number of parameters”, in `1-penalized linear regres-
sion problems. In particular, for a response vector y ∈ Rn, predictor matrix X ∈ Rn×p, and tuning
parameter λ ≥ 0, we consider the lasso problem (Tibshirani 1996, Chen et al. 1998),

β̂ ∈ argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1. (1)

The above notation emphasizes the fact that the solution β̂ may not be unique (such non-uniqueness
can occur if rank(X) < p). Throughout the paper, when a function f : D → Rn may have a non-
unique minimizer over its domain D, we write argminx∈D f(x) to denote the set of minimizing x
values, that is, argminx∈D f(x) = {x̂ ∈ D : f(x̂) = minx∈D f(x)}.

A fundamental result on the degrees of freedom of the lasso fit was shown by Zou et al. (2007).
The authors show that if y follows a normal distribution with spherical covariance, y ∼ N(µ, σ2I),
and X,λ are considered fixed with rank(X) = p, then

df(Xβ̂) = E|A|, (2)

where A = A(y) denotes the active set of the unique lasso solution at y, and |A| is its cardinality.
This is quite a well-known result, and is sometimes used to informally justify an application of the
lasso procedure, as it says that number of parameters used by the lasso fit is simply equal to the
(average) number of selected variables. However, we note that the assumption rank(X) = p implies
that p ≤ n; in other words, the degrees of freedom result (2) does not cover the important “high-
dimensional” case p > n. In this case, the lasso solution is not necessarily unique, which raises the
questions:

• Can we still express degrees of freedom in terms of the active set of a lasso solution?

• If so, which active set (solution) would we refer to?

In Section 3, we provide answers to these questions, by proving a stronger result when X is a general
predictor matrix. We show that the subspace spanned by the columns of X in A is almost surely
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unique, where “almost surely” means for almost every y ∈ Rn. Furthermore, the degrees of freedom
of the lasso fit is simply the expected dimension of this column space.

We also consider the generalized lasso problem,

β̂ ∈ argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖Dβ‖1, (3)

where D ∈ Rm×p is a penalty matrix, and again the notation emphasizes the fact that β̂ need not
be unique (when rank(X) < p). This of course reduces to the usual lasso problem (1) when D = I,
and Tibshirani & Taylor (2011) demonstrate that the formulation (3) encapsulates several other
important problems—including the fused lasso on any graph and trend filtering of any order—by
varying the penalty matrix D. The same paper shows that if y is normally distributed as above,
and X,D, λ are fixed with rank(X) = p, then the generalized lasso fit has degrees of freedom

df(Xβ̂) = E[nullity(D−B)]. (4)

Here B = B(y) denotes the boundary set of an optimal subgradient to the generalized lasso problem
at y (equivalently, the boundary set of a dual solution at y), D−B denotes the matrix D after having
removed the rows that are indexed by B, and nullity(D−B) = dim(null(D−B)), the dimension of the
null space of D−B.

It turns out that examining (4) for specific choices of D produces a number of interpretable
corollaries, as discussed in Tibshirani & Taylor (2011). For example, this result implies that the
degrees of freedom of the fused lasso fit is equal to the expected number of fused groups, and that
the degrees of freedom of the trend filtering fit is equal to the expected number of knots + (k − 1),
where k is the order of the polynomial. The result (4) assumes that rank(X) = p and does not
cover the case p > n; in Section 4, we derive the degrees of freedom of the generalized lasso fit
for a general X (and still a general D). As in the lasso case, we prove that there exists a linear
subspace X(null(D−B)) that is almost surely unique, meaning that it will be the same under different
boundary sets B corresponding to different solutions of (3). The generalized lasso degrees of freedom
is then the expected dimension of this subspace.

Our assumptions throughout the paper are minimal. As was already mentioned, we place no
assumptions whatsoever on the predictor matrix X ∈ Rn×p or on the penalty matrix D ∈ Rm×p,
considering them fixed and nonrandom. We also consider λ ≥ 0 fixed. For Theorems 1, 2, and 3 we
assume that y is normally distributed,

y ∼ N(µ, σ2I), (5)

for some (unknown) mean vector µ ∈ Rn and marginal variance σ2 ≥ 0. This assumption is only
needed in order to apply Stein’s formula for degrees of freedom, and none of the other lasso and
generalized lasso results in the paper, namely Lemmas 3 through 10, make any assumption about
the distribution of y.

This paper is organized as follows. The rest of the introduction contains an overview of related
work, and an explanation of our notation. Section 2 covers some relevant background material on
degrees of freedom and convex polyhedra. Though the connection may not be immediately obvious,
the geometry of polyhedra plays a large role in understanding problems (1) and (3), and Section
2.2 gives a high-level view of this geometry before the technical arguments that follow in Sections
3 and 4. In Section 3, we derive two representations for the degrees of freedom of the lasso fit,
given in Theorems 1 and 2. In Section 4, we derive the analogous results for the generalized lasso
problem, and these are given in Theorem 3. As the lasso problem is a special case of the generalized
lasso problem (corresponding to D = I), Theorems 1 and 2 can actually be viewed as corollaries
of Theorem 3. The reader may then ask: why is there a separate section dedicated to the lasso
problem? We give two reasons: first, the lasso arguments are simpler and easier to follow than their
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generalized lasso counterparts; second, we cover some intermediate results for the lasso problem that
are interesting in their own right and that do not carry over to the generalized lasso perspective.
Section 5 contains some final discussion.

1.1 Related work

All of the degrees of freedom results discussed here assume that the response vector has distribution
y ∼ N(µ, σ2I), and that the predictor matrix X is fixed. To the best of our knowledge, Efron et al.
(2004) were the first to prove a result on the degrees of freedom of the lasso fit, using the lasso
solution path with λ moving from∞ to 0. The authors showed that when the active set reaches size
k along this path, the lasso fit has degrees of freedom exactly k. This result assumes that X has full
column rank and further satisfies a restrictive condition called the “positive cone condition”, which
ensures that as λ decreases, variables can only enter and not leave the active set. Subsequent results
on the lasso degrees of freedom (including those presented in this paper) differ from this original
result in that they derive degrees of freedom for a fixed value of the tuning parameter λ, and not a
fixed number of steps k taken along the solution path.

As mentioned previously, Zou et al. (2007) established the basic lasso degrees of freedom result
(for fixed λ) stated in (2). This is analogous to the path result of Efron et al. (2004); here degrees
of freedom is equal to the expected size of the active set (rather than simply the size) because for
a fixed λ the active set is a random quantity, and can hence achieve a random size. The proof of
(2) appearing in Zou et al. (2007) relies heavily on properties of the lasso solution path. As also
mentioned previously, Tibshirani & Taylor (2011) derived an extension of (2) to the generalized
lasso problem, which is stated in (4) for an arbitrary penalty matrix D. Their arguments are not
based on properties of the solution path, but instead come from a geometric perspective much like
the one developed in this paper.

Both of the results (2) and (4) assume that rank(X) = p; the current work extends these to the
case of an arbitrary matrix X, in Theorems 1, 2 (the lasso) and 3 (the generalized lasso). In terms
of our intermediate results, a version of Lemmas 5, 6 corresponding to rank(X) = p appears in Zou
et al. (2007), and a version of Lemma 9 corresponding to rank(X) = p appears in Tibshirani & Taylor
(2011) (furthermore, Tibshirani & Taylor (2011) only consider the boundary set representation and
not the active set representation). Lemmas 1, 2 and the conclusions thereafter, on the degrees of
freedom of the projection map onto a convex polyhedron, are essentially given in Meyer & Woodroofe
(2000), though these authors state and prove the results in a different manner.

In preparing a draft of this manuscript, it was brought to our attention that other authors have
independently and concurrently worked to extend results (2) and (4) to the general X case. Namely,
Dossal et al. (2011) prove a result on the lasso degrees of freedom, and Vaiter et al. (2011) prove a
result on the generalized lasso degrees of freedom, both for an arbitrary X. These authors’ results
express degrees of freedom in terms of the active sets of special (lasso or generalized lasso) solutions.
Theorems 2 and 3 express degrees of freedom in terms of the active sets of any solutions, and hence
the appropriate application of these theorems provides an alternative verification of these formulae.
We discuss this in detail in the form of remarks following the theorems.

1.2 Notation

In this paper, we use col(A), row(A), and null(A) to denote the column space, row space, and
null space of a matrix A, respectively; we use rank(A) and nullity(A) to denote the dimensions
of col(A) (equivalently, row(A)) and null(A), respectively. We write A+ for the the Moore-Penrose
pseudoinverse of A; for a rectangular matrix A, recall that A+ = (ATA)+AT . We write PL to denote
the projection matrix onto a linear subspace L, and more generally, PC(x) to denote the projection
of a point x onto a closed convex set C. For readability, we sometimes write 〈a, b〉 (instead of aT b)
to denote the inner product between vectors a and b.

3



For a set of indices R = {i1, . . . ik} ⊆ {1, . . .m} satisfying i1 < . . . < ik, and a vector x ∈ Rm, we
use xR to denote the subvector xR = (xi1 , . . . xik)T ∈ Rk. We denote the complementary subvector
by x−R = x{1 ...m}\R ∈ Rm−k. The notation is similar for matrices. Given another subset of indices
S = {j1, . . . j`} ⊆ {1, . . . p} with j1 < . . . < j`, and a matrix A ∈ Rm×p, we use A(R,S) to denote the
submatrix

A(R,S) =

 Ai1,j1 . . . Ai1,j`
...

Aik,j1 . . . Aik,j`

 ∈ Rk×`.
In words, rows are indexed by R, and columns are indexed by S. When combining this notation with
the transpose operation, we assume that the indexing happens first, so that AT(R,S) = (A(R,S))

T . As
above, negative signs are used to denote the complementary set of rows or columns; for example,
A(−R,S) = A({1 ...m}\R,S). To extract only rows or only columns, we abbreviate the other dimension
by a dot, so that A(R,·) = A(R,{1,...p}) and A(·,S) = A({1,...m},S); to extract a single row or column,
we use A(i,·) = A({i},·) or A(·,j) = A(·,{j}). Finally, and most importantly, we introduce the following
shorthand notation:

• For the predictor matrix X ∈ Rn×p, we let XS = X(·,S).

• For the penalty matrix D ∈ Rm×p, we let DR = D(R,·).

In other words, the default for X is to index its columns, and the default for D is to index its rows.
This convention greatly simplifies the notation in expressions that involve multiple instances of XS

or DR; however, its use could also cause a great deal of confusion, if not properly interpreted by the
reader!

2 Preliminary material

The following two sections describe some background material needed to follow the results in Sections
3 and 4.

2.1 Degrees of freedom

If the data vector y ∈ Rn is distributed according to the homoskedastic model y ∼ (µ, σ2I), meaning
that the components of y are uncorrelated, with yi having mean µi and variance σ2 for i = 1, . . . n,
then the degrees of freedom of a function g : Rn → Rn with g(y) = (g1(y), . . . gn(y))T , is defined as

df(g) =
1

σ2

n∑
i=1

Cov
(
gi(y), yi

)
. (6)

This definition is often attributed to Efron (1986) or Hastie & Tibshirani (1990), and is interpreted
as the “effective number of parameters” used by the fitting procedure g. Note that for the linear
regression fit of y ∈ Rn onto a fixed and full column rank predictor matrix X ∈ Rn×p, we have
g(y) = ŷ = XX+y, and df(ŷ) = tr(XX+) = p, which is the number of fitted coefficients (one for each
predictor variable). Furthermore, we can decompose the risk of ŷ, denoted by Risk(ŷ) = E‖ŷ− µ‖22,
as

Risk(ŷ) = E‖ŷ − y‖22 − nσ2 + 2pσ2,

a well-known identity that leads to the derivation of the Cp statistic (Mallows 1973). For a general
fitting procedure g, the motivation for the definition (6) comes from the analogous decomposition
of the quantity Risk(g) = E‖g(y)− µ‖22,

Risk(g) = E‖g(y)− y‖22 − nσ2 + 2

n∑
i=1

Cov
(
gi(y), yi

)
. (7)
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Therefore a large difference between risk and expected training error implies a large degrees of
freedom.

Why is the concept of degrees of freedom important? One simple answer is that it provides a way
to put different fitting procedures on equal footing. For example, it would not seem fair to compare
a procedure that uses an effective number of parameters equal to 100 with another that uses only
10. However, assuming that these procedures can be tuned to varying levels of adaptivity (as is the
case with the lasso and generalized lasso, where the adaptivity is controlled by λ), one could first
tune the procedures to have the same degrees of freedom, and then compare their performances.
Doing this over several common values for degrees of freedom may reveal, in an informal sense, that
one procedure is particularly efficient when it comes to its parameter usage versus another.

A more detailed answer to the above question is based the risk decomposition (7). The decom-

position suggests that an estimate d̂f(g) of degrees of freedom can be used to form an estimate of
the risk,

R̂isk(g) = ‖g(y)− y‖22 − nσ2 + 2σ2d̂f(g). (8)

Furthermore, it is straightforward to check that an unbiased estimate of degrees of freedom leads to

an unbiased estimate of risk, that is, df(g) = E[d̂f(g)] implies Risk(g) = E[R̂isk(g)]. Hence, the risk
estimate (8) can be used to choose between fitting procedures, assuming that unbiased estimates of
degrees of freedom are available. (It is worth mentioning that bootstrap or Monte Carlo methods
can be helpful in estimating degrees of freedom (6) when an analytic form is difficult to obtain.)
The natural extension of this idea is to use the risk estimate (8) for tuning parameter selection. If
we suppose that g depends on a tuning parameter λ ∈ Λ, denoted g = gλ(y), then in principle one
could minimize the estimated risk over λ to select an appropriate value for the tuning parameter,

λ̂ = argmin
λ∈Λ

‖gλ(y)− y‖22 − nσ2 + 2σ2d̂f(gλ). (9)

This is a computationally efficient alternative to selecting the tuning parameter by cross-validation,
and it is commonly used (along with similar methods that replace the factor of 2 above with a
function of n or p) in penalized regression problems. Even though such an estimate (9) is commonly
used in the high-dimensional setting (p > n), its asymptotic properties are largely unknown in this
case, such as risk consistency, or relatively efficiency compared to the cross-validation estimate.

Stein (1981) proposed the risk estimate (8) using a particular unbiased estimate of degrees of
freedom, now commonly referred to as Stein’s unbiased risk estimate (SURE). Stein’s framework
requires that we strengthen our distributional assumption on y and assume normality, as stated
in (5). We also assume that the function g is continuous and almost differentiable. (The precise
definition of almost differentiability is not important here, but the interested reader may take it
to mean that each coordinate function gi is absolutely continuous on almost every line segment
parallel to one of the coordinate axes.) Given these assumptions, Stein’s main result is an alternate
expression for degrees of freedom,

df(g) = E[(∇ · g)(y)], (10)

where the function ∇ · g =
∑n
i=1 ∂gi/∂yi is called the divergence of g. Immediately following is the

unbiased estimate of degrees of freedom

d̂f(g) = (∇ · g)(y). (11)

We pause for a moment to reflect on the importance of this result. From its definition (6), we can
see that the two most obvious candidates for unbiased estimates of degrees of freedom are

1

σ2

n∑
i=1

gi(y)(yi − µi) and
1

σ2

n∑
i=1

(
gi(y)− E[gi(y)]

)
yi.
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To use the first estimate above, we need to know µ (remember, this is ultimately what we are trying
to estimate!). Using the second requires knowing E[g(y)], which is equally impractical, because
this invariably depends on µ. On the other hand, Stein’s unbiased estimate (11) does not have an
explicit dependence on µ; moreover, it can be analytically computed for many fitting procedures g.
For example, Theorem 2 in Section 3 shows that, except for y in a set of measure zero, the divergence
of the lasso fit is equal to rank(XA) with A = A(y) being the active set of a lasso solution at y.
Hence, Stein’s formula allows for the unbiased estimation of degrees of freedom (and subsequently,
risk) for a broad class of fitting procedures g—something that may have not seemed possible when
working from the definition directly.

2.2 Projections onto polyhedra

A set C ⊆ Rn is called a convex polyhedron, or simply a polyhedron, if C is the intersection of finitely
many half-spaces,

C =

k⋂
i=1

{x ∈ Rn : aTi x ≤ bi}, (12)

where a1, . . . ak ∈ Rn and b1, . . . bk ∈ R. (Note that we do not require boundedness here; a bounded
polyhedron is sometimes called a polytope.) See Figure 1 for an example. There is a rich theory
on polyhedra; the definitive reference is Grunbaum (2003), and another good reference is Schneider
(1993). As this is a paper on statistics and not geometry, we do not attempt to give an extensive
treatment of the properties of polyhedra. We do, however, give two properties (in the form of two
lemmas) that are especially important with respect to our statistical problem; our discussion will
also make it clear why polyhedra are relevant in the first place.

C

x

PC(x)

Figure 1: An example of a polyhedron in R2.

From its definition (12), it follows that a polyhedron is a closed convex set. The first property that
we discuss does not actually rely on the special structure of polyhedra, but only on convexity. For any
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closed convex set C ⊆ Rn and any point x ∈ Rn, there is a unique point u ∈ C minimizing ‖x−u‖2.
To see this, note that if v ∈ C is another minimizer, v 6= u, then by convexity w = (u + v)/2 ∈ C,
and ‖x−w‖2 < ‖x−u‖2/2 +‖x− v‖2/2 = ‖x−u‖2, a contradiction. Therefore, the projection map
onto C is indeed well-defined, and we write this as PC : Rn → C,

PC(x) = argmin
u∈C

‖x− u‖2.

For the usual linear regression problem, where y ∈ Rn is regressed onto X ∈ Rn×p, the fit Xβ̂ can
be written in terms of the projection map onto the polyhedron C = col(X), as in Xβ̂(y) = XX+y =
Pcol(X)(y). Furthermore, for both the lasso and generalized lasso problems, (1) and (3), it turns out
that we can express the fit as the residual from projecting onto a suitable polyhedron C ⊆ Rn, that
is,

Xβ̂(y) = (I − PC)(y) = y − PC(y).

This is proved in Lemma 3 for the lasso and in Lemma 8 for the generalized lasso (the polyhedron
C depends on X,λ for the lasso case, and on X,D, λ for the generalized lasso case). Our first
lemma establishes that both the projection map onto a closed convex set and the residual map are
nonexpansive, hence continuous and almost differentiable. These are the conditions needed to apply
Stein’s formula.

Lemma 1. For any closed convex set C ⊆ Rn, both the projection map PC : Rn → C and the
residual projection map I − PC : Rn → Rn are nonexpansive. That is, they satisfy

‖PC(x)− PC(y)‖2 ≤ ‖x− y‖2 for any x, y ∈ Rn, and

‖(I − PC)(x)− (I − PC)(y))‖2 ≤ ‖x− y‖2 for any x, y ∈ Rn.

Therefore, PC and I − PC are both continuous and almost differentiable.

The proof can be found in Appendix A.1. Lemma 1 will be quite useful later in the paper, as it
will allow us to use Stein’s formula to compute the degrees of freedom of the lasso and generalized
lasso fits, after showing that these fits are indeed the residuals from projecting onto closed convex
sets.

The second property that we discuss uses the structure of polyhedra. Unlike Lemma 1, this
property will not be used directly in the following sections of the paper; instead, we present it here
to give some intuition with respect to the degrees of freedom calculations to come. The property can
be best explained by looking back at Figure 1. Loosely speaking, the picture suggests that we can
move the point x around a bit and it will still project to the same face of C. Another way of saying
this is that there is a neighborhood of x on which PC is simply the projection onto an affine subspace.
This would not be true if x is in some exceptional set, which is made up of rays that emanate from
the corners of C, like the two drawn in the bottom right corner of figure. However, the union of
such rays has measure zero, so the map PC is locally an affine projection, almost everywhere. This
idea can be stated formally as follows.

Lemma 2. Let C ⊆ Rn be a polyhedron. For almost every x ∈ Rn, there is an associated neighbor-
hood U of x, linear subspace L ⊆ Rn, and point a ∈ Rn, such that the projection map restricted to
U , PC : U → C, is

PC(y) = PL(y − a) + a for y ∈ U,

which is simply the projection onto the affine subspace L+ a.

The proof is given in Appendix A.2. These last two properties can be used to derive a general
expression for the degrees of freedom of the fitting procedure g(y) = (I − PC)(y), when C ⊆ Rn
is a polyhedron. (A similar formula holds for g(y) = PC(y).) Lemma 1 tells us that I − PC is

7



continuous and almost differentiable, so we can use Stein’s formula (10) to compute its degrees of
freedom. Lemma 2 tells us that for almost every y ∈ Rn, there is a neighborhood U of y, linear
subspace L ⊆ Rn, and point a ∈ Rn, such that

(I − PC)(y′) = y′ − PL(y′ − a)− a = (I − PL)(y′ − a) for y′ ∈ U.

Therefore,
(∇ · (I − PC))(y) = tr(I − PL) = n− dim(L),

and an expectation over y gives

df(I − PC) = n− E[dim(L)].

It should be made clear that the random quantity in the above expectation is the linear subspace
L = L(y), which depends on y.

In a sense, the remainder of this paper is focused on describing dim(L)—the dimension of the
face of C onto which the point y projects—in a meaningful way for the lasso and generalized lasso
problems. Section 3 considers the lasso problem, and we show that L can be written in terms of
the equicorrelation set of the fit at y. We also show that L can be described in terms of the active
set of a solution at y. In Section 4 we show the analogous results for the generalized lasso problem,
namely, that L can be written in terms of either the boundary set of an optimal subgradient at y
(the analogy of the equicorrelation set for the lasso) or the active set of a solution at y.

3 The lasso

In this section we derive the degrees of freedom of the lasso fit, for a general predictor matrix X. All
of our arguments stem from the Karush-Kuhn-Tucker (KKT) optimality conditions, and we present
these first. We note that many of the results in this section can be alternatively derived using the
lasso dual problem. Appendix A.5 explains this connection more precisely. For the current work, we
avoid the dual perspective simply to keep the presentation more self-contained. Finally, we remind
the reader that XS is used to extract columns of X corresponding to an index set S.

3.1 The KKT conditions and the underlying polyhedron

The KKT conditions for the lasso problem (1) can be expressed as

XT (y −Xβ̂) = λγ, (13)

γi ∈

{
{sign(β̂i)} if β̂i 6= 0

[−1, 1] if β̂i = 0.
(14)

Here γ ∈ Rp is a subgradient of the function f(x) = ‖x‖1 evaluated at x = β̂. Hence β̂ is a minimizer

in (1) if and only if β̂ satisfies (13) and (14) for some γ. Directly from the KKT conditions, we can

show that Xβ̂ is the residual from projecting y onto a polyhedron.

Lemma 3. For any X and λ ≥ 0, the lasso fit Xβ̂ can be written as Xβ̂(y) = (I − PC)(y), where
C ⊆ Rn is the polyhedron

C = {u ∈ Rn : ‖XTu‖∞ ≤ λ}.

Proof. Given a point y ∈ Rn, its projection θ = PC(y) onto a closed convex set C ⊆ Rn can be
characterized as the unique point satisfying

〈y − θ, θ − u〉 ≥ 0 for all u ∈ C. (15)
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Hence defining θ = y − Xβ̂(y), and C as in the lemma, we want to show that (15) holds for all
u ∈ C. Well,

〈y − θ, θ − u〉 = 〈Xβ̂, y −Xβ̂ − u〉

= 〈Xβ̂, y −Xβ̂〉 − 〈XTu, β̂〉. (16)

Consider the first term above. Taking an inner product with β̂ on both sides of (13) gives 〈Xβ̂, y−
Xβ̂〉 = λ‖β̂‖1. Furthermore, the `1 norm can be characterized in terms of its dual norm, the `∞
norm, as in

λ‖β̂‖1 = max
‖w‖∞≤λ

〈w, β̂〉.

Therefore, continuing from (16), we have

〈y − θ, θ − u〉 = max
‖w‖∞≤λ

〈w, β̂〉 − 〈XTu, β̂〉,

which is ≥ 0 for all u ∈ C, and we have hence proved that θ = y −Xβ̂(y) = PC(y). To show that
C is indeed a polyhedron, note that it can be written as

C =

p⋂
i=1

(
{u ∈ Rn : XT

i u ≤ λ} ∩ {u ∈ Rn : XT
i u ≥ −λ}

)
,

which is a finite intersection of half-spaces.

Showing that the lasso fit is the residual from projecting y onto a polyhedron is important,
because it means that Xβ̂(y) is nonexpansive as a function of y, and hence continuous and almost
differentiable, by Lemma 1. This establishes the conditions that are needed to apply Stein’s formula
for degrees of freedom.

In the next section, we define the equicorrelation set E , and show that the lasso fit and solutions
both have an explicit form in terms of E . Following this, we derive an expression for the lasso degrees
of freedom as a function of the equicorrelation set.

3.2 The equicorrelation set

According to Lemma 3, the lasso fit Xβ̂ is always unique (because projection onto a closed convex set

is unique). Therefore, even though the solution β̂ is not necessarily unique, the optimal subgradient

γ is unique, because it can be written entirely in terms of Xβ̂, as shown by (13). We define the
unique equicorrelation set E as

E =
{
i ∈ {1, . . . p} : |γi| = 1

}
. (17)

An alternative definition for the equicorrelation set is

E =
{
i ∈ {1, . . . p} : |XT

i (y −Xβ̂)| = λ
}
, (18)

which explains its name, as E can be thought of as the set of variables that have equal and maximal
absolute inner product (or correlation for standardized variables) with the residual.

The set E is a natural quantity to work with, because we can express the lasso fit and the set of
lasso solutions in terms of E , by working directly from equation (13). First we let

s = sign(γE) = sign(XT
E (y −Xβ̂)), (19)
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the signs of the inner products of the equicorrelation variables with the residual. Since β̂−E = 0 by
definition of the subgradient, the E block of the KKT conditions can be rewritten as

XT
E (y −XE β̂E) = λs. (20)

Because λs ∈ row(XE), we can write λs = XT
E (XT

E )+λs, so rearranging (20) we get

XT
E XE β̂E = XT

E
(
y − (XT

E )+λs
)
.

Therefore, the lasso fit Xβ̂ = XE β̂E is

Xβ̂ = XE(XE)
+
(
y − (XT

E )+λs
)
, (21)

and any lasso solution must be of the form

β̂−E = 0 and β̂E = (XE)
+
(
y − (XT

E )+λs
)

+ b, (22)

where b ∈ null(XE). In the case that null(XE) = {0}—for example, this holds if rank(X) = p—the
lasso solution is unique and is given by (22) with b = 0. But in general, when null(XE) 6= {0}, it
is important to note that not every b ∈ null(XE) necessarily leads to a lasso solution in (22); the
vector b must also preserve the signs of the nonzero coefficients, that is, it must also satisfy

sign
([

(XE)
+
(
y − (XT

E )+λs
)]
i
+ bi

)
= si for each i such that[

(XE)
+
(
y − (XT

E )+λs
)]
i
+ bi 6= 0. (23)

Otherwise, γ would not be a proper subgradient of ‖β̂‖1.

3.3 Degrees of freedom in terms of the equicorrelation set

Using relatively simple arguments, we can derive a result on the lasso degrees of freedom in terms
of the equicorrelation set. Our arguments build on the following key lemma.

Lemma 4. For any y,X, and λ ≥ 0, a lasso solution is given by

β̂−E = 0 and β̂E = (XE)
+
(
y − (XT

E )+λs
)
, (24)

where E and s are the equicorrelation set and signs, as defined in (17) and (19).

In other words, Lemma 4 says that the sign condition (23) is always satisfied by taking b = 0,
regardless of the rank of X. This result is inspired by the LARS work of Efron et al. (2004), though
it is not proved in the LARS paper; see Appendix B of Tibshirani (2011) for a proof.

Next we show that, almost everywhere in y, the equicorrelation set and signs are locally constant
functions of y. To emphasize their functional dependence on y, we write them as E(y) and s(y).

Lemma 5. For almost every y ∈ Rn, there exists a neighborhood U of y such that E(y′) = E(y) and
s(y) = s(y′) for all y′ ∈ U .

Proof. Define

N =
⋃
E,s

⋃
i∈E

{
z ∈ Rn : [(XE)

+](i,·)
(
z − (XT

E )+λs
)

= 0
}
,

where the first union above is taken over all subsets E ⊆ {1, . . . p} and sign vectors s ∈ {−1, 1}|E|,
but we exclude sets E for which a row of (XE)

+ is entirely zero. The set N is a finite union of affine
subspaces of dimension n− 1, and therefore has measure zero.
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Let y /∈ N , and abbreviate the equicorrelation set and signs as E = E(y) and s = s(y). We may
assume no row of (XE)

+ is entirely zero. (Otherwise, this implies that XE has a zero column, which
implies that λ = 0, a trivial case for this lemma.) Therefore, as y /∈ N , this means that the lasso

solution given in (24) satisfies β̂i(y) 6= 0 for every i ∈ E .
Now, for a new point y′, consider defining

β̂−E(y
′) = 0 and β̂E(y

′) = (XE)
+
(
y′ − (XT

E )+λs
)
.

We need to verify that this is indeed a solution at y′, and that the corresponding fit has equicorre-
lation set E and signs s. First notice that, after a straightforward calculation,

XT
E (y′ −Xβ̂(y′)) = XT

E

(
y′ −XE(XE)+

(
y′ − (XT

E )+λs
))

= λs.

Also, by the continuity of the function f : Rn → Rp−|E|,

f(x) = XT
−E

(
x−XE(XE)+

(
x− (XT

E )+λs
))
,

there exists a neighborhood U1 of y such that∥∥XT
−E(y

′ −Xβ̂(y′))
∥∥
∞ =

∥∥∥XT
−E

(
y′ −XE(XE)+

(
y′ − (XT

E )+λs
))∥∥∥

∞
< λ,

for all y′ ∈ U1. Hence Xβ̂(y′) has equicorrelation set E(y′) = E and signs s(y′) = s.

To check that β̂(y′) is a lasso solution at y′, we consider the function g : Rn → R|E|,

g(x) = (XE)
+
(
x− (XT

E )+λs
)
.

The continuity of g implies that there exists a neighborhood U2 of y such that

β̂i(y
′) =

[
(XT
E )+

(
y′ − (XT

E )+λs
)]
i
6= 0 for i ∈ E , and

sign(β̂E(y
′)) = sign

(
(XE)

+
(
y′ − (XT

E )+λs
))
,

for each y′ ∈ U2. Defining U = U1 ∩ U2 completes the proof.

This immediately implies the following theorem.

Theorem 1 (Lasso degrees of freedom, equicorrelation set representation). Assume that y follows

a normal distribution (5). For any X and λ ≥ 0, the lasso fit Xβ̂ has degrees of freedom

df(Xβ̂) = E[rank(XE)],

where E = E(y) is the equicorrelation set of the lasso fit at y.

Proof. By Lemmas 1 and 3 we know that Xβ̂(y) is continuous and almost differentiable, so we can
use Stein’s formula (10) for degrees of freedom. By Lemma 5, we know that E = E(y) and s = s(y)
are locally constant for all y /∈ N . Therefore, taking the divergence of the fit in (21) we get

(∇ ·Xβ̂)(y) = tr(XE(XE)
+) = rank(XE).

Taking an expectation over y (and recalling that N has measure zero) gives the result.

Next, we shift our focus to a different subset of variables: the active set A. Unlike the equicorre-
lation set, the active set is not unique, as it depends on a particular choice of lasso solution. Though
it may seem that such non-uniqueness could present complications, it turns out that all of the active
sets share a special property, namely: the linear subspace col(XA) is the same for any choice of
active set A, almost everywhere in y. This invariance allows us to express the degrees of freedom of
lasso fit in terms of the active set (or, more precisely, any active set).
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3.4 The active set

Given a particular solution β̂, we define the active set A as

A =
{
i ∈ {1, . . . p} : β̂i 6= 0

}
. (25)

This is also called the support of β̂ and written A = supp(β̂). From (22), we can see that we always
have A ⊆ E , and different active sets A can be formed by choosing b ∈ null(XE) to satisfy the sign
condition (23) and also [

(XE)
+
(
y − (XT

E )+λs
)]
i
+ bi = 0 for i /∈ A.

If rank(X) = p, then b = 0, so there is a unique active set, and furthermore A = E for almost every
y ∈ Rn (in particular, this last statement holds for y /∈ N , where N is the set of measure zero set
defined in the proof of Lemma 5). For the signs of the coefficients of active variables, we write

r = sign(β̂A), (26)

and we note that r = sA.
By similar arguments as those used to derive expression (21) for the fit in Section 3.2, the lasso

fit can also be written as
Xβ̂ = (XA)(XA)+

(
y − (XT

A)+λr
)
, (27)

for the active set A and signs r of any lasso solution β̂. If we could take the divergence of the fit in
the expression above, and simply ignore the dependence of A and r on y (treat them as constants),

then this would give (∇ ·Xβ̂)(y) = rank(XA). In the next section, we show that treating A and r
as constants in (27) is indeed correct, for almost every y. This property then implies that the linear
subspace col(XA) is invariant under any choice of active set A, almost everywhere in y; moreover,
it implies that we can write the lasso degrees of freedom in terms of any active set.

3.5 Degrees of freedom in terms of the active set

We first establish a result on the local stability of A(y) and r(y) (written in this way to emphasize

their dependence on y, through a solution β̂(y)).

Lemma 6. There is a set M ⊆ Rn, of measure zero, with the following property: for y /∈ M, and
for any lasso solution β̂(y) with active set A(y) and signs r(y), there is a neighborhood U of y such

that every point y′ ∈ U yields a lasso solution β̂(y′) with the same active set A(y′) = A(y) and the
same active signs r(y′) = r(y).

The proof is similar to that of Lemma 5, except longer and somewhat more complicated, so it
is delayed until Appendix A.3. Combined with the expression (27) for the lasso fit, Lemma 6 now
implies an invariance of the subspace spanned by the active variables.

Lemma 7. For the same set M ⊆ Rn as in Lemma 6, and for any y /∈ M, the linear subspace
col(XA) is invariant under all sets A = A(y) defined in terms of a lasso solution β̂(y) at y.

Proof. Let y /∈ M, and let β̂(y) be a solution with active set A = A(y) and signs r = r(y). Let U
be the neighborhood of y as constructed in the proof of Lemma 6; on this neighborhood, solutions
exist with active set A and signs r. Hence, recalling (27), we know that for every y′ ∈ U ,

Xβ̂(y′) = (XA)(XA)+
(
y′ − (XT

A)+λr
)
.

Now suppose that A∗ and r∗ are the active set and signs of another lasso solution at y. Then, by
the same arguments, there is a neighborhood U∗ of y such that

Xβ̂(y′) = (XA∗)(XA∗)
+
(
y′ − (XT

A∗)
+λr∗

)
,
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for all y′ ∈ U∗. By the uniqueness of the fit, we have that for each y′ ∈ U ∩ U∗,

(XA)(XA)+
(
y′ − (XT

A)+λr
)

= (XA∗)(XA∗)
+
(
y′ − (XT

A∗)
+λr∗

)
.

Since U ∩ U∗ is open, for any z ∈ col(XA), there is an ε > 0 such that y + εz ∈ U ∩ U∗. Plugging
y′ = y + εz into the above equation implies that z ∈ col(XA∗), so col(XA) ⊆ col(XA∗). A similar
argument gives col(XA∗) ⊆ col(XA), completing the proof.

Again, this immediately leads to the following theorem.

Theorem 2 (Lasso degrees of freedom, active set representation). Assume that y follows a normal

distribution (5). For any X and λ ≥ 0, the lasso fit Xβ̂ has degrees of freedom

df(Xβ̂) = E[rank(XA)],

where A = A(y) is the active set corresponding to any lasso solution β̂(y) at y.

Note: By Lemma 7, rank(XA) is an invariant quantity, not depending on the choice of active set
(coming from a lasso solution), for almost every y. This makes the above result well-defined.

Proof. We can apply Stein’s formula (10) for degrees of freedom, because Xβ̂(y) is continuous and
almost differentiable by Lemmas 1 and 3. Let A = A(y) and r = r(y) be the active set and active
signs of a lasso solution at y /∈M, withM as in Lemma 7. By this same lemma, there exists a lasso
solution with active set A and signs r at every point y′ in some neighborhood U of y, and therefore,
taking the divergence of the fit (27) we get

(∇ ·Xβ̂)(y) = tr(XA(XA)+) = rank(XA).

Taking an expectation over y completes the proof.

Remark: equicorrelation set representation. The proof of Lemma 6 showed that, for almost every y,
the equicorrelation set E is actually the active set A of the particular lasso solution defined in (24).
Hence Theorem 1 can be viewed as a corollary of Theorem 2.

Remark: full column rank X. When rank(X) = p, the lasso solution is unique, and there is only
one active set A. And as the columns of X are linearly independent, we have rank(X) = |A|, so the
result of Theorem 2 reduces to

df(Xβ̂) = E|A|,

as shown in Zou et al. (2007).

Remark: the smallest active set. An interesting result on the lasso degrees of freedom was recently
and independently obtained by Dossal et al. (2011). Their result states that, for a general X,

df(Xβ̂) = E|A∗|,

where |A∗| is the smallest cardinality among all active sets of lasso solutions. This actually follows
from Theorem 2, by noting that for any y there exists a lasso solution whose active setA∗ corresponds
to linear independent predictors XA∗ , so rank(XA∗) = |A∗| (for example, see Theorem 3 in Appendix
B of Rosset et al. (2004)), and furthermore, for almost every y no active set can have a cardinality
smaller than |A∗|, as this would contradict Lemma 7.

Remark: the elastic net. Consider the elastic net problem (Zou & Hastie 2005),

β̂ = argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ1‖β‖1 +

λ2

2
‖β‖22, (28)
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where we now have two tuning parameters λ1, λ2 ≥ 0. Note that our notation above emphasizes the
fact that there is always a unique solution to the elastic net criterion, regardless of the rank of X.
This property (among others, such as stability and predictive ability) is considered an advantage of
the elastic net over the lasso. We can rewrite the elastic net problem (28) as a (full column rank)
lasso problem,

β̂ = argmin
β∈Rp

1

2

∥∥∥( y
0

)
−
[ X√

λ2I

]
β
∥∥∥2

2
+ λ1‖β‖1,

and hence it can be shown (although we omit the details) that the degrees of freedom of the elastic
net fit is

df(Xβ̂) = E
[
tr
(
XA(XT

AXA + λ2I)−1XT
A
)]
,

where A = A(y) is the active set of the elastic net solution at y.

Remark: the lasso with intercept. It is often more appropriate to include an (unpenalized) intercept
coefficient in the lasso model, yielding the problem

(β̂0, β̂) ∈ argmin
(β0,β)∈Rp+1

1

2
‖y − β01−Xβ‖22 + λ‖β‖1, (29)

where 1 = (1, 1, . . . 1) ∈ Rn is the vector of all 1s. Defining M = I − 11T /n ∈ Rn×n, we note that

the fit of problem (29) can be written as β̂01+Xβ̂ = (I −M)y+MXβ̂, and that β̂ solves the usual
lasso problem

β̂ ∈ argmin
β∈Rp

1

2
‖My −MXβ‖22 + λ‖β‖1.

Now it follows (again we omit the details) that the fit of the lasso problem with intercept (29) has
degrees of freedom

df(β̂01+Xβ̂) = 1 + E[rank(MXA)],

where A = A(y) is the active set of a solution β̂(y) at y (these are the non-intercept coefficients). In
other words, the degrees of freedom is one plus the expected dimension of the subspace spanned by the
active variables, once we have centered these variables. A similar result holds for an arbitrary set of
unpenalized coefficients, by replacing M above with the projection onto the orthogonal complement
of the column space of the unpenalized variables, and 1 above with the dimension of the column
space of the unpenalized variables.

As mentioned in the introduction, a nice feature of the full column rank result (2) is its inter-
pretability and its explicit nature. The general result is also explicit in the sense that an unbiased
estimate of degrees of freedom can be achieved by computing the rank of a given matrix. In terms of
interpretability, when rank(X) = p, the degrees of freedom of the lasso fit is E|A|—this says that, on
average, the lasso “spends” the same number of parameters as does linear regression on |A| linearly
independent predictor variables. Fortunately, a similar interpretation is possible in the general case:
we showed in Theorem 2 that for a general predictor matrix X, the degrees of freedom of the lasso
fit is E[rank(XA)], the expected dimension of the linear subspace spanned by the active variables.
Meanwhile, for the linear regression problem

β̂A = argmin
βA∈R|A|

‖y −XAβA‖22, (30)

where we consider A fixed, the degrees of freedom of the fit is tr(XA(XA)+) = rank(XA). In other
words, the lasso adaptively selects a subset A of the variables to use for a linear model of y, but on
average it only “spends” the same number of parameters as would linear regression on the variables
in A, if A was pre-specified.
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How is this possible? Broadly speaking, the answer lies in the shrinkage due to the `1 penalty.
Although the active set is chosen adaptively, the lasso does not estimate the active coefficients as
aggressively as does the corresponding linear regression problem (30); instead, they are shrunken
towards zero, and this adjusts for the adaptive selection. Differing views have been presented in
the literature with respect this feature of lasso shrinkage. On the one hand, for example, Fan & Li
(2001) point out that lasso estimates suffer from bias due to the shrinkage of large coefficients, and
motivate the non-convex SCAD penalty as an attempt to overcome this bias. On the other hand, for
example, Loubes & Massart (2004) discuss the merits of such shrunken estimates in model selection
criteria, such as (9). In the current context, the shrinkage due to the `1 penalty is helpful in that
provides control over degrees of freedom. A more precise study of this idea is the topic of future
work.

4 The generalized lasso

In this section we extend our degrees of freedom results to the generalized lasso problem, with an
arbitrary predictor matrix X and penalty matrix D. As before, the KKT conditions play a central
role, and we present these first. Also, many results that follow have equivalent derivations from the
perspective of the generalized lasso dual problem; see Appendix A.5. We remind the reader that
DR is used to extract to extract rows of D corresponding to an index set R.

4.1 The KKT conditions and the underlying polyhedron

The KKT conditions for the generalized lasso problem (3) are

XT (y −Xβ̂) = DTλγ, (31)

γi ∈

{
{sign((Dβ̂)i)} if (Dβ̂)i 6= 0

[−1, 1] if (Dβ̂)i = 0.
(32)

Now γ ∈ Rm is a subgradient of the function f(x) = ‖x‖1 evaluated at x = Dβ̂. Similar to what we
showed for the lasso, it follows from the KKT conditions that the generalized lasso fit is the residual
from projecting y onto a polyhedron.

Lemma 8. For any X and λ ≥ 0, the generalized lasso fit can be written as Xβ̂(y) = (I − PC)(y),
where C ⊆ Rn is the polyhedron

C = {u ∈ Rn : XTu = DTw for w ∈ Rm, ‖w‖∞ ≤ λ}.

Proof. The proof is quite similar to that of Lemma 3. As in (16), we want to show that

〈Xβ̂, y −Xβ̂〉 − 〈XTu, β̂〉 ≥ 0 (33)

for all u ∈ C, where C is as in the lemma. For the first term above, we can take an inner product
with β̂ on both sides of (31) to get 〈Xβ̂, y −Xβ̂〉 = λ‖Dβ̂‖1, and furthermore,

λ‖Dβ̂‖1 = max
‖w‖∞≤λ

〈w,Dβ̂〉 = max
‖w‖∞≤λ

〈DTw, β̂〉.

Therefore (33) holds if XTu = DTw for some ‖w‖∞ ≤ λ, in other words, if u ∈ C. To show that C
is a polyhedron, note that we can write it as C = (XT )−1(DT (B)) where (XT )−1 is taken to mean
the inverse image under the linear map XT , and B = {w ∈ Rm : ‖w‖∞ ≤ λ}, a hypercube in Rm.
Clearly B is a polyhedron, and the image or inverse image of a polyhedron under a linear map is
still a polyhedron.
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As with the lasso, this lemma implies that the generalized lasso fit Xβ̂(y) is nonexpansive, and
therefore continuous and almost differentiable as a function of y, by Lemma 1. This is important
because it allows us to use Stein’s formula when computing degrees of freedom.

In the next section we define the boundary set B, and derive expressions for the generalized lasso
fit and solutions in terms of B. The following section defines the active set A in the generalized lasso
context, and again gives expressions for the fit and solutions in terms of A. Though neither B nor
A are necessarily unique for the generalized lasso problem, any choice of B or A generates a special
invariant subspace (similar to the case for the active sets in the lasso problem). We are subsequently
able to express the degrees of freedom of the generalized lasso fit in terms of any boundary set B,
or any active set A.

4.2 The boundary set

Like the lasso, the generalized lasso fit Xβ̂ is always unique (following from Lemma 8, and the
fact that projection onto a closed convex set is unique). However, unlike the lasso, the optimal
subgradient γ in the generalized lasso problem is not necessarily unique. In particular, if rank(D) <
m, then the optimal subgradient γ is not uniquely determined by conditions (31) and (32). Given a

subgradient γ satisfying (31) and (32) for some β̂, we define the boundary set B as

B =
{
i ∈ {1, . . .m} : |γi| = 1

}
.

This generalizes the notion of the equicorrelation set E in the lasso problem (though, as just noted,
the set B is not necessarily unique unless rank(D) = m). We also define

s = γB.

Now we focus on writing the generalized lasso fit and solutions in terms of B and s. Abbreviating
P = Pnull(D−B), note that we can expand PDTλγ = PDT

Bλs + PDT
−Bλγ−B = PDT

Bλs. Therefore,
multiplying both sides of (31) by P yields

PXT (y −Xβ̂) = PDT
Bλs. (34)

Since PDT
Bλs ∈ col(PXT ), we can write PDT

Bλs = (PXT )(PXT )+PDT
Bλs = (PXT )(PXT )+DT

Bλs.

Also, we have D−Bβ̂ = 0 by definition of B, so P β̂ = β̂. These two facts allow us to rewrite (34) as

PXTXPβ̂ = PXT
(
y − (PXT )+DT

Bλs
)
,

and hence the fit Xβ̂ = XPβ̂ is

Xβ̂ = (XPnull(D−B))(XPnull(D−B))
+
(
y − (Pnull(D−B)X

T )+DT
Bλs

)
, (35)

where we have un-abbreviated P = Pnull(D−B). Further, any generalized lasso solution is of the form

β̂ = (XPnull(D−B))
+
(
y − (Pnull(D−B)X

T )+DT
Bλs

)
+ b, (36)

where b ∈ null(XPnull(D−B)). Multiplying the above equation by D−B, and recalling that D−Bβ̂ = 0,
reveals that b ∈ null(D−B); hence b ∈ null(XPnull(D−B)) ∩ null(D−B) = null(X) ∩ null(D−B). In the
case that null(X) ∩ null(D−B) = {0}, the generalized lasso solution is unique and is given by (36)
with b = 0. This occurs when rank(X) = p, for example. Otherwise, any b ∈ null(X) ∩ null(D−B)
gives a generalized lasso solution in (36) as long as it also satisfies the sign condition

sign
(
Di(XPnull(D−B))

+
(
y − (Pnull(D−B)X

T )+DT
Bλs

)
+Dib

)
= si for each i ∈ B such that

Di(XPnull(D−B))
+
(
y − (Pnull(D−B)X

T )+DT
Bλs

)
+Dib 6= 0, (37)

necessary to ensure that γ is a proper subgradient of ‖Dβ̂‖1.
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4.3 The active set

We define the active set of a particular solution β̂ as

A =
{
i ∈ {1, . . .m} : (Dβ̂)i 6= 0

}
,

which can be alternatively expressed as A = supp(Dβ̂). If β̂ corresponds to a subgradient with
boundary set B and signs s, then A ⊆ B; in particular, given B and s, different active sets A can be
generated by taking b ∈ null(X) ∩ null(D−B) such that (37) is satisfied, and also

Di(XPnull(D−B))
+
(
y − (Pnull(D−B)X

T )+DT
Bλs

)
+Dib = 0 for i ∈ B \ A.

If rank(X) = p, then b = 0, and there is only one active set A; however, in this case, A can still
be a strict subset of B. This is quite different from the lasso problem, wherein A = E for almost
every y whenever rank(X) = p. (Note that in the generalized lasso problem, rank(X) = p implies
that A is unique but implies nothing about the uniqueness of B—this is determined by the rank of
D. The boundary set B is not necessarily unique if rank(D) < m, and in this case we may have
Di(XPnull(D−B))

+ = 0 for some i ∈ B, which certainly implies that i /∈ A for any y ∈ Rn. Hence
some boundary sets may not correspond to active sets at any y.) We denote the signs of the active

entries in Dβ̂ by
r = sign(DAβ̂),

and we note that r = sA.
Following the same arguments as those leading up to the expression for the fit (35) in Section

4.2, we can alternatively express the generalized lasso fit as

Xβ̂ = (XPnull(D−A))(XPnull(D−A))
+
(
y − (Pnull(D−A)X

T )+DT
Aλr

)
, (38)

where A and r are the active set and signs of any solution. Computing the divergence of the fit
in (38), and pretending that A and r are constants (not depending on y), gives (∇ · Xβ̂)(y) =

dim(col(XPnull(D−A))) = dim(X(null(D−A))). The same logic applied to (35) gives (∇ ·Xβ̂)(y) =
dim(X(null(D−B))). The next section shows that, for almost every y, the quantities A, r or B, s
can indeed be treated as locally constant in expressions (38) or (35), respectively. We then prove
that linear subspaces X(null(D−B)), X(null(D−A)) are invariant under all choices of boundary sets
B, respectively active sets A, and that the two subspaces are in fact equal, for almost every y.
Furthermore, we express the generalized lasso degrees of freedom in terms of any boundary set or
any active set.

4.4 Degrees of freedom

We call (γ(y), β̂(y)) an optimal pair provided that γ(y) and β̂(y) jointly satisfy the KKT conditions,
(31) and (32), at y. For such a pair, we consider its boundary set B(y), boundary signs s(y), active
set A(y), active signs r(y), and show that these sets and sign vectors possess a kind of local stability.

Lemma 9. There exists a set N ⊆ Rn, of measure zero, with the following property: for y /∈ N ,
and for any optimal pair (γ(y), β̂(y)) with boundary set B(y), boundary signs s(y), active set A(y),
and active signs r(y), there is a neighborhood U of y such that each point y′ ∈ U yields an optimal

pair (γ(y′), β̂(y′)) with the same boundary set B(y′) = B(y), boundary signs s(y′) = s(y), active set
A(y′) = A(y), and active signs r(y′) = r(y).

The proof is delayed to Appendix A.4, mainly because of its length. Now Lemma 9, used together
with expressions (35) and (38) for the generalized lasso fit, implies an invariance in representing a
(particularly important) linear subspace.
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Lemma 10. For the same set N ⊆ Rn as in Lemma 9, and for any y /∈ N , the linear subspace
L = X(null(D−B)) is invariant under all boundary sets B = B(y) defined in terms of an optimal
subgradient at γ(y) at y. The linear subspace L′ = X(null(D−A)) is also invariant under all choices

of active sets A = A(y) defined in terms of a generalized lasso solution β̂(y) at y. Finally, the two
subspaces are equal, L = L′.

Proof. Let y /∈ N , and let γ(y) be an optimal subgradient with boundary set B = B(y) and signs
s = s(y). Let U be the neighborhood of y over which optimal subgradients exist with boundary set
B and signs s, as given by Lemma 9. Recalling the expression for the fit (35), we have that for every
y′ ∈ U

Xβ̂(y′) = (XPnull(D−B))(XPnull(D−B))
+
(
y′ − (Pnull(D−B)X

T )+DT
Bλs

)
.

If β̂(y) is a solution with active set A = A(y) and signs r = r(y), then again by Lemma 9 there is
a neighborhood V of y such that each point y′ ∈ V yields a solution with active set A and signs r.
(Note that V and U are not necessarily equal unless γ(y) and β̂(y) jointly satisfy the KKT conditions
at y.) Therefore, recalling (35), we have

Xβ̂(y′) = (XPnull(D−A))(XPnull(D−A))
+
(
y′ − (Pnull(D−A)X

T )+DT
Aλr

)
,

for each y′ ∈ V . The uniqueness of the generalized lasso fit now implies that

(XPnull(D−B))(XPnull(D−B))
+
(
y′ − (Pnull(D−B)X

T )+DT
Bλs

)
=

(XPnull(D−A))(XPnull(D−A))
+
(
y′ − (Pnull(D−A)X

T )+DT
Aλr

)
,

for all y′ ∈ U ∩ V . As U ∩ V is open, for any z ∈ col(XPnull(D−B)), there exists an ε > 0 such that
y + εz ∈ U ∩ V . Plugging y′ = y + εz into the equation above reveals that z ∈ col(XPnull(D−A)),
hence col(XPnull(D−B)) ⊆ col(XPnull(D−A)). The reverse inclusion follows similarly, and therefore
col(XPnull(D−B)) = col(XPnull(D−A)). Finally, the same strategy be used to show that these linear
subspaces are unchanged for any choice of boundary set B = B(y) coming from an optimal subgra-
dient at y and for any choice of active set A = A(y) coming from a solution at y. Noticing that
col(MPnull(N)) = M(null(N)) for matrices M,N gives the result as stated in the lemma.

This local stability result implies the following theorem.

Theorem 3 (Generalized lasso degrees of freedom). Assume that y follows a normal distribution
(5). For any X,D, and λ ≥ 0, the degrees of freedom of the generalized lasso fit can be expressed as

df(Xβ̂) = E[dim(X(null(D−B)))],

where B = B(y) is the boundary set corresponding to any optimal subgradient γ(y) of the generalized
lasso problem at y. We can alternatively express degrees of freedom as

df(Xβ̂) = E[dim(X(null(D−A)))],

with A = A(y) being the active set corresponding to any generalized lasso solution β̂(y) at y.

Note: Lemma 10 implies that for almost every y ∈ Rn, for any B defined in terms of an optimal
subgradient, and for any A defined in terms of a generalized lasso solution, dim(X(null(D−B))) =
dim(X(null(D−A))). This makes the above expressions for degrees of freedom well-defined.

Proof. First, the continuity and almost differentiability of Xβ̂(y) follow from Lemmas 1 and 8, so we
can use Stein’s formula (10) for degrees of freedom. Let y /∈ N , where N is the set of measure zero
as in Lemma 6. If B = B(y) and s = s(y) are the boundary set and signs of an optimal subgradient
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at y, then by Lemma 10 there is a neighborhood U of y such that each point y′ ∈ U yields an optimal
subgradient with boundary set B and signs s. Therefore, taking the divergence of the fit in (35),

(∇ ·Xβ̂)(y) = tr(PX(null(D−B))) = dim(X(null(D−B))),

and taking an expectation over y gives the first expression in the theorem.
Similarly, if A = A(y) and r = r(y) are the active set and signs of a generalized lasso solution at

y, then by Lemma 10 there exists a solution with active set A and signs r at each point y′ in some
neighborhood V of y. The divergence of the fit in (38) is hence

(∇ ·Xβ̂)(y) = tr(PX(null(D−A))) = dim(X(null(D−A))),

and taking an expectation over y gives the second expression.

Remark: full column rank X. If rank(X) = p, then dim(X(L)) = dim(L) for any linear subspace L,
so the results of Theorem 3 reduce to

df(Xβ̂) = E[nullity(D−B)] = E[nullity(D−A)].

The first equality above was shown in Tibshirani & Taylor (2011). Analyzing the null space of
D−B (equivalently, D−A) for specific choices of D then gives interpretable results on the degrees of
freedom of the fused lasso and trend filtering fits as mentioned in the introduction. It is important
to note that, as rank(X) = p, the active set A is unique, but not necessarily equal to the boundary
set B (since B can be non-unique if rank(D) < m).

Remark: the lasso. If D = I, then X(null(D−S)) = col(XS) for any subset S ⊆ {1, . . . p}. Therefore
the results of Theorem 3 become

df(Xβ̂) = E[rank(XB)] = E[rank(XA)],

which match the results of Theorems 1 and 2 (recall that for the lasso the boundary set B is exactly
the same as equicorrelation set E).

Remark: the smallest active set. Recent and independent work of Vaiter et al. (2011) shows that, for
arbitrary X,D and for any y, there exists a generalized lasso solution whose active set A∗ satisfies

null(X) ∩ null(D−A∗) = {0}.

(Calling A∗ the “smallest” active set is somewhat of an abuse of terminology, but it is the smallest
in terms of the above intersection.) The authors then prove that, for any X,D, the generalized lasso
fit has degrees of freedom

df(Xβ̂) = E[nullity(D−A∗)],

with A∗ the special active set as above. This matches the active set result of Theorem 3 applied to
A∗, since dim(X(null(D−A∗))) = nullity(D−A∗) for this special active set.

We conclude this section by comparing the active set result of Theorem 3 to degrees of freedom
in a particularly relevant equality constrained linear regression problem (this comparison is similar
to that made in lasso case, given at the end of Section 3). The result states that the generalized lasso
fit has degrees of freedom E[dim(X(null(D−A)))], where A = A(y) is the active set of a generalized
lasso solution at y. In other words, the complement of A gives the rows of D that are orthogonal to
some generalized lasso solution. Now, consider the equality constrained linear regression problem

β̂ ∈ argmin
β∈Rp

‖y −Xβ‖22 subject to D−Aβ = 0, (39)
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in which the set A is fixed. It is straightforward to verify that the fit of this problem is the projection
map onto col(XPnull(D−A)) = X(null(D−A)), and hence has degrees of freedom dim(X(null(D−A))).
This means that the generalized lasso fits a linear model of y, and simultaneously makes the coef-
ficients orthogonal to an adaptive subset A of the rows of D, but on average it only uses the same
number of parameters as does the corresponding equality constrained linear regression problem (39),
in which A is pre-specified.

This seemingly paradoxical statement can be explained by the shrinkage due to the `1 penalty.
Even though the active set A is chosen adaptively based on y, the generalized lasso does not estimate
the coefficients as aggressively as does the equality constrained linear regression problem (39), but
rather, it shrinks them towards zero. Roughly speaking, his shrinkage can be viewed as a “deficit”
in degrees of freedom, which makes up for the “surplus” attributed to the adaptive selection. We
study this idea more precisely in a future paper.

5 Discussion

We showed that the degrees of freedom of the lasso fit, for an arbitrary predictor matrix X, is equal to
E[rank(XA)]. Here A = A(y) is the active set of any lasso solution at y, that is, A(y) = supp(β̂(y)).
This result is well-defined, since we proved that any active set A generates the same linear subspace
col(XA), almost everywhere in y. In fact, we showed that for almost every y, and for any active set
A of a solution at y, the lasso fit can be written as

Xβ̂(y′) = Pcol(XA)(y
′) + c,

for all y′ in a neighborhood of y, where c is a constant (it does not depend on y′). This draws an
interesting connection to linear regression, as it shows that locally the lasso fit is just a translation of
the linear regression fit of on XA. The same results (on degrees of freedom and local representations
of the fit) hold when the active set A is replaced by the equicorrelation set E .

Our results also extend to the generalized lasso problem, with an arbitrary predictor matrix X
and arbitrary penalty matrix D. We showed that degrees of freedom of the generalized lasso fit is
E[dim(X(null(D−A)))], with A = A(y) being the active set of any generalized lasso solution at y,

that is, A(y) = supp(Dβ̂(y)). As before, this result is well-defined, because any choice of active
set A generates the same linear subspace X(null(D−A)), almost everywhere in y. Furthermore, for
almost every y, and for any active set of a solution at y, the generalized lasso fit satisfies

Xβ̂(y′) = PX(null(D−A))(y
′) + c,

for all y′ in a neighborhood of y, where c is a constant (not depending on y). This again reveals
an interesting connection to linear regression, since it says that locally the generalized lasso fit is a
translation of the linear regression fit on X, with the coefficients β subject to D−Aβ = 0. The same
statements hold with the active set A replaced by the boundary set B of an optimal subgradient.

We note that our results provide practically useful estimates of degrees of freedom. For the lasso
problem, we can use rank(XA) as an unbiased estimate of degrees of freedom, with A being the
active set of a lasso solution. To emphasize what has already been said, here we can actually choose
any active set (that is, any solution), because all active sets give rise to the same rank(XA), except
for y in a set of measure zero. This is important, since different algorithms for the lasso can produce
different solutions with different active sets. For the generalized lasso problem, an unbiased estimate
for degrees of freedom is given by dim(X(null(D−A))) = rank(XPnull(D−A)), where A is the active
set of a generalized lasso solution. This estimate is the same, regardless of the choice of active set
(that is, the choice of solution), for almost every y. Hence any algorithm can be used to compute a
solution.
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A Appendix

A.1 Proof of Lemma 1

The proof relies on the fact that the projection PC(x) of x ∈ Rn onto a closed convex set C ⊆ Rn
satisfies

〈x− PC(x), PC(x)− u〉 ≥ 0 for any u ∈ C. (40)

First, we prove the statement for the projection map. Note that

‖PC(x)− PC(y)‖22 = 〈PC(x)− x+ y − PC(y) + x− y, PC(x)− PC(y)〉
= 〈PC(x)− x, PC(x)− PC(y)〉+ 〈y − PC(y), PC(x)− PC(y)〉

+ 〈x− y, PC(x)− PC(y)〉
≤ 〈x− y, PC(x)− PC(y)〉
≤ ‖x− y‖2‖PC(x)− PC(y)‖2,

where the first inequality follows from (40), and the second is by Cauchy-Schwartz. Dividing both
sides by ‖PC(x)− PC(y)‖2 gives the result.

Now, for the residual map, the steps are similar:

‖(I − PC)(x)− (I − PC)(y)‖22 = 〈PC(y)− PC(x) + x− y, x− PC(x) + PC(y)− y〉
= 〈PC(y)− PC(x), x− PC(x)〉+ 〈PC(y)− PC(x), PC(y)− y〉

+ 〈x− y, x− PC(x) + PC(y)− y〉
≤ 〈x− y, x− PC(x) + PC(y)− y〉
≤ ‖x− y‖2‖(I − PC)(x)− (I − PC)(y)‖2.

Again the two inequalities are from (40) and Cauchy-Schwartz, respectively, and dividing both sides
by ‖(I − PC)(x)− (I − PC)(y)‖2 gives the result.

We have shown that PC and I−PC are Lipschitz (with constant 1); they are therefore continuous,
and almost differentiability follows from the standard proof of the fact that a Lipschitz function is
differentiable almost everywhere.

A.2 Proof of Lemma 2

We write F to denote the set of faces of C. To each face F ∈ F , there is an associated normal cone
N(F ), defined as

N(F ) =
{
x ∈ Rn : F ⊆ argmax

y∈C
xT y

}
.

The normal cone of F satisfies N(F ) = P−1
C (u) − u for any u ∈ relint(F ). (We use relint(A) to

denote the relative interior of a set A, and relbd(A) to denote its relative boundary.)
Define the set

S =
⋃
F∈F

(
relint(F ) + relint(N(F ))

)
.

Because C is a polyhedron, we have that dim(F ) + dim(N(F )) = n for each F ∈ F , and therefore
each UF = relint(F ) + relint(N(F )) is an open set in Rn.

Now let x ∈ S. We have x ∈ UF for some F ∈ F , and by construction PC(UF ) = relint(F ).
Furthermore, we claim that projecting x ∈ UF onto C is the same as projecting x onto the affine hull
of F , that is, PC(UF ) = Paff(F )(UF ). Otherwise there is some y ∈ UF with PC(y) 6= Paff(F )(y), and
as aff(F ) ⊇ F , this means that ‖y − Paff(F )(y)‖2 < ‖y − PC(y)‖2. By definition of relint(F ), there
is some α ∈ (0, 1) such that u = αPC(y) + (1−α)Paff(F ) ∈ F . But ‖y−u‖2 < α‖y−PC(y)‖2 + (1−
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α)‖y − Paff(F )(y)‖2 < ‖y − PC(y)‖2, which is a contradiction. This proves the claim, and writing
aff(F ) = L+ a, we have

PC(y) = PL(y − a) + a for y ∈ UF ,

as desired.
It remains to show that Sc = Rn \ S has measure zero. Note that Sc contains points of the form

u+ x, where either

(1) u ∈ relbd(F ), x ∈ N(F ) for some F with dim(F ) ≥ 1; or

(2) u ∈ relint(F ), x ∈ relbd(N(F )) for some F 6= C.

In the first type of points above, vertices are excluded because relbd(F ) = ∅ when F is a vertex. In
the second type, C is excluded because relbd(N(C)) = ∅. The lattice structure of F tells us that for
any face F ∈ F , we can write relbd(F ) = ∪G∈F,G(F relint(G). This, and the fact that the normal
cones have the opposite partial ordering as the faces, imply that points of the first type above can
be written as u′ + x′ with u′ ∈ relint(G) and x′ ∈ N(G) for some G ( F . Note that actually we
must have x′ ∈ relbd(N(G)) because otherwise we would have u′ + x′ ∈ S. Therefore it suffices to
consider points of the second type alone, and Sc can be written as

Sc =
⋃

F∈F,F 6=C

(
relint(F ) + relbd(N(F ))

)
.

As C is a polyhedron, the set F of its faces is finite, and dim(relbd(N(F ))) ≤ n − dim(F ) − 1 for
each F ∈ F , F 6= C. Therefore Sc is a finite union of sets of dimension ≤ n − 1, and hence has
measure zero.

A.3 Proof of Lemma 6

First some notation. For S ⊆ {1, . . . k}, define the function πS : Rk → R|S| by πS(x) = xS . So πS
just extracts the coordinates in S.

Now let

M =
⋃
E,s

⋃
A∈Z(E)

{
z ∈ Rn : P[π−A(null(XE))]⊥ [(XE)

+](−A,·)
(
z − (XT

E )+λs
)

= 0
}
.

The first union is taken over all possible subsets E ⊆ {1, . . . p} and all sign vectors s ∈ {−1, 1}|E|; as
for the second union, we define for a fixed subset E

Z(E) =
{
A ⊆ E : P[π−A(null(XE))]⊥ [(XE)

+](−A,·) 6= 0
}
.

Notice thatM is a finite union of affine subspace of dimension ≤ n−1, and hence has measure zero.
Let y /∈ M, and let β̂(y) be a lasso solution, abbreviating A = A(y) and r = r(y) for the active

set and active signs. Also write E = E(y) and s = s(y) for the equicorrelation set and equicorrelation
signs of the fit. We know from (22) that we can write

β̂−E(y) = 0 and β̂E(y) = (XE)
+
(
y − (XT

E )+λs
)

+ b,

where b ∈ null(XE) is such that

β̂E\A(y) = [(XE)
+](−A,·)

(
y − (XT

E )+λs
)

+ b−A = 0.

In other words,
[(XE)

+](−A,·)
(
y − (XT

E )+λs
)

= −b−A ∈ π−A(null(XE)),
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so projecting onto the orthogonal complement of the linear subspace π−A(null(XE)) gives zero,

P[π−A(null(XE))]⊥ [(XE)
+](−A,·)

(
y − (XT

E )+λs
)

= 0.

Since y /∈M, we know that
P[π−A(null(XE))]⊥ [(XE)

+](−A,·) = 0,

and finally, this can be rewritten as

col
(
[(XE)

+](−A,·)
)
⊆ π−A(null(XE)). (41)

Consider defining, for a new point y′,

β̂−E(y
′) = 0 and β̂E(y

′) = (XE)
+
(
y′ − (XT

E )+λs
)

+ b′,

where b′ ∈ null(XE), and is yet to be determined. Exactly as in the proof of Lemma 5, we know

that XT
E (y′ −Xβ̂(y′)) = λs, and ‖XT

−E(y
′ −Xβ̂(y′))‖∞ < λ for all y′ ∈ U1, a neighborhood of y.

Now we want to choose b′ so that β̂(y′) has the correct active set and active signs. For simplicity
of notation, first define the function f : Rn → R|E|,

f(x) = (XE)
+
(
x− (XT

E )+λs
)
.

Equation (41) implies that there is a b′ ∈ null(XE) such that b′−A = −f−A(y′), hence β̂E\A(y′) = 0.

However, we must choose b′ so that additionally β̂i(y
′) 6= 0 for i ∈ A and sign(β̂A(y′)) = r. Write

β̂E(y
′) =

(
f(y′) + b

)
+ (b′ − b).

By the continuity of f + b, there exits a neighborhood of U2 of y such that fi(y
′) + bi 6= 0 for i ∈ A

and sign(fA(y′) + bA) = r, for all y′ ∈ U2. Therefore we only need to choose a vector b′ ∈ null(XE),
with b′−A = −f−A(y′), such that ‖b′ − b‖2 sufficiently small. This can be achieved by applying the
bounded inverse theorem, which says that the bijective linear map π−A has a bounded inverse (when
considered a function from its row space to its column space). Therefore there exists some M > 0
such that for any y′, there is a vector b′ ∈ null(XE), b

′
−A = −f−A(y′), with

‖b′ − b‖2 ≤M‖f−A(y′)− f−A(y)‖2.

Finally, the continuity of f−A implies that ‖f−A(y′) − f−A(y)‖2 can be made sufficiently small by
restricting y′ ∈ U3, another neighborhood of y.

Letting U = U1 ∩U2 ∩U3, we have shown that for any y′ ∈ U , there exists a lasso solution β̂(y′)
with active set A(y′) = A and active signs r(y′) = r.

A.4 Proof of Lemma 9

Define the set

N =
⋃
B,s

⋃
A∈Z(B)

{
z ∈ Rn : P[DB\A(null(X)∩null(D−B))]⊥ ·

DB\A(XPnull(D−B))
+
(
z − (Pnull(D−B)X

T )+DT
Bλs

)
= 0
}
.

The first union above is taken over all subsets B ⊆ {1, . . .m} and all sign vectors s ∈ {−1, 1}|B|.
The second union is taken over subsets A ⊆ Z(B), where

Z(B) =
{
A ⊆ B : P[DB\A(null(X)∩null(D−B))]⊥DB\A(XPnull(D−B))

+ 6= 0
}
.
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Since N is a finite union of affine subspaces of dimension ≤ n− 1, it has measure zero.
Now fix y /∈ N , and let (γ(y), β̂(y)) be an optimal pair, with boundary set B = B(y), boundary

signs s = s(y), active set A = A(y), and active signs r = r(y). Starting from (34), and plugging in
for the fit in terms of B, s, as in (35) we can show that

γ−B(y) = λ−1(DT
−B)+

(
XTPnull(Pnull(D−B)XT )y +

(
XT (Pnull(D−B)X

T )+ − I
)
DT
Bλs

)
+ c,

where c ∈ null(DT
−B). By (36), we know that

β̂(y) = (XPnull(D−B))
+
(
y − (Pnull(D−B)X

T )+DT
Bλs

)
+ b,

where b ∈ null(X) ∩ null(D−B). Furthermore,

DB\Aβ̂(y) = DB\A(XPnull(D−B))
+
(
y − (Pnull(D−B)X

T )+DT
Bλs

)
+DB\Ab = 0,

or equivalently,

DB\A(XPnull(D−B))
+
(
y − (Pnull(D−B)X

T )+DT
Bλs

)
= −DB\Ab ∈ DB\A(null(X) ∩ null(D−B)).

Projecting onto the orthogonal complement of the linear subspace DB\A(null(X)∩null(D−B)) there-
fore gives zero,

P[DB\A(null(X)∩null(D−B))]⊥DB\A(XPnull(D−B))
+
(
y − (Pnull(D−B)X

T )+DT
Bλs

)
= 0,

and because y /∈ N , we know that in fact

P[DB\A(null(X)∩null(D−B))]⊥DB\A(XPnull(D−B))
+ = 0.

This can be rewritten as

col
(
DB\A(XPnull(D−B))

+
)
⊆ DB\A(null(X) ∩ null(D−B)). (42)

At a new point y′, consider defining γB(y′) = s,

γ−B(y′) = λ−1(DT
−B)+

(
XTPnull(Pnull(D−B)XT )y

′ +
(
XT (Pnull(D−B)X

T )+ − I
)
DT
Bλs

)
+ c,

and
β̂(y′) = (XPnull(D−B))

+
(
y′ − (Pnull(D−B)X

T )+DT
Bλs

)
+ b′,

where b′ ∈ null(X)∩null(D−B) is yet to be determined. By construction, γ(y′) and β̂(y′) satisfy the
stationarity condition (31) at y′. Hence it remains to show two parts: first, we must show that this
pair satisfies the subgradient condition (32) at y′; second, we must show this pair has boundary set
B(y′) = B, boundary signs s(y′) = s, active set A(y′) = A, and active signs r(y′) = y. Actually, it
suffices to show the second part alone, because the first part is then implied by the fact that γ(y) and

β̂(y) satisfy the subgradient condition at y. Well, by the continuity of the function f : Rn → Rm−|B|,

f(x) = λ−1(DT
−B)+

(
XTPnull(Pnull(D−B)XT )x+

(
XT (Pnull(D−B)X

T )+ − I
)
DT
Bλs

)
+ c,

we have ‖γ−B(y′)‖∞ < 1 provided that y′ ∈ U1, a neighborhood of y. This ensures that γ(y′) has
boundary set B(y′) = B and signs s(y′) = s.

As for the active set and signs of β̂(y′), note first that D−Bβ̂(y′) = 0, following directly from the
definition. Next, define the function g : Rn → Rp,

g(x) = (XPnull(D−B))
+
(
x− (Pnull(D−B)X

T )+DT
Bλs

)
,
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so β̂(y′) = g(y′) + b′. Equation (42) implies that there is a vector b′ ∈ null(X)∩null(D−B) such that

DB\Ab
′ = −DB\Ag(y′), which makes DB\Aβ̂(y′) = 0. However, we still need to choose b′ such that

Diβ̂(y′) 6= 0 for all i ∈ A and sign(DAβ̂(y′)) = r. To this end, write

β̂(y′) = (g(y′) + b) + (b′ − b).

The continuity of DAg implies that there is a neighborhood U2 of y such that Dig(y′) +Dib 6= 0 for
all i ∈ A and sign(DAg(y′) +DAb) = r, for y′ ∈ U2. Since

|Diβ̂(y)| ≥ |Dig(y′) +Dib| − |Di(b
′ − b)|

≥ |Dig(y′) +Dib| − ‖DT ‖2‖b′ − b‖2,

where ‖DT ‖2 is the operator norm of DT , we only need to choose b′ ∈ null(X) ∩ null(D−B) such
that DB\Ab

′ = −DB\Ag(y′), and such that ‖b′ − b‖2 is sufficiently small. This is possible by the
bounded inverse theorem applied to the linear map DB\A: when considered a function from its row
space to its column space, DB\A is bijective and hence has a bounded inverse. Therefore there is
some M > 0 such that for any y′, there is a b′ ∈ null(X) ∩ null(D−B) with DB\Ab

′ = −DB\Ag(y′)
and

‖b′ − b‖2 ≤M‖DB\Ag(y′)−DB\Ag(y)‖2.

The continuity of DB\Ag implies that the right-hand side above can be made sufficiently small by
restricting y′ ∈ U3, a neighborhood of y.

With U = U1∩U2∩U3, we have shown for that for y′ ∈ U , there is an optimal pair (γ(y′), β̂(y′))
with boundary set B(y′) = B, boundary signs s(y′) = s, active set A(y′) = A, and active signs
r(y′) = r.

A.5 Dual problems

The dual of the lasso problem (1) has appeared in many papers in the literature; as far as we can
tell, it was first considered by Osborne et al. (2000). We start by rewriting problem (1) as

β̂, ẑ ∈ argmin
β∈Rp, z∈Rn

1

2
‖y − z‖22 + λ‖β‖1 subject to z = Xβ,

then we write the Lagrangian

L(β, z, v) =
1

2
‖y − z‖22 + λ‖β‖1 + vT (z −Xβ),

and we minimize L over β, z to obtain the dual problem

v̂ = argmin
v∈Rn

‖y − v‖22 subject to ‖XT v‖∞ ≤ λ. (43)

Taking the gradient of L with respect to to β, z, and setting this equal to zero gives

v̂ = y −Xβ̂, (44)

XT v̂ = λγ, (45)

where γ ∈ Rp is a subgradient of the function f(x) = ‖x‖1 evaluated at x = β̂. From (43), we can
immediately see that the dual solution v̂ is the projection of y onto the polyhedron C as in Lemma
3, and then (44) shows that Xβ̂ = y − v̂ is the residual from projecting y onto C. Further, from
(45), we can define the equicorrelation set E as

E =
{
i ∈ {1, . . . p} : |XT

i v̂| = λ
}
,
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Noting that together (44), (45) are exactly the same as the KKT conditions (13), (14), all of the
arguments in Section 3 involving the equicorrelation set E can be translated to this dual perspective.

There is a slightly different way to derive the lasso dual, resulting in a different (but of course,
equivalent) formulation. We first rewrite problem (1) as

β̂, ẑ ∈ argmin
β∈Rp, z∈Rn

1

2
‖y −Xβ‖22 + λ‖z‖1 subject to z = β,

and by following similar steps to those above, we arrive at the dual problem

v̂ ∈ argmin
v∈Rp

‖Pcol(X)y − (X+)T v‖22 subject to ‖v‖∞ ≤ λ, v ∈ row(X). (46)

Each dual solution v̂ (now no longer unique) satisfies

(X+)T v̂ = Pcol(X)y −Xβ̂, (47)

v̂ = λγ. (48)

The dual problem (46) and its relationship (47), (48) to the primal problem offer yet another
viewpoint to understand some of the results in Section 3.

For the generalized lasso problem, one might imagine that there are three different dual problems,
corresponding to the three different ways of introducing an auxiliary variable z into the generalized
lasso criterion,

β̂, ẑ ∈ argmin
β∈Rp, z∈Rn

1

2
‖y − z‖22 + λ‖Dβ‖1 subject to z = Xβ,

β̂, ẑ ∈ argmin
β∈Rp, z∈Rp

1

2
‖y −Xβ‖22 + λ‖Dz‖1 subject to z = β,

β̂, ẑ ∈ argmin
β∈Rp, z∈Rm

1

2
‖y −Xβ‖22 + λ‖z‖1 subject to z = Dβ.

However, the first two approaches above lead to Lagrangian functions that cannot be minimized
analytically over β, z. Only the third approach yields a dual problem in closed-form, as given by
Tibshirani & Taylor (2011),

v̂ ∈ argmin
v∈Rm

‖Pcol(X)y − (X+)TDT v‖22 subject to ‖v‖∞ ≤ λ, DT v ∈ row(X). (49)

The relationship between primal and dual solutions is

(X+)TDT v̂ = Pcol(X)y −Xβ̂, (50)

v̂ = λγ, (51)

where γ ∈ Rm is a subgradient of f(x) = ‖x‖1 evaluated at x = Dβ̂. Directly from (49) we can see
that (X+)TDT v̂ is the projection of the point y′ = Pcol(X)y onto the polyhedron

K =
{

(X+)TDT v : ‖v‖∞ ≤ λ, DT v ∈ row(X)
}
.

By (50), the primal fit is Xβ̂ = (I −PK)(y′), which can be rewritten as Xβ̂ = (I −PC)(y′) where C

is the polyhedron from Lemma 8, and finally Xβ̂ = (I−PC)(y) because I−PC is zero on null(XT ).
By (51), we can define the boundary set B corresponding to a particular dual solution v̂ as

B =
{
i ∈ {1, . . .m} : |v̂i| = λ

}
.

(This explains its name, as B gives the coordinates of v̂ that are on the boundary of the box
{v : ‖v‖∞ ≤ λ}.) As (50), (51) are equivalent to the KKT conditions (31), (32) (following from
rewriting (50) using DT v̂ ∈ row(X)), the results in Section 4 on the boundary set B can all be
derived from this dual setting.
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