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Abstract

Distributional forecasts are important for a wide variety of applications, including forecasting epidemics.
Often, forecasts are miscalibrated, or unreliable in assigning uncertainty to future events. We present a
recalibration method that can be applied to a black-box forecaster given retrospective forecasts and
observations, as well as an extension to make this method more effective in recalibrating epidemic
forecasts. This method is guaranteed to improve calibration and log score performance when trained and
measured in-sample. We also prove that the increase in expected log score of a recalibrated forecaster is
equal to the entropy of the PIT distribution. We apply this recalibration method to the 27 influenza
forecasters in the FluSight Network and show that recalibration reliably improves forecast accuracy and
calibration. This method is effective, robust, and easy to use as a post-processing tool to improve
epidemic forecasts.

Author summary

Epidemics of infectious disease cause millions of deaths worldwide each year, and reliable epidemic
forecasts can allow public health officials to respond to mitigate the effects of epidemics. However,
because epidemic forecasting is a relatively new field and there is often insufficient training data, many
epidemic forecasts are not calibrated. Calibration is a desired property of any forecast, and we provide a
post-processing method that recalisrates forecasts. We demonstrate the effectiveness of this method in
improving accuracy and calibration on a wide variety of influenza forecasters. We also show a
quantitative relationship between calibration and a forecaster’s expected score. Our recalibration method
is a tool that any forecaster can use, regardless of model choice, to improve forecast accuracy and
reliability. This work provides a bridge between forecasting theory, which rarely deals with applications
in domains that are new or have little data, and some recent applications of epidemic forecasting, where
forecast calibration is rarely analyzed systematically.

1 Introduction

Epidemic forecasting is an important tool to inform the public health response to outbreaks of infectious
diseases. Often, decision makers can take more effective action with an estimate of the uncertainty in a
forecasted target. For this reason, distributional forecasts are more desirable than point forecasts. A
distributional forecast is a probability distribution over the target variable and measures the uncertainty
in the prediction, as opposed to a point forecast, which is just a scalar value for each target and has no
measure of uncertainty. A desired property of distributional forecasts is calibration, or reliability between
forecasts and the true distribution of the variable forecasted (a mathematical definition is given in
Section . Calibration is one of three components of a forecaster’s accuracy as measured by any proper




score [1], with better calibration resulting in a better score. It is therefore important for a forecaster to
produce calibrated forecasts.

Previous work has described general forecasting theory and calibration and evaluated the calibration
of certain forecasts [2H5]. Later work has gone beyond just describing calibration, presenting
post-processing algorithms to recalibrate forecasts that were previously miscalibrated. Nonparametric
techniques for recalibration of ensemble forecasts include rank histogram correction [6], Bayesian model
averaging [7], linear pooling (8], and probability anomaly correction [9]. Brocklehurst et al. [10] provide a
nonparametric approach using the empirical CDF, which can recalibrate any forecast of a scalar target.
Parametric approaches include logistic regression [11], extended linear regression [12] and beta-transform
linear pooling [§]. Wilks and Hamill [13] compare the performance of different recalibration techniques
for different meteorological targets with different amounts of training data.

Much of the work in recalibration has been applied to weather forecasting, and thus many of the
techniques are not applicable in other forecasting domains. The most popular weather forecasting models
create a distribution from a series of point predictions, with each point being the result of a simulation
under varying initial conditions. Many of the existing recalibration methods are defined only for this
type of ensemble forecaster. For example, Bayesian model averaging assumes that an ensemble forecast is
comprised of the same N forecasts in each observation. This method cannot be extended trivially to a
domain where the forecaster itself outputs a distribution. Additionally, weather forecasts usually have a
plethora of training data on which to train recalibration methods. For example, recalibration has been
applied to a set of weather forecasts generated daily from 1979 to at least 2006, almost 10,000 days [14].
In settings like these, techniques need not be robust to small amounts of recalibration training data.

To be clear on nomenclature, throughout this paper, we use the term forecast to refer to the
predicted probability distribution of a variable and the term forecaster to refer to an algorithm that
produces a forecast for a variable given a context. Common examples of forecasters are an algorithm
that forecasts the amount of precipitation two days in advance given current meteorological information,
one that forecasts the price of a certain stock given the stock’s historical trend, or one that forecasts the
statewide influenza incidence given historical incidence data. We also distinguish between calibration and
recalibration; calibration refers to the property of a forecaster, and recalibration refers to a method whose
goal is to make a forecaster more calibrated. Specifically, recalibration takes as input a set of a
forecaster’s forecasts and corresponding observations (“training data”), and outputs a forecaster which
should be more calibrated on a different set of forecasts and observations (“test data”).

In what follows, we present a generalized approach to forecast recalibration and show its performance
when applied to forecasters in the FluSight Network. We demonstrate that across the diverse set of
FluSight forecasters, recalibration consistently improves not just calibration but accuracy as well.

2 Methods

Consider the following setup. At each i =1,2,3..., a forecaster M outputs a density forecast f; given
observations x; for a continuously distributed scalar random variable y; whose true distribution is h;. We
assume that the corresponding cumulative distribution functions (CDFs) F; and H; are continuous and
strictly increasing (for simplicity). The forecaster M is evaluated according to a proper scoring rule, such
as the Brier score |15] or the logarithmic score [16].

The goal of a forecaster is to produce ideal forecasts, i.e., to forecast f; = h;, the true distribution of
y;, for each 7, though this is usually unattainable. We can inspect how close a forecaster is to being ideal
with the distribution of the probability integral transform (PIT) values [17]. For each forecast f; and
observed value y;, the PIT is defined as

PIT(f;,y:) = Fi(y:),

where F; is the CDF of f;. A necessary (but not sufficient) condition for a forecaster to be ideal is




probabilistic calibration [3):
| N
N ZH’ oF Y (p) = p as N — oo, forall p € (0,1).
i=1

(Here and throughout we interpret convergence in the almost sure sense.) An example of a
probabilistically calibrated forecaster that is not ideal is the so-called climatological forecaster, which for
each i outputs the marginal distribution of y; over i = 1,2,3,.... (To make this concrete, suppose that
each y; is distributed as N (u;,1), a normal distribution with mean p; and variance 1, and each p; itself
follows A(0, 1), then the climatological forecaster simply outputs N(0,2) for each i.)

Note that the PIT distribution of a probabilistically calibrated forecaster is close to uniform in large
samples. The expected CDF of the PIT distribution is

G(p) = E[P[Fi(y:) < pl] = E[Ply; < F; ' (p)]] = E[H; 0 F; ' (p)),
where here E denotes the sample average operator over ¢ = 1,..., N. This expression converges to p as
N — oo when the forecaster is probabilistically calibrated. Thus an examination of the distribution of
PIT values—looking for potential deviations from uniformity—serves as a good diagnostic tool to assess
probabilistic calibration. Many use a PIT histogram to examine the PIT distribution because it is easy
to read and understand [3]|. For example, if the PIT distribution is bell-shaped, then the forecaster does
not put enough weight in the middle of its distribution and is underconfident. In general, we can
compare the PIT density to the horizontal line at 1, which corresponds to the uniform density. The
greater the deviation from this line (which can be quantified via Kullback-Leibler divergence from the
uniform distribution to the PIT distribution, or equivalently, negrative netropy of the PIT distribution),
the greater the miscalibration; see Fig [I] for examples.

Our recalibration method uses G as a CDF-CDF transform. The recalibrated forecaster, denoted M™*,
is defined by a recalibrated forecast CDF of F*(y) = G(F;(y)), for each i. By the chain rule, the
recalibrated forecast density is f(y) = g(Fi(y)) - fi(y), for each i. Thus the recalibrated forecast f; is
the original forecast f; weighted by the PIT density g. An illustration of this method is provided in
Fig[2l In practice, of course, we do not have access to the true distributions H;, so we need to estimate
G. The ultimate estimate of G that we propose in this paper will be an ensemble (weighted linear
combination) of three estimates: a nonparametric method, a parametric method, and a null method.
First, we will motivate calibration as a tool to increase forecast accuracy, and then, we explain the
individual estimation methods.

2.1 Calibration and log score

In order to quantify how well a forecaster is calibrated, we calculate the entropy of the distribution of
PIT values. As above, G is the CDF of the PIT distribution of M. The entropy of the PIT density g is
defined as .
H(g) = - / 9(p)log g(p) dp.
p=0
If M is probabilistically calibrated, then (asymptotically, as N — oo) the PIT values are uniform and
the entropy is zero because g(p) is 1 everywhere. When the PIT values are not uniform, the entropy is
negative.
Entropy is also useful because it provides an understanding of how miscalibration penalizes the
expected log score, as shown below. First observe that
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Fig 1. Densities of PIT distributions for five sample forecasters, when the true distribution is a standard normal.
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Fig 2. An illustration of recalibration. The original, underconfident forecast density is f(y) = N(0,2) while the
true density is h(y) = N (0,1). By calculating the PIT density g and producing a recalibrated forecast as the

product g(F(y)) - f(y), we recover the true h(y).




where the last step assumes the smoothness and integrability conditions on h;, f; needed to exchange
expectation and differentiation (the Leibniz rule). Next observe that

Eflog f7 (yi)] — Ellog fi(y:)] = Ellog g(Fi(y:))]

=E /Oo logg(Fi(yi))hi(yz-)d%]

—0o0

hi(Fi_l(p

=E

/0 log g(Fi(F; (p)))
B ! o z‘(Fi_l(p))
—/0 E lgg(p)fi(Fi_l(p))] dp

- / a(p)log g(p) = ~H(g), (1)

=0

where the third line is obtained by a variable substitution, and fourth by applying the Leibniz rule again
assuming the needed regularity conditions.

For any forecaster, if the PIT distribution is the same for the training data and the test data, then
the improvement of the recalibrated forecast’s log score can be estimated by estimating the negative
entropy of g (note that the entropy of any distribution on [0, 1] is nonpositive). We can explain this
intuitively as well: the more negative H(g) is, the more it indicates that there is information lying in the
structure of g that can be extracted to improve forecasts.

2.2 Nonparametric correction

Given an observed training set of PIT values for a forecaster, F;(y;), ¢ = 1,..., N, the empirical PIT
CDF is

R 1 Y
G(r) = NZH[E‘(%) < xl.

As G is discrete, it does not admit a well-defined density, and hence to use this for recalibration we can
first smooth G using a monotone cubic spline interpolant, and then it will have a bonafide density g,
which is itself smooth (twice continuously differentiable, to be precise). Using this for recalibration
produces [ (y) = 9:(Fi(y)) - fi(y).

In practice, with a large amount of training data, recalibration using the empirical CDF as described
above can be effective. However, with little training data, or a lot of diversity within the training data
among the distributions of y;, it can be ineffective for assuring calibration on the test set. This is in line
with the practical difficulties of using nonparametric, distribution-free methods in general.

2.3 Parametric correction

Gneiting and Ranjan [8] present a recalibration method originally motivated by redistributing weights on
the components of an ensemble forecast, but their method can applied generally to recalibrate any black
box forecaster. Given an observed training set of PIT values, F;(y;), i = 1,..., N, we fit a beta density ¢
via maximum likelihood estimation. This in fact corresponds to the beta transform that maximizes the
log score of the recalibrated forecaster on the training data [§].

This parametric model is more resilient to minimal training data, and a beta distribution is usually
an effective estimate of the PIT distribution: because a beta density can be either convex or concave, it
is flexible enough to fit the PIT distribution of overconfident and underconfident forecasters; and
because the mean can be in the interval (0, 1), it can fit biased forecasters as well. However, problematic
behaviors arise at the tails. Except in exceptional cases (one or both of its two shape parameters is
exactly 1), the beta density is 0 or co at the endpoints of its support, which can cause problmes for
recalibration (there can be a big gap between the true PIT density and ¢ in the tails).




2.4 Null correction

The final component of the recalibration ensemble is a null correction, in which there is no recalibration
at all, i.e., we simply set f*(y) = fi(y). This prevents overfitting and decreases variance of the overall
ensemble correction, to be described next.

2.5 Recalibration ensemble

The final recalibration system uses the three components described previously and weights them in an
ensemble. The ensemble weights are calculated to maximize the overall log score. Letting f;; denote the
forecast density for sample ¢ and component j, the weights ensemble w are defined by solving the
optimization problem:

N P P
. 1 “ .
minmize - E 1 log ( E 1 wjfij(yi)> subject to w > 0, E wj =1, (2)
i— =

Jj=1

where p is the number of ensemble components (for us, p = 3) and the constraint w > 0 is to be
interpreted componentwise.

2.6 Recalibration under seasonality

Epidemic forecasting presents a new challenge for recalibration. The methodology discussed above
assumes that the previous behavior of a forecaster is indicative of future behavior, or more concretely,
that the PIT distribution on the training set will be similar to that on the test set. However, this is not
necessarily the case in epidemic forecasting, due to the fact that a forecaster’s behavior generally changes
across the different phases of an epidemic. For example, some forecasters are too conservative and do not
predict enough of a change in disease incidence from one week to the next. For such a forecaster, the
PIT values are usually too high between a season’s onset and peak, because incidence increases more
quickly than forecasted. Conversely, after the season peaks, the PIT values are too low, because
incidence decreases more quickly than forecasted.

In order to account for such nonstationarity in the PIT distribution, and at the same time take
advantage of the seasonal nature of epidemic forecasting, we can recalibrate a forecast made in a
particular week i of a given epidemic season by forming and using a special training set based on
forecasts made at nearby weeks in different seasons. For example, a forecast made in week 6 can be
recalibrated based on forecasts in other seasons made in weeks in between 3 and 9. This is what we do in
our experiments in this paper, with more details given in the next section.

3 Results

We apply this ensemble recalibration method to data from influenza forecasting in the US. In an effort to
better prepare for seasonal influenza, the US CDC has organized a seasonal influenza forecasting
challenge every year since 2013, called the FluSight Challenge [18]. In 2017, a group of forecasters formed
the FluSight Network [19] and began submitting an ensemble forecast of 27 component forecasters. As
part of this collaboration, each of these forecasters produced and stored retrospective forecasts spanning 9
seasons, from 2010-11 to 2018-19. These forecasters include mechanistic and non-mechanistic forecasters,
as well as baseline forecasters. They are diverse in behavior, accuracy, and calibration, and therefore
provide an interesting challenge for our recalibration method, which treats the forecaster as a black box.

First, we summarize the retrospective forecasts in the FluSight data set. Each week, a forecast is
produced for seven forecasting targets, all of which are based on weighted ILI (wILI), a
population-weighted average of the percentage of outpatient visits with influenza-like illness derived from
reports to the CDC from a network of healthcare providers called ILINet [20]. The forecasting targets
are:




e season onset (the first week where wILI is above a predefined baseline for three consecutive weeks);
e secason peak week (week of maximum wILI);

e season peak percentage (maximum wILI value);

e the wiLI value at 1, 2, 3, and 4 weeks ahead of the current week.

The first three targets are referred to as seasonal targets and the last four targets are referred to as
short-term targets. Each forecast is submitted as a binned probability distribution, in intervals of weeks
for season onset and season peak week, and intervals of 0.1% wILI for season peak percentage and all
short-term targets. Forecasts are produced for each of the 10 HHS Regions as well as the US as a whole,
for a total of 9 seasons, from 2010-11 to 2018-19. Thus to be clear, the forecasts in this FluSight data set
are indexed by forecaster, target, season, forecast week, and location.

Next, we describe the training setup we use for recalibrating the forecasts in this data set, which is a
kind of nested leave-one-season-out cross-validation. This is laid out in the steps below for a given
forecaster and forecasting target, and a particular season s.

1. Create recalibrated forecasts for all seasons r # s, using each of the three methods: nonparametric,
parametric, and null. For a forecast in season r at week i and at location £, we build a training set
using PIT values from all seasons other than r and s, all forecast weeks in [i — 3,7 + 3] (within
three weeks of 7), and all locations.

2. Optimize the ensemble weights w by solving using the recalibrated forecasts from Step 1.

3. Create recalibrated forecasts for season i, again using each of the three methods: nonparametric,
parametric, and null. This is just as in Step 1, except we use one more season in the training set.
Explicitly, for a forecast in season s at week i and at location ¢, we build a training set using PIT
values from all seasons other than s, all forecast weeks in [i — 3,4 + 3] (within three weeks of 7), and
all locations.

4. Create ensemble recalibrated forecasts from season i, using the recalibration components from Step
3 and the weights from Step 2.

In what follows, we present and discuss the results. The code and data used to produce all of these
results is publicly available online [21].

3.1 Effect of varying window size

The training procedure just presented assumes a window of k = 3 weeks on either side of a given week @
in order to build the set of PIT values used for recalibration (using forecast data from other seasons).
However, we could consider varying k, which would navigate something like a bias-variance tradeoff. We
would expect the optimal window k to be larger for the nonparametric recalibration method versus the
parametric one. It turns out that k& = 3 is typically a reasonable choice for both, as displayed in Fig 3]
an example using data from the forecaster scoring highest on the short-term targets.

3.2 Forecast accuracy and calibration

For the short-term targets, the ensemble recalibration method improves the mean log score for almost all
forecasters. Both the nonparametric and parametric recalibration methods significantly improve the
mean log score, and the ensemble improves it even further. For the seasonal targets, some component
recalibration methods do not improve accuracy, although the ensemble method does improve accuracy,
averaged over all forecasters. However, the ensemble improves accuracy for seasonal targets in only
about three-quarters of forecasters. See Fig[d and Fig

Furthermore, in Fig [5| we see that the recalibrated forecaster’s improvement in calibration (as
measured by entropy) is quite close to the improvement in mean log score. This confirms our
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Fig 3. Mean log score for the most accurate forecaster of the short-term targets, for the different recalibration
methods. A window size of k corresponds to training recalibration on forecasts within & weeks of the given
forecast week, inclusive. Log score is averaged over 9 seasons, 11 locations, and 29 weeks (higher log score is
better). The window size hardly affects performance of the parametric recalibration model. However, the smallest
window sizes hurt the nonparametric model.

expectations from . Fig |§| gives a more direct comparison of improvements in accuracy versus
calibration, i.e., in mean log score versus entropy, for the short-term forecasts. (Note that we estimate
the entropy of the distribution of PIT values using a simple histogram estimator with 100 equal bins
along the interval [0, 1].) We see a clear linear trend, with slope approximately 1, again confirming .

Finally, in Fig[7] we show that our ensemble recalibration method increases the entropy of the PIT
distribution to nearly zero for nearly every forecaster. The two exceptions, the line segments towards the
bottom of Fig |Z|, correspond to particularly poor forecasters (so poor that are outperformed by a baseline
forecaster that outputs a uniform distribution).

3.3 Recalibrating the FluSight ensemble

As we just saw, recalibration improves the performance of the individual forecasters in the FluSight
Network. A natural follow up is therefore to investigate whether it can improve the performance of the
FluSight ensemble, a forecaster that combines 27 component forecasters (the individual FluSight
forecasters), whose construction is described in [19)].

As both recalibration and ensembling are post-processing methods (i.e., that can be applied in
post-processing of forecast data), we are left with two options to explore. We can recalibrate the
component forecasters and then ensemble (C-E), or ensemble the components and then recalibrate (E-C).
In the C-E model, we train ensemble weights in a leave-one-season-out format, on the recalibrated
component forecasts. In the E-C model, we train ensemble weights in a leave-one-season-out format on
the original component forecasts, and then recalibrate the ensemble forecasts.

Fig [§| reveals that E-C model performs better than the C-E model. This is in line with established
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would.

forecasting theory, which states that linear ensembles (which take a linear combination of component
forecasters, such as the FluSight ensemble approach) themselves are generally miscalibrated, even when
the individual component forecasters are themselves calibrated [5,8.[22].

4 Discussion

Even in a domain as complex as epidemic forecasting, relatively simple recalibration methods such as
those described in this paper can significantly improve both calibration and accuracy. A forecaster’s
performance for any proper score can be decomposed into three components: the inherent uncertainty of
the target itself, the resolution of the forecaster (concentration of the forecasts), and the reliability of the
forecaster to the target (calibration) [1]. In epidemic forecasting, without seasonality-aware recalibration
training (such as that proposed and implemented in this paper), recalibration will not affect the
resolution term, which is left to the individual forecasters, but it will improve the reliability term.
However, using seasonality-aware recalibration, it can also improve the resolution term.

Over 9 seasons of forecast data from 27 forecasters in the FluSight Challenge, we found that
recalibration was especially helpful for the short-term targets (1-4 week ahead forecasts). With the
exception of two very similar forecasters that have poor performance, the ensemble recalibration method
was able to reduce the entropy of the PIT distribution to nearly zero (not or barely statistically
significantly different than a uniform distribution). The recalibrated forecasts are therefore more
accurate and more reliable. This is true across a diverse set of forecasters, including mechanistic,
statistical, baseline, and ensemble models; indeed, as our recalibration method treats the forecaster as a
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black box, it can be applied to any forecaster, given access to suitable training data (retrospective
historical forecasts).

The performance of recalibration with respect to the seasonal targets (onset, peak week, and peak
percentage) was less conclusive. Although the mean log score averaged over all of the forecasters was
improved, recalibration only improved the performance of about three-quarters of the forecasters.
Seasonal targets are inherently more difficult to recalibrate because at the end of the season, the true
value has almost certainly been observed, and the forecasts are highly confident. For these forecasts, the
correct bin has a mass of almost 1, and the observed PIT value then is approximately 0.5. At the end of
the season, the PIT distribution is very concentrated at 0.5, which indicates underconfidence and poor
calibration. If these PIT values of 0.5 are used to train forecasts for recalibration earlier in the season,
before the target is observed, then recalibration incorrectly makes the forecast more confident. Because
one is unsure whether the season peak has occurred or not for several weeks after the peak occurs,
recalibration training is a nontrivial task. In general, more work is required to reliably improve accuracy
and calibration for seasonal targets, which is a topic for future work.
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