A General Framework for Fast Stagewise Algorithms

Ryan J. Tibshirani
Carnegie Mellon University

ryantibs@stat.cmu.edu

Abstract

Forward stagewise regression follows a very simple strategy for constructing a sequence of
sparse regression estimates: it starts with all coefficients equal to zero, and iteratively updates
the coefficient (by a small amount €) of the variable that achieves the maximal absolute inner
product with the current residual. This procedure has an interesting connection to the lasso:
under some conditions, it is known that the sequence of forward stagewise estimates exactly
coincides with the lasso path, as the step size € goes to zero. Furthermore, essentially the same
equivalence holds outside of least squares regression, with the minimization of a differentiable
convex loss function subject to an ¢; norm constraint (the stagewise algorithm now updates the
coefficient corresponding to the maximal absolute component of the gradient).

Even when they do not match their ¢;-constrained analogues, stagewise estimates provide
a useful approximation, and are computationally appealing. Their success in sparse modeling
motivates the question: can a simple, effective strategy like forward stagewise be applied more
broadly in other regularization settings, beyond the ¢; norm and sparsity? The current paper
is an attempt to do just this. We present a general framework for stagewise estimation, which
yields fast algorithms for problems such as group-structured learning, matrix completion, image
denoising, and more.

Keywords: forward stagewise regression, lasso, e-boosting, regularization paths

1 Introduction

In a regression setting, let y € R™ denote an outcome vector and X € R™*P a matrix of predictor
variables, with columns Xi,... X, € R". For modeling y as a linear function of X, we begin by
considering (among the many possible candidates for sparse estimation tools) a simple method: for-
ward stagewise regression. In words, forward stagewise regression produces a sequence of coefficient
estimates %), k = 0,1,2,..., by iteratively decreasing the maximal absolute inner product of a
variable with the current residual, each time by only a small amount. A more precise description of
the algorithm is as follows.

Algorithm 1 (Forward stagewise regression).

Fiz € > 0, initialize °) = 0, and repeat for k =1,2,3,...,

BH = BEY e sign(XT (y — XBEY)) ey, (1)
where i € argmax \XjT(y — xptk=b)y). (2)
J=1,...p

In the above, € > 0 is a small fixed constant (e.g., € = 0.01), commonly referred to as the step
size or learning rate; e; denotes the ith standard basis vector in RP; and the element notation in
(2) emphasizes that the maximizing index ¢ need not be unique. The basic idea behind the forward
stagewise updates (1), (2) is highly intuitive: at each iteration we greedily select the variable ¢ that
has the largest absolute inner product (or correlation, for standardized variables) with the residual,

and we add s;e to its coefficient, where s; is the sign of this inner product. Accordingly, the fitted

values undergo the update:
Xp® = x4 e 5, X,

Such greediness, in selecting variable ¢, is counterbalanced by the small step size € > 0; instead of
increasing the coeflicient of X; by a (possibly) large amount in the fitted model, forward stagewise
only increases it by e, which “slows down” the learning process. As a result, it typically requires
many iterations to produce estimates of reasonable interest with forward stagewise regression, e.g.,
it could easily take thousands of iterations to reach a model with only tens of active variables (we
use “active” here to refer to variables that are assigned nonzero coefficients). See the left panel of
Figure 1 for a small example.

Stagewise path Lasso path

© ©

o | o |

< < |

o o
]
2 — —
g
= o 3]
5 ° 7 S
[e]
O

o o

IS o S

[aV] [aV]

o o

| [

T I I I I T I I I I
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0
. .
8%, 18]I

Figure 1: A simple example using the prostate cancer data from Hastie et al. (2009), where the log
PSA score of n = 67 men with prostate cancer is modeled as a linear function of p = 8 biological
predictors. The left panel shows the forward stagewise regression estimates f%) € R®, k =1,2,3,.. .,
with the 8 coordinates plotted in different colors. The stagewise algorithm was run with e = 0.01 for
250 iterations, and the x-axis here gives the £1 norm of the estimates across iterations. The right
panel shows the lasso solution path, also parametrized by the {1 norm of the estimate. The similarity
between the stagewise and lasso paths is visually striking; for small enough €, they appear identical.
This is not a coincidence and has been rigorously studied by Efron et al. (2004), and other authors;
in Section 2.1 we provide an intuitive explanation for this phenomenon.

This “slow learning” property is a key difference between forward stagewise regression and the
closely-named forward stepwise regression procedure: at each iteration, the latter algorithm chooses
a variable in a similar manner to that in (2)!, but once it does so, it updates the fitted model
by regressing y on all variables selected thus far. While both are greedy algorithms, the stepwise
procedure is much greedier; after k iterations, it produces a model with exactly k active variables.

1If A denotes the active set at the end of iteration k — 1, then at iteration k forward stepwise chooses the variable
i such that the sum of squared errors from regressing y onto the variables in A U {i} is smallest. This is equivalent
to choosing 4 such that |XiT(y — X,B(k’l))\ is largest, where 8(*=1) denote the coefficients from regressing y on the
variables in A, and X is the residual from regressing X; on the variables in A.

Forward stagewise and forward stepwise are old techniques (some classic references for stepwise
regression methods are Efroymson (1966) and Draper & Smith (1966), but there could have been
earlier relevant work). According to Hastie et al. (2009), forward stagewise was historically dismissed
by statisticians as being “inefficient” and hence less useful than methods like forward or backward
stepwise. This is perhaps understandable, if we keep in mind the limited computational resources of
the time. From a modern perspective, however, we now appreciate that “slow learning” is a form of
regularization and can present considerable benefits in terms of the generalization error of the fitted
models—this is seen not only in regression, but across variety of settings. Furthermore, by modern
standards, forward stagewise is computationally cheap: to trace out a path of regularized estimates,
we repeat very simple iterations, each one requiring (at most) p inner products, computations that
could be trivially parallelized.

The revival of interest in stagewise regression began with the work of Efron et al. (2004), where
the authors derived a surprising connection between the sequence of forward stagewise estimates
and the solution path of the lasso (Tibshirani 1996),

5 1
B(t) = argmin _|ly — X553 subject to [|8]: <t, 3)
BERP 2

over the regularization parameter ¢ > 0. The relationship between stagewise and the lasso will be
reviewed in Section 2.1 in detail, but the two panels in Figure 1 tell the essence of the story. The
stagewise paths, on the left, appear to be jagged versions of their lasso counterparts, on the right.
Indeed, as the step size € is made smaller, this jaggedness becomes less noticeable, and eventually
the two sets of paths appear exactly the same. This is not a coincidence, and under some conditions
(on the problem instance in consideration), it is known that the stagewise path converges to the
lasso path, as ¢ — 0. Interestingly, when these conditions do not hold, stagewise estimates can
deviate substantially from lasso solutions, and yet in such situations the former estimates can still
perform competitively with the latter, say, in terms of test error (or really any other standard error
metric). This is an important point, and it supports the use of stagewise regression as a general tool
for regularized estimation.

1.1 Summary of our contributions

This paper departs from the lasso setting and considers the generic convex problem

Z(t) € argmin f(z) subject to g(x) <t, (4)
TeR™

where f,g: R™ — R are convex functions, and f is differentiable. Motivated by forward stagewise
regression and its connection to the lasso, our main contribution is the following general stagewise
algorithm for producing an approximate solution path of (4), as the regularization parameter ¢ varies
over [tg, 00).

Algorithm 2 (General stagewise procedure).

Fiz e > 0 and to € R. Initialize £(©) = &(ty), a solution in (4) at t = to. Repeat, for k =1,2,3,...,

) = k=1 4 A (5)

where A € argmin (Vf(z*7Y), 2) subject to g(z) < e. (6)
zER™

The intuition behind the general stagewise algorithm can be seen right away: at each iteration,
we update the current iterate in a direction that minimizes the inner product with the gradient of
f (evaluated at the current iterate), but simultaneously restrict this direction to be small under g.
By applying these updates repeatedly, we implicitly adjust the trade-off between minimizing f and

Group lasso path Stagewise path

© | © |
o o
< <
o o
(%]
o
g
5 N | o
g o =
o
(@]
o | <
o o
N o
(= o
I |
T T T T T T T T T T T I
0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 25
9(B(t) g(8")
o
o
1%2]
2
©
c - _|
kel I
5
o
[$)
o
I
o _|
1
< _|
I
T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
9(B(1)) 9(B™)
Ridge logistic path Stagewise path
© _| ©
o o |
© _| ©
o o
< < |
o o
1%2]
2
©
£ o | 3]
2 o o
o
o
[&]
o _| e
o o
o o
o o -
[|
< <
o o
[T T T Yo T T T
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
9(B(1)) AR

Figure 2: Ezamples comparing the actual solution paths (left column) to the stagewise paths (right
column) across various problem contexts, using the prostate cancer data set. The first row considers
a group lasso model on the prostate data (where the groups were somewhat arbitrarily chosen based
on the predictor types); the second row considers a matriz completion task, on a partially observed
submatrixz of the full predictor matrixz; the third row considers a logistic regression model with ridge
reqularization (the outcome being the indicator of log PSA > 1). In each case, the stagewise estimates
were very easy to compute; Sections 3.1, 3.3, and 3.4 discuss these problem settings in detail.

g, and hence one can imagine that the kth iterate z(*) approximately solves (4) with t = g(x(k)).
In Figure 2, we show a few simple examples of the general stagewise paths implemented for various
different choices of loss functions f and regularizing functions g.

In the next section, we develop further intuition and motivation for the general stagewise pro-
cedure, and we tie in forward stagewise regression as a special case. The rest of this article is then
dedicated to the implementation and analysis of stagewise algorithms: Section 3 derives the specific
form of the stagewise updates (5), (6) for various problem setups, Section 4 conducts large-scale
empirical evaluations of stagewise estimates, Section 5 presents some theory on suboptimality, and
Section 6 concludes with a discussion.

Throughout, our arguments and examples are centered around three points, summarized below.

1. Simple, fast estimation procedures. The general framework for stagewise estimation in Algo-
rithm 2 leads to simple and efficient stagewise procedures for group-structured regularization
problems (e.g., the group lasso, multitask learning), trace norm regularization problems (e.g.,
matrix completion), quadratic regularization problem problems (e.g., nonparametric smooth-
ing), and (some) generalized lasso problems (e.g., image denoising). For such problems, the
proposed stagewise procedures are often competitive with existing commonly-used algorithms
in terms of efficiency, and are generally much simpler.

2. Similar to actual solution paths, but more stable. In many examples, the computed stagewise
path is highly similar to the actual solution path of the corresponding convex regularization
problem in (4)—typically, this happens when the components of the actual solution change
“slowly” with the regularization parameter t. In many others, even though it shares gross
characteristics of the actual solution path, the stagewise path is different—typically, this hap-
pens when the components of the actual solution change “rapidly” with ¢, and the stagewise
component paths are much more stable.

3. Competitive statistical performance. Across essentially all cases, even those in which its con-
structed path is not close to the actual solution path, the stagewise algorithm performs favor-
ably from a statistical point of view. That is, stagewise estimates are comparable to solutions
in (4) with respect to relevant error metrics, across various problem settings. This suggests
that stagewise estimates deserved to be studied on their own, regardless of their proximity to
solutions in (4).

The third point above, on the favorable statistical properties of stagewise estimates, is based on
empirical arguments, rather than theoretical ones. Statistical theory for stagewise estimates is an
important topic for future work.

2 Properties of the general stagewise framework

2.1 Motivation: stagewise regression and the lasso

The lasso estimator is a popular tool for sparse estimation in the regression setting. Displayed in
(3), we assume for simplicity that the lasso solution B(t) in (3) is unique, which holds under very
weak conditions on X.? Recall that the parameter ¢ controls the level of sparsity in the estimate
B(t): when t = 0, we have 3(0) = 0, and as t increases, select components of 3(t) become nonzero,
corresponding to variables entering the lasso model (nonzero components of B(t) can also become
zero, corresponding to variables leaving the model). The solution path 3(t), t € [0, 00) is continuous

2For example, it suffices to assume that X has columns in general position, see Tibshirani (2013). Note that here
we are only claiming uniqueness for all parameter values t < t*, where t* is the smallest /; norm of a least squares
solution of y on X.

and piecewise linear as a function of ¢, and for a large enough value of ¢, the path culminates in a
least squares estimate of y on X.

The right panel of Figure 1 shows an example of the lasso path, which, as we discussed earlier,
appears quite similar to the stagewise path on the left. This is explained by the seminal work of
Efron et al. (2004), who describe two algorithms (actually three, but the third is unimportant for
our purposes): one for explicitly constructing the lasso path B (t) as a continuous, piecewise linear
function of the regularization parameter ¢ € [0, c0), and another for computing the limiting stagewise
regression paths as € — 0. One of the (many) consequences of their work is the following: if each
component of the lasso solution path 5(¢) is a monotone function of ¢, then these two algorithms
coincide, and therefore so do the stagewise and lasso paths (in the limit as ¢ — 0). Note that the
lasso paths for the data example in Figure 1 are indeed monotone, and hence the theory confirms
the observed convergence of stagewise and lasso estimates in this example.

The lasso has undergone intense study as a regularized regression estimator, and its statistical
properties (e.g., its generalization error, or its ability to detect a truly relevant set of variables) are
more or less well-understood at this point. Many of these properties cast the lasso in a favorable
light. Therefore, the equivalence between the (limiting) stagewise and lasso paths lends credibility
to forward stagewise as a regularized regression procedure: for a small step size €, we know that the
forward stagewise estimates will be close to lasso estimates, at least when the individual coordinate
paths are monotone. At a high level, it is actually somewhat remarkable that such a simple algo-
rithm, Algorithm 1, can produce estimates that can stand alongside those defined by the (relatively)
sophisticated optimization problem in (3). There are now several interesting points to raise.

e The monmonotone case. In practice, the components of the lasso path are rarely monotone.
How do the stagewise and lasso paths compare in such cases? A precise theoretical answer is
not known, but empirically, these paths can be quite different. In particular, for problems in
which the predictors X1, ... X, are correlated, the lasso coordinate paths can be very wiggly
(as variables can enter and leave the model repeatedly), while the stagewise paths are often
very stable; see, e.g., Hastie et al. (2007). In support of these empirical findings, the latter
authors derived a local characterization of the lasso and forward stagewise paths: they show
that at any point along the path, the lasso estimate decreases the sum of squares loss function
at an optimal rate with respect to the increase in £; norm, and the (limiting) forward stagewise
estimate decreases the loss function at an optimal rate with respect to the increase in ¢; arc
length. Loosely speaking, since the ¢; arc length accounts for the entire history of the path up
until the current point, the (limiting) stagewise algorithm is less “willing” to produce wiggly
estimates.

Despite these differences, stagewise estimates tend to perform competitively with lasso esti-
mates in terms of test error, and this is true even with highly correlated predictor variables,
when the stagewise and lasso paths are very different (such statements are based on simula-
tions, and not theory; see Hastie et al. (2007), Knudsen (2013)). This is a critical point, as
it suggests that stagewise should be considered as an effective tool for regularized estimation,
apart from any link to a convex problem. We return to this idea throughout the paper.

e General conver loss functions. Fortunately, the stagewise method extends naturally to sparse
modeling in other settings, beyond Gaussian regression. Let f : RP — R be a differentiable
convex loss function, e.g., f(8) = ||y — X B||3 for the regression setting. Beginning again with

B =0, the analogy of the stagewise steps in (1), (2) for the present general setting are

B = gD — e sign(V, f(B5)) - e, (7)
where i € argmax |V, f(8%~)]. (8)
j=1,...p

That is, at each iteration we update S) in the direction opposite to the largest component of
the gradient (largest in absolute value). Note that this reduces to the usual update rules (1),

(2) when f(B) = %|ly — XB||3. Rosset et al. (2004) studied the stagewise routine (7), (8), and
its connection to the ¢;-constrained estimate

B(t) = argmin f(B) subject to [|B]: < t. (9)
BERP

Similar to the result for lasso regression, these authors prove that if the solution 3(¢) in (9)
has monotone coordinate paths, then under mild conditions® on f, the stagewise paths given
by (7), (8) converge to the path B(t) as € — 0. This covers, e.g., the cases of logistic regression
and Poisson regression losses, with predictor variables X in general position. The same general
message, as in the linear regression setting, applies here: compared to the relatively complex
optimization problem (9), the stagewise algorithm (7), (8) is very simple. The most (or really,
the only) advanced part of each iteration is the computation of the gradient V f (B(’“*I)); in
the logistic or Poisson regression settings, the components of V f (ﬁ(kfl)) are given by

Vif(B%) = X (y — w(B*), j=1,...p,

where y € R™ is the outcome and pu(8%~1) € R has components

i=1,...n.

(kDY = 1/[1 4 exp(—(XB%*=1D);)] for logistic regression
Hi) exp((XB%E-D)Y,) for Poisson regression ’

Its precise connection to the ¢;-constrained optimization problem (9) for monotone paths is
encouraging, but even outside of this case, the simple and efficient stagewise algorithm (7), (8)
produces regularized estimates deserving of attention in their own right.

o Forward-backward stagewise. Zhao & Yu (2007) examined a novel modification of forward
stagewise, under a general loss function f: at each iteration, their proposal takes a backward
step (i.e., moves a component of %) towards zero) if this would decrease the loss function by
a sufficient amount &; otherwise it takes a forward step as usual. The authors prove that, as
long as the parameter £ used for the backward steps scales as & = o(e€), the path from this
forward-backward stagewise algorithm converges to the solution path in (9) as ¢ — 0. The
important distinction here is that their result does not assume monotonicity of the coordinate
paths in (9). (It does, however, assume that the loss function f is strongly convex—in the
linear regression setting, f(8) = %Hy — X B||3, this is equivalent to assuming that X € R"*?
has linearly independent predictors, which requires n > p).* The forward-backward stagewise
algorithm hence provides another way to view the connection between (the usual) forward
stagewise steps (7), (8) and the ¢;-regularized optimization problem (9): the forward stagewise
path is an approximation to the solution path in (9) given by skipping the requisite backward
steps needed to correct for nonmonotonicities.

Clearly, there has been some fairly extensive work connecting the stagewise estimates (1), (2) and
the lasso estimate (3), or more generally, the stagewise estimates (7), (8) and the ¢;-constrained esti-
mate (9). Still, however, this connection seems mysterious. Both methods produce a regularization
path, with a fully sparse model on one end, and a fully dense model on the other—but beyond this
basic degree of similarity, why should we expect the stagewise path (7), (8) and the ¢; regularization
path (9) to be so closely related? The work referenced above gives a mathematical treatment of this
question, and we feel, does not provide much intuition. In fact, there is a simple interpretation of
the forward stagewise algorithm that explains its connection to the lasso problem, seen next.

3Essentially, Rosset et al. (2004) assume that conditions on f that imply a unique solution in (9), and allow for a
second order Taylor expansion of f. Such conditions are that f(8) = h(Xp), with h twice differentiable and strictly
convex, and X having columns in general position.

41t is also worth pointing out that the type of convergence considered by Zhao & Yu (2007) is stronger than that
considered by Efron et al. (2004) and Rosset et al. (2004). The former authors prove that, under suitable conditions,
the entire stagewise path converges globally to the lasso solution path; the latter authors only prove a local type of
convergence, that has to do with the limiting stagewise and lasso directions at any fixed point along the path.

2.2 A new perspective on forward stagewise regression

We start by rewriting the steps (7), (8) for the stagewise algorithm, under a general loss f, as

B(k) — ﬁ(k—l) + A,
where A = —¢- Sign(Vif(ﬁ(kfl))) - €4y
and |V, f(8%D) = V(B e

As V;f (ﬁ(kfl)) is maximal in absolute value among all components of the gradient, the quantity
sign(V,; f(B%F=1)) - e; is a subgradient of the £, norm evaluated at V f(8*~1):

A€ —e (a||x||°°‘x:vjf(ﬂ<’“—”>)'

Using the duality between the /., and ¢; norms,

Ac—e- (argmax (VF(BED) 2) subject to ||z], < 1),
zERP

or equivalently,
A e argmin (Vf(8*7Y), 2) subject to ||z|; < e.
zERP
(Above, as before, the element notation emphasizes that the maximizer or minimizer is not neces-
sarily unique.) Hence the forward stagewise steps (7), (8) satisfy

B = gth=1) p A (10)

where A € argmin (Vf(8*~Y),2) subject to 2|1 <e. (11)
z€RP

Written in this form, the stagewise algorithm exhibits a natural connection to the ¢;-regularized
optimization problem (9). At each iteration, forward stagewise moves in a direction that minimizes
the inner product with the gradient of f, among all directions constrained to have a small ¢; norm;
therefore, the sequence of stagewise estimates balance (small) decreases in the loss function f with
(small) increases in the ¢; norm, just like the solution path in (9), as the regularization parameter
t increases. This intuitive perspective aside, the representation (10), (11) for the forward stagewise
estimates is important because it inspires an analogous approach for general convex regularization
problems. This was already presented in Algorithm 2, and next we discuss it further.

2.3 Basic properties of the general stagewise procedure

Recall the general minimization problem in (4), where we assume that the loss function f is convex
and differentiable, and the regularizer g is convex. It can now be seen that the steps (5), (6) in the
general stagewise procedure in Algorithm 2 are directly motivated by the forward stagewise steps,
as expressed in (10), (11). The explanation is similar to that given above: as we repeat the steps of
the algorithm, the iterates are constructed to decrease the loss function f (by following its negative
gradient) at the cost of a small increase in the regularizer g. In this sense, the stagewise algorithm
navigates the trade-off between minimizing f and ¢, and produces an approximate regularization
path for (4), i.e., the kth iterate 2(®) approximately solves problem (4) with t = g(z(*)).

From our work at the end of the last subsection, it is clear that forward stagewise regression
(7), (8), or equivalently (10), (11), is a special case of the general stagewise procedure, applied to
the ¢1-regularized problem (9). Moreover, the general stagewise procedure can be applied in many
other settings, well beyond ¢; regularization, as we show in the next section. Before presenting these
applications, we now make several basic remarks.

e Initialization and termination. In many cases, initializing the algorithm is easy: if g(z) = 0
implies = 0 (e.g., this is true when g¢ is a norm), then we can start the stagewise procedure
at to = 0 and z(°) = 0. In terms of a stopping criterion, a general strategy for (approximately)
tracing a full solution path is to stop the algorithm when g(z*)) does not change very much
between successive iterations. If instead the algorithm has been terminated upon reaching
some maximum number of iterations or some maximum value of g(z(*)), and more iterations
are desired, then the algorithm can surely be restarted from the last reached iterate z(*).

o First-order justification. If g satisfies the triangle inequality (again, e.g., it would as a norm),
then the increase in the value of g between successive iterates is bounded by e:

g(@®) < g(a® V) + g(A) < g(a* V) +e.

Furthermore, we can give a basic (and heuristic) justification of the stagewise steps (5), (6).
Consider the minimization problem (4) at the parameter t = g(z*~1)) + ¢; we can write this
as
i(t) € argmin f(z) — f(z*~Y) subject to g(z) — gz <,
TER™

and then reparametrize as
i(t) = 2D 4 A, (12)

A* € argmin f(zF Y 42) — f(2*7V) subject to gz Y +2) — g(z* V) <e. (13)
zER™

We now modify the problem (13) in two ways: first, we replace the objective function in (13)

with its first-order (linear) Taylor approximation around k=1,

(VD) 2) = f@® 4 2) = f2®D), (14)
and second, we shrink the constraint set in (13) to
{zeR":g(z) <} C{zeR": g(a* D +2) — g(a*7) <},

since, as noted earlier, any element of the left-hand side above is an element of the right-hand
side by the triangle inequality. These two modifications define a different update direction

A € argmin (Vf(z*7V), 2) subject to g(z) <e,
zER™

which is exactly the direction (6) in the general stagewise procedure. Hence the stagewise
algorithm chooses A as above, rather than choosing the actual direction A* in (13), to perform
an update step from z(*~1). This update results in a feasible point z(*) = 2(*=1) 4+ A for the
problem (4) at t = g* =Y +¢; of course, the point z(*) is not necessarily optimal, but as € gets
smaller, the first-order Taylor approximation in (14) becomes tighter, so one would imagine
that the point z(*) becomes closer to optimal.

e Dual update form. If g is a norm, then the update direction defined in (6) can be expressed
more succinctly in terms of the dual norm g*(z) = max,(.)<; 2Tz, We write

A€ —e- (argmax (Vf(x®*Y), 2) subject to g(z) < 1)
zER™

— e 0" (VD)) (15)

i.e., the direction A is —e times a subgradient of the dual norm g* evaluated at Vf(x(k_l)).
This is a useful observation, since many norms admit a known dual norm with known subgra-
dients; we will see examples of this in the coming section.

e [Invariance around V f. The level of difficulty associated with computing the update direction,
i.e., in solving problem (6), depends entirely on g and not on f at all (assuming that Vf can
be readily computed). We can think of A as an operator on R":

A(z) € argmin (x,z) subject to g(z) <e. (16)
zER™

This operator A(+) is often called the linear minimization oracle associated with the function
g, in the optimization literature. At each input z, it returns a minimizer of the problem in
(16). Provided that A(-) can be expressed in closed-form—which is fortuitously the case for
many common statistical optimization problems, as we will see in the sections that follow—the
stagewise update step (5) simply evaluates this operator at Vf(z*~1), and adds the result
to z(k=1):

g®) = gD 4 A(Vf(x(k_l))).

An analogy can be drawn here to the proximal operator in proximal gradient descent, used for
minimizing the composite function f 4 g, where f is smooth but g is (possibly) nonsmooth.
The proximal operator is defined entirely in terms of g, and as long as it can be expressed
analytically, the generalized gradient update for z(*) simply uses the output of this operator
at Vf(z=1).

e Unbounded stagewise steps. Suppose that g is a seminorm, i.e., it satisfies g(ax) = |a|g(z) for
a € R, and g(z + y) < g(x) + g(y), but g can have a nontrivial null space, Ny, = {x € R" :
g(x) = 0}. In this case, the stagewise update step in (5) can be unbounded; in particular, if

(Vf(®),2) #0 for some z € N,, (17)

then we can drive (Vf(x(®), z) — —oo along a sequence with g(z) = 0, and so the stagewise
update step would be clearly undefined. Fortunately, a simple modification of the general
stagewise algorithm can account for this problem. Since we are assuming that g is a seminorm,
the set Ny is a linear subspace. To initialize the general stagewise algorithm at say ¢y = 0,
therefore, we solve the linearly constrained optimization problem

29 € argmin f(x).
TEN,

In subsequent stagewise steps, we then restrict the updates to lie in the subspace orthogonal
to Ng. That is, to be explicit, we replace (5) (6) in Algorithm 2 with
g® = g(-=D L A (18)

where A € argmin (Vf(z*7V), 2) subject to g(z) <, (19)
2ENF

where N, gL denotes the orthocomplement of N,. We will see this modification, e.g., put to use
for the quadratic regularizer g(3) = 8% QB3, where @Q is positive semidefinite and singular.

Some readers may wonder why we are working with the constrained problem (4), and not

Z(\) € ar%gn f(x) 4+ Ag(x), (20)

where A > 0 is now the regularization parameter, and is called the Lagrange multiplier associated
with g. It is probably more common in the current statistics and machine learning literature for
optimization problems to be expressed in the Lagrange form (20), rather than the constrained form
(4). The solution paths of (4) and (20) (given by varying ¢ and A in their respective problems) are

10

not necessarily equal for general convex functions f and g; however, they are equal under very mild
assumptions®, which hold for all of the examples visited in this paper. Therefore, there is not an
important difference in terms of studying (4) versus (20). We choose to focus on (4) as we feel that
the intuition for stagewise algorithms is easier to see with this formulation.

2.4 Related work

There is a lot of work related to the proposal of this paper. Readers familiar with optimization will
likely identify the general stagewise procedure, in Algorithm 2, as a particular type of (normalized)
steepest descent. Steepest descent is an iterative algorithm for minimizing a smooth convex function
f, in which we update the current iterate in a direction that minimizes the inner product with the
gradient of f (evaluated at the current iterate), among all vectors constrained to have norm || - ||
bounded by 1 (e.g., see Boyd & Vandenberghe (2004)); the step size for the update can be chosen in
any one of the usual ways for descent methods. Note that gradient descent is simply a special case
of steepest descent with ||| = || -|2 (modulo normalizing factors). Meanwhile, the general stagewise
algorithm is just steepest descent with || - || = g(-), and a constant step size e. It is important to
point out that our interest in the general stagewise procedure is different from typical interest in
steepest descent. In the classic usage of steepest descent, we seek to minimize a differentiable convex
function f; our choice of norm || - || affects the speed with which we can find such a minimizer, but
under weak conditions, any choice of norm will eventually bring us to a minimizer nonetheless. In
the general stagewise algorithm, we are not really interested in the final minimizer itself, but rather,
the path traversed in order to get to this minimizer. The stagewise path is composed of iterates
that have interesting statistical properties, given by gradually balancing f and g; choosing different
functions g will lead to generically different paths. Focusing on the path, instead of its endpoint,
may seem strange to a researcher in optimization, but it is quite natural for researchers in statistics
and machine learning.

Another method related to our general stagewise proposal is the Frank-Wolfe algorithm (Frank
& Wolfe 1956), used to minimize a differentiable convex function f over a convex set C. Similar to
(projected) gradient descent, which iteratively minimizes local quadratic approximations of f over
C, the Frank-Wolfe algorithm iteratively minimizes local linear approximations of f over C'. In a
recent paper, Jaggi (2013) shed light on Frank-Wolfe as an efficient, scalable algorithm for modern
machine learning problems. For a single value of the regularization parameter ¢, the Frank-Wolfe
algorithm can be used to solve problem (4), taking as the constraint set C' = {z : g(z) < t}; the
Frank-Wolfe steps here look very similar to the general stagewise steps (5), (6), but an important
distinction is that the iterates from Frank-Wolfe result in a single estimate, rather than each iterate
constituting its own estimate along the regularization path, as in the general stagewise procedure.
This connection deserves more discussion, and so we dedicate a subsection of the appendix to it:
see Appendix A.1. Other well-known methods based on local linearization are cutting-plane (Kelley
1960) and bundle (Hiriart-Urruty & Lemarechal 1993) methods. Teo et al. (2007) present a general
bundle method for regularized risk minimization that is particularly relevant to our proposal (see
also Teo et al. (2010)); this is similar to the Frank-Wolfe approach in that it solves the problem (4)
at a fixed value of the parameter ¢ (one difference is that its local linearization steps are based on
the entire history of previous iterates, instead of just the single last iterate). For brevity, we do not
conduct a detailed comparison between their bundle method and our general stagewise procedure,
though we believe it would be interesting to do so.

Yet another class of methods that are highly relevant to our proposal are boosting procedures.
Boosting algorithms are iterative in form, and we typically think of them as tracing out a sequence
of estimates, just like our general stagewise algorithm (and unlike the iterative algorithms described
above, e.g., steepest descent and Frank-Wolfe, which we tend to think of as culminating in a single

5For example, it is enough to assume that g > 0, and that for all parameters ¢, A > 0, the solution sets of (4), (20)
are nonempty.

11

estimate). The literature on boosting is vast; see, e.g., Hastie et al. (2009) or Buhlmann & Yu (2010)
for a nice review. Among boosting methods, gradient boosting (Friedman 2001) most closely parallels
forward stagewise fitting. Consider a setup in which our weak learners are the individual predictor
variables X1, ... X, and the loss function is L(XJ3) = f(5). The gradient boosting updates, using
a shrinkage factor €, are most commonly expressed in terms of the fitted values, as in

Xp™ = XBEN 4 e 0, X;, (21)
where a; € argmin L(X8%™Y + aX,), (22)
a€cR
and i € argmin <min | — VL(XB*D) — aX; 3) (23)
j=1,..p a€cR

The step (23) selects the weak learner X; that best matches the negative gradient, —VL(X 3% 1),
in a least squares sense; the step (22) chooses the coefficient «; of X; via line search. If we assume
that the variables have been scaled to have unit norm, ||X;||2 =1 for j = 1,...p, then it is easy to
see that (23) is equivalent to

i € argmax |X] VL(XB*~V)| = argmax |V, f(B%~V),

j=1,...p j=1,..p

which is exactly the same selection criterion used by forward stagewise under the loss function f,
as expressed in (8). Therefore, at a given iteration, gradient boosting and forward stagewise choose
the next variable ¢ in the same manner, and only differ in their choice of the coefficient of X; in
the constructed additive model. The gradient boosting update in (21) adds € - @; X; to the current
model, where «; is chosen by line search in (22); meanwhile, the forward stagewise update in (7)
can be expressed as

XB® = xpF-1 4 e.5,X;, (24)

where s; = —sign(V; f(3%*~1), a simple choice of coefficient compared to «;. Because a; is chosen
by minimizing the loss function along the direction defined by X; (anchored at X3 1), gradient
boosting is even more greedy than forward stagewise, but practically there is not a big difference
between the two, especially when ¢ is small. In fact, the distinction between (21) and (24) is slight
enough that several authors refer to forward stagewise as a boosting procedure, e.g., Rosset et al.
(2004), Zhao & Yu (2007), and Buhlmann & Yu (2010) refer to forward stagewise as e-boosting.

The tie between boosting and forward stagewise suggests that we might be able to look at our
general stagewise proposal through the lens of boosting, as well. Above we compared boosting and
forward stagewise for the problem of sparse estimation; in this problem, deciding on the universe
of weak learners for gradient boosting is more or less straightforward, as we can use the variables
X1,...X, themselves (or, e.g., smooth marginal transformations of these variables for sparse non-
parametric estimation). This works because each iteration of gradient boosting adds a single weak
learner to the fitted model, so the model is sparse in the early stages of the algorithm, and becomes
increasingly dense as the algorithm proceeds. However, for more complex problems (beyond sparse
estimation), specifying a universe of weak learners is not as straightforward. Consider, e.g., matrix
completion or image denoising—what kind of weak learners would be appropriate here? At a broad
level, our general stagewise procedure offers a prescription for a class of weak learners based on the
regularizer g, through the definition of A in (6). Such weak learners seem intuitively reasonable
in various problem settings: they end up being groups of variables for group-structured estimation
problems (see Section 3.1), rank 1 matrices for matrix completion (Section 3.3), and pixel contrasts
for image denoising (Section 3.5). This may lead to an interesting perspective on gradient boosting
with an arbitrary regularization scheme, though we do not explore it further.

Finally, the form of the update A in (6) sets our work apart from other general path tracing
procedures. Zhao & Yu (2007) and Friedman (2008) propose approximate path following methods
for optimization problems whose regularizers extend beyond the ¢; norm, but their algorithms only

12

update one component of the estimate at a time (which corresponds to utilizing individual variables
as weak learners, in the boosting perspective); on the other hand, our general stagewise procedure
specifically adapts its updates to the regularizer of concern g. We note that, in certain special cases
(i.e., for certain regularizers g), our proposed algorithm bears similarities to existing algorithms in
the literature: for ridge regularization, our proposal is similar to gradient-directed path following,
as studied in Friedman & Popescu (2004) and Ramsay (2005), and for ¢ /¢5 multitask learning, our
stagewise algorithm is similar to the block-wise path following method of Obozinski et al. (2010).

3 Applications of the general stagewise framework

3.1 Group-structured regularization

We begin by considering the group-structured regularization problem
R G
B(t) € argmin f(B) subject to ijHﬂIj ll2 <t, (25)

BERP =

where the index set {1,...p} has been partitioned into G groups 7,...Zg, Bz, € RP7 denotes the
components of 8 € R? for the jth group, and wy,...wg > 0 are fixed weights. The loss f is kept as
a generic differentiable convex function—this is because, as explained in Section 2.3, the stagewise
updates are invariant around V f, in terms of their computational form.

Note that the group lasso problem (Bakin 1999, Yuan & Lin 2006) is a special case of (25). In
the typical group lasso regression setup, we observe an outcome y € R™ and predictors X € R"*P,
and the predictor variables admit some natural grouping 71, ...Zg. To perform group-wise variable
selection, one can use the group lasso estimator, defined as in (25) with

2
2

G
10 = =3 Xz85 | and wy= a5 =10
j=1
where X7, € R"*Ps is the predictor matrix for group j, and p; = |Z;| is the size of the group j. The
same idea clearly applies outside of the linear regression setting (e.g., see Meier et al. (2008) for a
study of the group lasso regularization in logistic regression).

A related yet distinct problem is that of multitask learning. In this setting we consider not one
but multiple learning problems, or tasks, and we want to select a common set of variables that are
important across all tasks. A popular estimator for this purpose is based on /1 /¢ regularization
(Argyriou et al. 2006, Obozinski et al. 2010), and also fits into the framework (25): the loss function
f becomes the sum of the losses across the tasks, and the groups Zi,...Zg collect the coefficients
corresponding to the same variables across tasks. For example, in multitask linear regression, we
write y(? € R™ for the outcome, X € R"*™ for the predictors, and S the coefficients for the
ith task, i = 1,...r. We form a global coefficient vector g = (5(1), e ﬂ(m)) € RP, where p=m-r,
and form groups 7y, . ..Z,,, where Z; collects the coefficients of predictor variable j across the tasks.
The ¢ /05 regularized multitask learning estimator is then defined as in (25) with

1 . N)
FB) =52 Iy = XOBOIE and w; =1, j=1,...m,
=1

where the default is to set all of the weights to 1, in the lack of any prior information about variable
importance (note that the groups Zy,...Z,, are all the same size here).

The general stagewise algorithm, Algorithm 2, does not make any distinction between cases such
as the group lasso and multitask learning problems; it only requires f to be a convex and smooth
function. To initialize the algorithm for the group regularized problem (25), we can take to = 0 and
B = 0. The next lemma shows how to calculate the appropriate update direction A in (6).

13

Lemma 1. For g(8) = Z]G:1 wj|Bz, |2, the general stagewise procedure in Algorithm 2 repeats the
updates %) = pF=D 4 A where A can be computed as follows: first find i such that

Dzl Il o)
(o - j=1,...G W ’
where we abbreviate Vf = V f(*F=1), then let
Az, =0 forall j#1, (27)
—€ - (Vf)l'
Ar, = ————22 28
5T wll(Vhzl 28

We omit the proof; it follows straight from the KKT conditions for (6), with g as defined in
the lemma. Computation of A in (26), (27), (28) is very cheap, and requires O(p) operations. To
rephrase: at the kth iteration, we simply find the group ¢ such that the corresponding block of
the gradient Vf(8%*~1) has the largest £, norm (after scaling appropriately by the weights). We
then move the coefficients for group ¢ in a direction opposite to this gradient value; for all other
groups, we leave their coefficients untouched (note that, if a group has not been visited by past
update steps, then this means leaving its coefficients identically equal to zero). The outputs of the
stagewise algorithm therefore match our intuition about the role of the constraint in (25)—for some
select groups, all coefficients are set to nonzero values, and for other groups, all coefficients are set to
zero. That the actual solution in (25) satisfies this intuitive property can be verified by examining
its own KKT conditions.

Looking back at Figure 2, the first row compares the exact solution and stagewise paths for a
group lasso regression problem. The stagewise path was computed using 300 steps with € = 0.01,
and shows strong similarities to the exact group lasso path. In other problem instances, say, when
the predictors across different groups are highly correlated, the group lasso coefficient paths can
behave wildly with ¢, and yet the stagewise paths can appear much less wild and more stable. Later,
in Section 4, we consider larger examples and give more thorough empirical comparisons.

3.2 Group-structured regularization with arbitrary norms

Several authors have considered group-based regularization using the ¢, norm in place of the usual
{3 norm (e.g., see Turlach et al. (2005) for such an approach in multitask learning). To accomodate
this and other general group-structured regularization approaches, we consider the problem

€]
B(t) € argmin f(3) subject to ijhj(ﬂzj) <t, (29)
BERP — '
Jj=1
where each h; is an arbitrary norm. Let i} denote the dual norm of hy; e.g., if hj(z) = |[z|y;, then

hi(z) = ||z|,,, where 1/g; + 1/r; = 1. Similar to the result in Lemma 1, the stagewise updates for
problem (29) take a simple group-based form.

Lemma 2. For g(8) = Zle w;h;i(Bz,), the general stagewise procedure in Algorithm 2 repeats the

updates %) = pF=1 L A where A can be computed as follows: first find i such that
hi((Vf)z, hE((V)z,
i ((f)zq,) max]((f)Ij)

w; 7j=1,...G wj ’
where we abbreviate Vf = V f(F~1), then let
Az, =0 forall j # 1,

14

Again we omit the proof; it follows from the KKT conditions for (6). Indeed, Lemma 2 covers
Lemma 1 as a special case, recalling that the ¢5 norm is self-dual. Also, recalling that the /., and ¢
norms are dual, Lemma 2 says that the stagewise algorithm for g(3) = E?Ll w; |8z, || o first finds i

such that
[(VHzll 1(Vf)z, 1
s = max ——————,

Wy 7j=1,...G w;

and then defines the update direction A by

Az, =0 forall j#1,

A, - € 0 for £ €Z;, (Vf)e=0
T Twi \sign((Vf)e) for L€ T, (V) #0.

More broadly, Lemma 2 provides a general prescription for deriving the stagewise updates for reg-
ularizers that are block-wise sums of norms, as long as we can compute subgradients of the dual
norms. For example, the norms in consideration could be a mix of ¢, norms, matrix norms, etc.

3.3 Trace norm regularization

Consider a class of optimization problems over matrices,

B(t) € argmin f(B) subject to |B|. < t, (30)

BeRmXn

where || B||« denotes the trace norm (also called the nuclear norm) of a matrix B, i.e., the sum of its
singular values. Perhaps the most well-known example of trace norm regularization comes from the
problem of matriz completion (e.g., see Candes & Recht (2009), Candes & Tao (2010), Mazumder
et al. (2010)). Here the setup is that we only partially observe entries of a matrix ¥ € R™*"—say,
we observe all entries (4,j) € —and we seek to estimate the missing entries. A natural estimator
for this purpose (studied by, e.g., Mazumder et al. (2010)) is defined as in (30) with

f(B)=5 Y (Vi — By

(1,7)€Q

The trace norm also appears in interesting examples beyond matrix completion. For example, Chen
& Ye (2014) consider regularization with the trace norm in multiple nonparametric regression, and
Harchaoui et al. (2012) consider it in large-scale image classification.

The general stagewise algorithm applied to the trace norm regularization problem (30) can be
initialized with to = 0 and B(®) = 0, and the update direction in (6) is now simple and efficient.

Lemma 3. For g(B) = ||B||«, the general stagewise procedure in Algorithm 2 repeats the updates
Bk = g=1) L A where
A=—c-uvT, (31)

with u, v being leading left and right singular vectors, respectively, of Vf(B(k’l)).

The proof relies on the fact that the dual of the trace norm g(B) = ||B||. is the spectral norm
g*(B) = || Bl|2, and then invokes the representation (15) for stagewise estimates. For the stagewise
update direction (31), we need to compute the leading left and right singular vectors u,v of the
m X n matrix V f(B (k’l))—these are the left and right singular vectors corresponding to the top
singular value of Vf(B®*~1). Assuming that Vf(B(*~1) has a distinct largest singular value, this
can be done, e.g., using the power method: letting A = Vf(B(k'_l))7 we first run the power method
on the m x m matrix AAT or the n x n matrix A7 A, depending on whichever is smaller. This gives
us either u or v; to recover the other, we then simply use matrix multiplication: v = ATu/||ATul|

15

or u = Av/||Av|jz. The power method is especially efficient if A = Vf(B*~1) is sparse (each
iteration being faster), or has a large spectral gap (fewer iterations required until convergence). Of
course, alternatives to the power method can be used for computing the leading singular vectors of
Vf(B (k’l)), such as methods based on inverse iterations, Rayleigh quotients, or QR iterations; see,
e.g., Golub & Van Loan (1996).

In the second row of Figure 2, the exact and stagewise paths for are shown matrix completion
problem, where the stagewise paths were computed using 500 steps with ¢ = 0.05. While the two
sets of paths appear fairly similar, we note that it is harder to judge the degree of similarity between
the two in the matrix completion context. Here, the coordinate paths correspond to entries in the
estimated matrix B, and their roles are not as clear as they are in, say, in a regression setting,
where the coordinate paths correspond to the coefficients of individual variables. In other words, it
is difficult to interpret the slight differences between the exact and stagewise paths in the second
row of Figure 2, which present themselves as the trace norm grows large. Therefore, to get a sense
for the effect of these differences, we might compare the mean squared error curves generated by the
exact and stagewise estimates. This is done in depth in Section 4.

3.4 Quadratic regularization

Consider problems of the form

B(t) € argmin f(B) subject to STQB < t, (32)
BERP

where @ *= 0, a positive semidefinite matrix. The quadratic regularizer in (32) encompasses several
common statistical tasks. When @Q = I, the regularization term 373 = ||8||3 is well-known as ridge
(Hoerl & Kennard 1970), or Tikhonov regularization (Tikhonov 1943). This regularizer shrinks
the components of the solution 3 towards zero. In a (generalized) linear model setting with many
predictor variables, such shrinkage helps control the variance of the estimated coefficients. Beyond
this simple ridge case, roughness regularization in nonparametric regression often fits into the form
(32), with @ not just the identity. For example, smoothing splines (Wahba 1990, Green & Silverman
1994) and P-splines (Eilers & Marx 1996) can both be expressed as in (32). To see this, suppose
that y1,...yn € R are observed across input points z1,...2, € R, and let by,...b, denote the B-
spline basis (of, say, cubic order) with knots at locations z1, ...z, € R. Smoothing splines use the
inputs as knots, z1 = 1,...2, = x, (so that p = n); P-splines typically employ a (much) smaller
number of knots across the range of z1,...x, € R. Both estimators solve problem (32), with a loss
function f(8) = 3|ly — BB|3, and B € R"*P having entries B;; = b;(z;), but the two use a different
definition for Q: its entries are given by Q;; = [b ()b} (x) dz in the case of smoothing splines, while
Q = DTD in the case of P-splines, where D is the discrete difference operator of a given (fixed)
integral order. Both estimators can be extended to the logistic or Poisson regression settings, just
by setting f to be the logistic or Poisson loss, with natural parameter n = Bf (Green & Silverman
1994, Eilers & Marx 1996).

When @ is positive definite, the general stagewise algorithm, applied to (32), can be initialized
with to = 0 and 5(®) = 0. The update direction A in (6) is described by the following lemma.

Lemma 4. For g(8) = 81Qp, with Q a positive definite matriz, the general stagewise procedure in
Algorithm 2 repeats the updates f%) = *—1 4 A, where

A= e ﬂ, (33)
VIVAHTQIV S

and Y f is an abbreviation for V f(3*—1).

16

The proof follows by checking the KKT conditions for (6). When @ = I, the update step (33) of
the general stagewise procedure for quadratic regularization is computationally trivial, reducing to

vV
VA2

This yields fast, simple updates for ridge regularized estimators. For a general matrix), computing
the update direction in (33) boils down to solving the linear equation

Qu =V f(B*Y) (34)

in v. This is expensive for an arbitrary, dense Q; a single solve of the linear system (34) generally
requires O(p?) operations. Of course, since the systems across all iterations involve the same linear
operator), we could initially compute a Cholesky decomposition of @ (or a related factorization),
requiring O(p?) operations, and then use this factorization to solve (34) at each iteration, requiring
only O(p?) operations. While certainly more efficient than the naive strategy of separately solving
each instance of (34), this is still not entirely desirable for large problems.

On the other hand, for several cases in which @ is structured or sparse, the linear system (34)
can be solved efficiently. For example, if @) is banded with bandwidth d, then we can solve (34) in
O(pd?) operations (actually, an initial Cholesky decomposition takes O(pd?) operations, and each
successive solve with this decomposition then takes O(pd) operations).

Importantly, the matrix @ is banded in both the smoothing spline and P-spline regularization
cases: for smoothing splines, @ is banded because the B-spline basis functions have local support;
for P-splines, @ is banded because the discrete difference operator is. However, some care must be
taken in applying the stagewise updates in these cases, as) is singular, i.e., positive semidefinite
but not strictly positive definite. The stagewise algorithm needs to be modified, albeit only slightly,
to deal with this issue—this modification was discussed in (18), (19) in Section 2.3, and here we
summarize the implications for problem (32). First we compute the initial iterate to lie in null(Q),
the null space of @,

A =—\e-

BO) e argmin f(B). (35)
Benull(Q)

For, e.g., P-splines with Q = DT D, and D the discrete difference operator of order k, the space
null(Q) is k-dimensional and contains (the evaluations of) all polynomial functions of order k — 1.
The stagewise algorithm is then initialized at such a point £(©) in (35), and ¢, = 0. For future
iterations, note that when V£(8*)) has a nontrivial projection onto null(Q), the stagewise update
in (6) is undefined, since (V f(3*)), 2) can be made arbitrarily small along a direction z such that
27Qz = 0. Therefore, we must further constrain the stagewise update to lie in the orthocomplement
null(Q)* = row(Q), the row space of Q, as in

A € argmin <Vf(ﬂ(k*1)),z> subject to 2T Qz < e.
z€row(Q)

It is not hard to check that, instead of (33), the update now becomes

Ae e @V
VIVHTQTV S

with QT denoting the (Moore-Penrose) generalized inverse of Q.

From a computational perspective, the stagewise update in (36) for the rank deficient case does
not represent more much work than that in (33) for the full rank case. With P-splines, e.g., we have
Q = DTD where D € R("=%)*" i5 a4 banded matrix of full row rank. A short calculation shows that
in this case

(36)

(DTD)t = DT(DDT)2D,

17

i.e., applying Q" is computationally equivalent to two banded linear system solves and two banded
matrix multiplications. Hence one stagewise update for P-spline regularization problems takes O(p)
operations (the bandwidth of D is a constant, d = k + 1), excluding computation of the gradient.

The third row of Figure 2 shows an example of logistic regression with ridge regularization, and
displays the grossly similar exact solution and stagewise paths. Notably, the stagewise path here
was constructed using only 15 steps, with an effective step size /e = 0.1. This is a surprisingly small
number of steps, especially compared to the numbers needed by stagewise in the examples (both
small and large) from other regularization settings covered in this paper. As far as we can tell, this
rough scaling appears to hold for ridge regularization problems in general—for such problems, the
stagewise algorithm can be run with relatively large step sizes for small numbers of steps, and it
will still produce statistically appealing paths. Unfortunately, this trend does not persist uniformly
across all quadratic regularization problems; it seems that the ridge case (@ = I) is really a special
one.

For a second example, we consider P-spline regularization, using both continuous and binomial
outcomes. The left panel of Figure 3 displays an array of stagewise estimates, computed under
P-spline regularization and a Gaussian regression loss. We generated n = 100 noisy observations
Y1,---Y100 from an underlying sinusoidal curve, sampled at input locations x1,...x100 drawn uni-
formly over [0,1]. The P-splines were defined using 30 equally spaced knots across [0, 1], and the
stagewise algorithm was run for 300 steps with /e = 0.005. The figure shows the spline approxi-
mations delivered by the stagewise estimates (from every 15th step along the path, for visibility)
and the true sinusoidal curve overlayed as a thick dotted black line. We note that in this particular
setting, the stagewise algorithm is not so interesting computationally, because each update step
solves a banded linear system, and yet the exact solution can itself be computed at the same cost,
at any regularization parameter value. The example is instead meant to portray that the stagewise
algorithm can produce smooth and visually reasonable estimates of the underlying curve.

The right panel of Figure 3 displays an analogous example using n = 100 binary observations,
Y1, - - Y100, generated according to the probabilities pf = 1/(1 + e =) i = 1,...100, where the
inputs 1, ... x100 were sampled uniformly from [0, 1], and x is a smooth function. The probability
curve p*(z) = 1/(1 + e #®)) is drawn as a thick dotted black line. We ran the stagewise algorithm
under a logistic loss, with /e = 0.005, and for 300 steps; the figure plots the probability curves
associated with the stagewise estimates (from every 15th step along the path, for visibility). Again,
we can see that the fitted curves are smooth and visually reasonable. Computationally, the difficulty
of the stagewise algorithm in this logistic setting is essentially the same as that in the previous
Gaussian setting; all that changes is the computation of the gradient, which is an easy task. The
exact solution, however, is more difficult to compute in this setting than the previous, and requires
the use of iterative algorithm like Newton’s method. This kind of computational invariance around
the loss function, recall, is an advantage of the stagewise framework.

3.5 Generalized lasso regularization

In this last application, we study generalized ¢; regularization problems,

B(t) € argmin f(5) subject to ||DS|1 < t, (37)
BERP

where D is a given matrix (it need not be square). The regularization term above is also called
generalized lasso regularization, since it includes lasso regularization as a special case, with D = I,
but also covers a number of other regularization forms (Tibshirani & Taylor 2011). For example,
fused lasso regularization is encompassed by (37), with D chosen to be the edge incidence matrix of
some graph G, having nodes V = {1,...p} and edges E = {ej,...¢e;,}. In the special case of the

18

Gaussian, 300 steps Logistic, 300 steps

<
—

— ® 0 0 0O O® OO0 GEDOOGOMO0 O CWD oD OO0 GPMO WO O

15

1.0

0.5

0.0

-1.0

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0

Figure 3: Snapshots of the stagewise path for P-spline regularization problems, with continuous data
in the left panel, and binary data in the right panel. In both examples, we use n = 100 points, and
the true data generating curve is displayed as a thick dotted black line. The colored curves show the
stagewise estimates over the first 300 path steps (plotted are every 15th estimate, for visibility).

chain graph, wherein F = {{1,2},{2,3},...{p — 1,p}}, we have

-1 10 0 0
0 -1 1 00

D= :
0 00 ... -1 1

so that ||Dg||; = Zf;i |B; — Bj+1|. This regularization term encourages the ordered components of
B to be piecewise constant, and problem (37) with this particular choice of D is usually called the
1-dimensional fused lasso in the statistics literature (Tibshirani et al. 2005), or I-dimensional total
variation denoising in signal processing (Rudin et al. 1992). In general, the edge incidence matrix
D € R™*P has rows corresponding to edges in F, and its ¢th row is

Di=(0,... =1, 1,...0) € R?,

7 J

provided that the ¢th edge is e, = {4, j}. Hence |DB|1 =3 (; 1ep |8i — Bjl, a regularization term
that encourages the components of 5 to be piecewise constant with respect to the structure defined
by the graph G. Higher degrees of smoothness can be regularized in this framework as well, using
trend filtering methods; see Kim et al. (2009) or Tibshirani (2014) for the 1-dimensional case, and
Wang et al. (2015) for the more general case over arbitrary graphs.

Unfortunately the stagewise update in (6), under the regularizer g(8) = || D1, is not compu-
tationally tractable. Computing this update is the same as solving a linear program, absent of any
special structure in the presence of a generic matrix D. But we can make progress by studying the
generalized lasso from the perspective of convex duality. Our jumping point for the dual is actually

19

the Lagrange form of problem (37), namely

B(A) € argmin f(8) + A DB, (38)
BERP

with A > 0 now being the regularization parameter. The switch from (37) to (38) is justified because
the two parametrizations admit identical solution paths. Following standard arguments in convex
analysis, the dual problem of (38) can be written as

@(\) € argmin f*(—DTu) subject to |lul|ee < A, (39)
uER™

with f* denoting the convex conjugate of f. The primal and dual solutions satisfy the relationship
VF(B(N) + DTa(\) = 0. (40)

The general strategy is now to apply the stagewise algorithm to the dual problem (39) to produce
an approximate dual solution path, and then convert this into an approximate primal solution path
via (40). The stagewise procedure for (39) can be initialized with Ay = 0 and u(®) = 0, and the form
of the updates is described next. We assume that the conjugate function f* is differentiable, which
holds if f is strictly convex.

Lemma 5. Applied to the problem (39), the general stagewise procedure in Algorithm 2 repeats the
updates u®) = uF=1 £ A where

1 [DVf*(-DTu*1)] <0
Aj=—c-q—-1 [DVf*(=DTu=] >0 fori=1,...m. (41)
0 [DVf*(=DTu*"1)] =0

The proof follows from the duality of the /., and ¢; norms, and the alternative representation
in (15) for stagewise updates. Computation of A in (41), aside from evaluating the gradient V f*,
reduces to two matrix multiplications: one by D and one by DT. In many cases (e.g., fused lasso
and trend filtering problems), the matrix D is sparse, which makes this update step very cheap. To

reiterate the dual strategy: we compute the dual estimates u(*), k = 1,2,3,... using the stagewise
updates outlined above, and we compute primal estimates 3*), k = 1,2,3,... by solving for 3% in
the stationarity condition

VF(B®) +DTu® =0, (42)
for each k. The kth dual iterate u(F) is viewed as an approximate solution in (39) at A = ||u®)| 4,

and the kth primal iterate 3(*) an approximate solution in (37) at t = | DS®)||;.
As pointed out by a referee of this paper, there is a key relationship between f and its conjugate
f* that simplifies the update direction in (41) considerably. At step k, observe that

V(=D D) = V(v f(*) = g

The first equality comes from the primal-dual relationship (40) at step k — 1, and the second is due
to the fact that * = Vf*(z2) <= 2z = Vf(z). As a result, the dual update u*) = u*~1) + A with
A as in (41) can be written more succinctly as

u® = 4= _ ¢ sign(D*Y), (43)

where sign(+) is to be interpreted componentwise (with the convention sign(0) = 0). Therefore, one
can think of the dual stagewise strategy as alternating between computing a dual estimate u(*) as
in (43), and computing a primal estimate 5*) by solving (42).

20

We note that, since the stagewise algorithm is being run through the dual, the estimates 3%,
k=1,2,3,... for generalized lasso problems differ from those in the other stagewise implementations
encountered thus far, in that S*) k =1,2,3,... correspond to approximate solutions at increasing
levels of regularization, as k increases. That is, the stagewise algorithm for problem (37) begins at
the unregularized end of the path and iterates towards the fully regularized end, which is opposite
to its usual direction.

A special case worth noting is that of Gaussian signal approximator problems, where the loss is
f(B8) = %lly — Bl|3. For such problems, the primal-dual relationship in (42) reduces to

B0 =y — DTy®).

for each k. This means that the initialization u(®) = 0 and A\g = 0 in the dual is the same as 89 =y
and tg = ||Dy]|; in the primal. Furthermore, it means that the dual updates in (43) lead to primal
updates that can be expressed directly as

B = gtk=1) _ . pTsign(DRKk-D). (44)

From the pure primal perspective, therefore, the stagewise algorithm begins with the trivial un-
regularized estimate 3(°) = y, and to fit subsequent estimates in (44), it iteratively shrinks along
directions opposite to the active rows of D. That is, if Dy8%* =D > 0 (where Dy is the ¢th row of
D), then the algorithm adds D} to B%=1 in forming %), which shrinks D,3*) towards zero, as
DD} > 0 (recall that Dy is a row vector). The case DB%* =1 < 0 is similar. If D;8#~Y =0, then
no shrinkage is applied along Dy.

This story can be made more concrete for fused lasso problems, where D is the edge incidence
matrix of a graph: here the update in (44) evaluates the differences across neighboring components
of %=1 and for any nonzero difference, it shrinks the associated components towards each other
to build 3%). The level of shrinkage is uniform across all active differences, as any two neighboring
components move a constant amount e towards each other.® This is a simple and natural iterative
procedure for fitting piecewise constant estimates over graphs. For small examples using 1d and 2d
grid graphs, see Appendix A.3.

4 Large examples and practical considerations

We compare the proposed general stagewise procedure to various alternatives, with respect to both
computational and statistical performance, across the three of the four major regularization settings
seen so far. The fourth setting is moved to the appendix, for space; see Appendix A.4. The current
section specifically investigates large examples, at least relative to the small examples presented in
Sections 1-3. Of course, one can surely find room to criticize our comparisons, e.g., with respect to
a different tuning of the algorithm that computes exact solutions, a coarser grid of regularization
parameter values over which it computes solutions, a different choice of algorithm completely, etc.
We have tried to conduct fair comparisons in each problem setting, but we recognize that perfectly
fair and exhaustive comparisons are near impossible. The message that we hope to convey is not
that the stagewise algorithm is computationally superior to other algorithms in the problems we
consider, but rather, that the stagewise algorithm is computationally competitive with the others,
yet it is very simple, and capable of producing estimates of high statistical quality.

4.1 Group lasso regression

Overview. We examine two simulated high-dimensional group lasso regression problems. To com-
pute group lasso solution paths, we used the SGL R package, available on the CRAN repository.

6This is assuming that D is the edge incidence matrix of an unweighted graph; with edge weights, the rows of D
scale accordingly, and so the effective amounts of shrinkage in the stagewise algorithm scale accordingly too.

21

This package implements a block coordinate descent algorithm for solving the group lasso problem,
where each block update itself applies accelerated proximal gradient descent (Simon et al. 2013).
This idea is not complicated, but an efficient implementation of this algorithm requires care and
attention to detail, such as backtracking line search for the proximal gradient step sizes. The stage-
wise algorithm, on the other hand, is very simple—in C++, the implementation is only about 50
lines of code. Refer to Section 3.1 for a description of the stagewise update steps. The algorithmics
of the SGL package are also written in C++.

Examples and comparisons. In both problem setups, we used n = 200 observations, p = 4000
predictors, and G = 100 equal-sized groups (of size 40). The true coefficient vector 8* € R0 was
defined to be group sparse, supported on only 4 groups, and the nonzero components were drawn
independently from N(0,1). We generated observations y € R?%° by adding independent N (0,72)
noise to X 3*, where the predictor matrix X € R200%4000 and noise level 7 were chosen under two
different setups. In the first, the entries of X were drawn independently from N(0,1), so that the
predictors were uncorrelated (in the population); we also let 7 = 6. In the second, each row of X
was drawn independently from a N(0,X) distribution, where ¥ had a block correlation structure.
The covariance matrix ¥ was defined so that each predictor variable had unit (population) variance,
but (population) correlation p = 0.85 with 99 other predictors, each from a different group. Further,
in this second setup, we used an elevated noise level 7 = 10.

Figure 4 shows a comparison of the group lasso and stagewise paths, from both computational
and statistical perspectives. We fit group lasso solutions over 100 regularization parameter values
(the SGL package started at the regularized end, and used warm starts). We also ran the stagewise
algorithm in two modes: for 250 steps with € = 1, and for 25 steps with € = 10. The top row of
Figure 4 asserts that, in both the uncorrelated and correlated problem setups, the mean squared
errors of the stagewise fits X®) to the underlying mean X 3* are quite competitive with those of
the exact fits X B(t) In both plots, the red and black error curves, corresponding to the stagewise
fits with e = 1 and the exact fits, respectively, lie directly on top of each other. It took less than 1
second to compute these stagewise fits, in either problem setup; meanwhile, it took about 10 times
this long to compute the group lasso fits in the uncorrelated setup, and 100 times this long in the
correlated setup. The stagewise algorithm with € = 10 took less than 0.1 seconds to compute a
total of 25 estimates, and offers a slightly degraded but still surprisingly competitive mean squared
error curve, in both the correlated and uncorrelated problem setups. Exact timings can be found
in the middle row of Figure 4. The error curves and timings were all averaged over 10 draws of
observations y from the uncorrelated or correlated simulation models (for fixed X, 5*); the timings
were made on a desktop personal computer.

Though the exact and stagewise component paths typically appear quite similar in the uncor-
related problem setup, the same is not true for the correlated setup. The bottom row of Figure 4
displays an example of the two sets of component paths for one simulated draw of observations,
under the correlated predictor model. The component paths of the group lasso solution, on the left,
vary wildly with the regularization parameter; the stagewise paths, on the right, are much more
stable. It is interesting to see that such different estimates can yield similar mean squared errors
(as, recall, shown in the top row of Figure 4) but this is the nature of using correlated predictors in
a regression problem.

Frank-Wolfe. We include a comparison to the Frank-Wolfe algorithm for computing group lasso
solutions, across the same 100 regularization parameter values considered by the coordinate descent
method. Recall that the updates from Frank-Wolfe share the same computational underpinnings as
the stagewise ones, but are combined in a different manner; refer to Appendix A.1 for details. We
implemented the Frank-Wolfe method for group lasso regression in C++, which starts at the largest
regularization parameter value, and uses warm starts along the parameter sequence. The middle
row of Figure 4 reports the Frank-Wolfe timings, averaged over 10 draws from the uncorrelated and

22

Uncorrelated predictors Correlated predictors

* Exact * Exact
8 — ¢ Stagewise, eps=1 * Stagewise, eps=1
- * Stagewise, eps=10 ¢ Stagewise, eps=10
o
3 o
h N
o o o
S N =
) —)
ks ks
g 3 - S
5 = 5 .
2] 2]
8
§ 8 g
= =
g -
g 2 7
T T T T T T T T T
0 50 100 150 200 0 50 100 150 200
Group lasso norm Group lasso norm
Algorithm timings ‘
Method Uncorrelated case | Correlated case
Exact: coordinate descent, 100 solutions 9.08 (1.06) 78.64 (17.92)
Stagewise: € = 1, 250 estimates 0.93 (0.00) 0.94 (0.01)
Stagewise: € = 10, 25 estimates 0.09 (0.00) 0.10 (0.01)
Frank-Wolfe: within 1% of criterion value 67.73 (10.37) 92.91 (8.37)
Frank-Wolfe: within 1% of mean squared error 1.30 (0.56) 13.17 (26.26)
Group lasso path Stagewise path
0 v
o | Q]
o o |
o o
3
s < | o
£ o o
2
o
o Te} [Te}
S 3 s 1
Q e
T T
0 L]
T T
T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200
9(B(t) 9(8®)

Figure 4: Statistical and computational comparisons between group lasso solutions and corresponding
estimates produced by the stagewise approach, when n = 200, p = 4000. The top row shows that
stagewise estimates can achieve competitive mean squared errors to that of group lasso solutions,
as computed by coordinate descent, under two different setups for the predictors in group lasso
regression: uncorrelated and block correlated. (The curves were averaged over 10 simulations, with
standard deviations denoted by dotted lines.) The middle table reports runtimes in seconds (averaged
over 10 simulations, with standard deviations in parentheses) for the various algorithms considered,
and shows that the stagewise algorithm represents a computationally attractive alternative to the SGL
coordinate descent approach and the Frank-Wolfe algorithm. Lastly, the bottom row contrasts the
group lasso and stagewise component paths, for one draw from the correlated predictors setup.

correlated simulation models. We considered two schemes for termination of the algorithm, at each
regularization parameter value t: the first terminates when

ly — XB#)|I3 < 1.01- ||y — XB(1)II3, (45)

where 3(t) is the Frank-Wolfe iterate at ¢, and S(t) is the computed coordinate descent solution at
t; the second terminates when

1X8" ~ XB(1)]3 < 1.01 - max {IX5* = XB@)I3,1X5° — X503}, (46)

where 8t) is the imputed stagewise estimate at the parameter value t (computed by linear inter-
polation of the appropriate neighboring stagewise estimates). In other words, the first rule (45)
stops when the Frank-Wolfe iterate is within 1% of the criterion value achieved by the coordinate
descent solution, and the second rule (46) stops when the Frank-Wolfe iterate is within 1% of the
mean squared error of either of the coordinate descent or stagewise fits. Using the first rule, the
Frank-Wolfe algorithm took about 68 seconds to compute 100 solutions in the uncorrelated problem
setup, and 93 seconds in the correlated problem setup. In terms of the total iteration count, this
meant 18,627 Frank-Wolfe iterations in the uncorrelated case, and 25,579 in the correlated case; these
numbers are meaningful, because, recall, one Frank-Wolfe iteration is (essentially) computationally
equivalent to one stagewise iteration. We can see that Frank-Wolfe struggles here to compute so-
lutions that match the accuracy of coordinate descent solutions, especially for large values of t—in
fact, when we changed the factor of 1.01 to 1 in the stopping rule (45), the Frank-Wolfe algorithm
converged far, far more slowly. (For this part, the coordinate descent solutions themselves were only
computed to moderate accuracy; we used the default convergence threshold in the SGL package.)
The results are more optimistic under the second stopping rule. Under this rule, the Frank-Wolfe
algorithm ran in just over 1 second (274 iterations) in the uncorrelated setup, and about 13 seconds
(3592 iterations) in the correlated setup. But this stopping rule represents an idealistic situation
for Frank-Wolfe, and moreover, it cannot be realistically applied in practice, since it relies on the
underlying mean X g*.

4.2 Matrix completion

Overview. We consider two matrix completion examples, one simulated and one using real data.
To compute solutions of the matrix completion problem, under trace norm regularization, we used
the softImpute R package from CRAN, which implements proximal gradient descent (Mazumder
et al. 2010). The proximal operator here requires a truncated singular value decomposition (SVD)
of a matrix the same dimensions as the input (partially observed) matrix Y. SVD calculations are
generally very expensive, but for this problem a partial SVD can be efficiently computed with clever
schemes based on bidiagonalization or alternating least squares. The softImpute package uses the
latter scheme to compute a truncated SVD, and though this does provide a substantial improve-
ment over the naive method of computing a full SVD, it is still far from cheap. The partial SVD
computation via alternating least squares scales roughly quadratically with the rank of the sought
solution, and this must be repeated for every iteration taken by the algorithm until convergence.
In comparison, the stagewise steps for the matrix completion problem require only the top left
and right singular vectors of a matrix the same size as the input Y. Refer back to Section 3.3 for an
explanation. To emphasize the differences between the two methods: the proximal gradient descent
algorithm of softImpute, at each regularization parameter value t of interest, must iteratively
compute a partial SVD until converging on the desired solution; the stagewise algorithm computes a
single pair of left and right singular vectors, to form one estimate at one parameter value ¢, and then
moves on to the next value of ¢. For the following examples, we used a simple R implementation of
the stagewise algorithm; the computational core of the softImpute package is also written in R.

24

Examples and comparisons. In the first example, we simulated an underlying low-rank matrix
B* € RP0%500 " of rank 50, by letting B* = UUT, where U € R3%9%%0 had independent N(0,1)
entries. We then added N(0,20) noise, and discarded 40% of the entries, to form the input matrix
Y € R590%590 (50 that Y was 60% observed). We ran softImpute at 100 regularization parameter
values (starting at the regularized end, and using warm starts), and we ran two different versions
of the stagewise algorithm: one with ¢ = 50, for 500 steps, and one with ¢ = 250, for 100 steps.
The left plot in Figure 5 shows the mean squared error curves of the resulting estimates, averaged
over 10 draws of the input matrix Y from the above prescription (with B* fixed). We can see that
the stagewise estimates, with € = 50, trace out an essentially identical mean squared error curve to
that from the exact solutions. We can also see that, curiously, the larger step size ¢ = 250 leads
to suboptimal performance in stagewise estimation, as measured by mean squared error. This is
unlike the previous group lasso setting, in which a larger step size still yielded basically the same
performance (albeit slightly noisier mean squared error curves).

Simulated data MovieLens data

14

e Exact e Exact
@ - * Stagewise, eps=50 « Stagewise, eps=50
* Stagewise, eps=250 e Stagewise, eps=250
N
o _|
[Te)
= S
S 8- S
2 @
S 5- g =
El g
@ i
& O 7 ©
2 2
Q |
o < -
o _|
< ~ 4
o
~ T I I I I I T I I I I I
0 5000 10000 20000 0 5000 10000 15000 20000 25000
Trace norm Trace norm
Algorithm timings
Method Simulated data | MovieLens data

Exact: proximal gradient, 100 solutions
Stagewise: € = 50, 500 estimates
Stagewise: € = 250, 100 estimates

60.20 (1.45
92.92 (2.42

334.67
107.66
21.22

Frank-Wolfe: within 1% of criterion value

989.77 (19.88

)
)
18.26 (0.98)
)
)

Frank-Wolfe: within 1% of mean squared error 154.06 (10.76

Figure 5: Comparisons between exact and stagewise estimates for matrix completion problems. The
top left plot shows mean squared error curves for a simulated example of a 40% observed, 500 x 500
imput matriz, and the right shows the same for the MovieLens data, where the input is 6% observed
and 943 x 1682. (The error curves in the left plot were averaged over 10 repetitions, and standard
deviations are drawn as dotted lines.) The stagewise estimates with € = 50 are competitive in both
cases. The bottom table gives the runtimes of softImpute proximal gradient descent, stagewise, and
the Frank-Wolfe algorithm. (Timings for the simulated case were averaged over 10 repetitions, with
standard deviations in parentheses; Frank-Wolfe was not run on the MovieLens example.)

In this simulated example, the proximal gradient descent method implemented by softImpute

25

took an average of 206 iterations to compute 100 solutions across 100 values of the regularization
parameter (averaged over the 10 repetitions of the observation matrix Y'). This means an average
of just 2.06 iterations per solution—quite rapid convergence behavior for a first-order method like
proximal gradient descent. (Note: we used the default convergence threshold for softImpute, which
is only moderately small.) The stagewise algorithms, using step sizes ¢ = 50 and € = 250, ran for
500 and 100 iterations, respectively. As explained, the two types of iterations here are different in
nature. Each iteration of proximal gradient descent computes a truncated SVD, which is of roughly
quadratic complexity in the rank of current solution, and therefore becomes more expensive as we
progress down the regularization path; each stagewise iteration computes a single pair of left and
right singular vectors, which has the same cost throughout the path, independent of the rank of the
current estimate. The bottom row of Figure 5 is a table containing the running times of these two
methods (averaged over 10 draws of Y, and recorded on a desktop computer). We see that proximal
gradient descent spent an average of about 60 seconds to compute 100 solutions, i.e., 0.6 seconds
per solution. The stagewise algorithm with ¢ = 50 took an average of about 93 seconds for 500
steps, and the algorithm with € = 250 an average of 18 seconds for 100 steps, with both translate
into about 0.18 seconds per estimate. The speedy time of 0.6 seconds per estimate of softImpute
is explained by two factors: fast iterations (using the impressive, custom alternating least squares
routine developed by the package authors to compute partial SVDs), and few iterations needed per
solution (recall, only an average of 2.06 per solution in this example). The 0.18 seconds per stagewise
iteration reflects the runtime of computing leading left and right singular vectors with R’s standard
svd function, as our implementation somewhat naively does (it does not take advantage of sparsity
in any way). This naive stagewise implementation works just fine for moderate matrix sizes, as in
the current example. But for larger matrix sizes (and higher levels of missingness), we see significant
improvements when we use a more specialized routine for computing the top singular vectors. We
also see a bigger separation in the costs per estimate with stagewise and proximal gradient descent.
This is discussed next.

The second example is based on the MovieLens data set (collected by the GroupLens Research
Project at the University of Minnesota, see http://grouplens.org/datasets/movielens/). We
examined a subset of the full data set, with 100,000 ratings from m = 943 users on n = 1682 movies
(hence the input matrix Y € R943%1682 was approximately 6% observed). We used an 80%/20% split
of these ratings for training and testing, respectively; i.e., we computed matrix completion estimates
using the first 80% of the ratings, and evaluated test errors on the held out 20% of the ratings. For
the estimates, we ran softImpute over 100 values of the regularization parameter (starting at the
regularized end, using warm starts), and stagewise with e = 50 for 500 steps, as well as with € = 250
for 100 steps. The right plot of Figure 5 shows the test error curves from each of these methods.
The stagewise estimates computed with e = 50 and the exact solutions perform quite similarly, with
the exact solutions having a slight advantage as the trace norm exceeds about 2500. The stagewise
error curve when € = 250 begins by dropping off strongly just like the other two curves, but then it
flattens out too early, while the other two continue descending. (We note that, for step sizes larger
than e = 250, the test error curve stops decreasing even earlier, and for step sizes smaller than
€ = 50, the error curve reaches a slightly lower minimum, in line with that of the exact solution.
This type of behavior is reminiscent of boosting algorithms.)

In terms of computation, the proximal gradient descent algorithm used a total of 1220 iterations
to compute 100 solutions in the MovieLens example, or an average of 122 iterations per solution.
This is much more than the 2.06 seconds per iteration as in the previous simulated example, and
it explains the longer total runtime of about 335 seconds, i.e., the longer total time of 33.5 seconds
per solution. The stagewise algorithms ran, by construction, for 500 and 100 steps and took about
108 and 21 seconds, respectively, i.e., an average of 0.21 seconds per estimate. To compute the
leading left and right singular vectors in each stagewise step here, we used the rARPACK R package
from CRAN, which accomodates sparse matrices. This was highly beneficial because the gradient
Vf(B®* 1) at each stagewise step was very sparse (about 6% entries of its were nonzero, since Y

26

was about 6% observed).

Frank-Wolfe. We now compare the Frank-Wolfe algorithm for computing matrix completion so-
lutions, over the same 100 regularization parameter values used by softImpute. Each Frank-Wolfe
iteration computes a single pair of left and right top singular vectors, just like stagewise iterations;
see Appendix A.1 for a general description of the Frank-Wolfe method (or Jaggi & Sulovsky (2010)
for a study of Frank-Wolfe for trace norm regularization problems in particular). We implemented
the Frank-Wolfe algorithm for matrix completion in R, which starts at the regularized end of the
path, and uses warm starts at each regularization parameter value. The timings for the Frank-Wolfe
method, run on the simulated example, are given in the table in Figure 5 (we did not run it on the
MovieLens example). As before, in the group lasso setting, we considered two different stopping
rules for Frank-Wolfe, applied at each regularization parameter value ¢: the first stops when the
achieved criterion value is within 1% of that achieved by the proximal gradient descent approach
in softImpute, and the second stops when the achieved mean squared error is within 1% of either
that of softImpute or stagewise. In either case, we cap the maximum number of iterations at 100,
at each parameter value t.

Under the first stopping rule, the Frank-Wolfe algorithm required an average of 5847 iterations
to compute 100 solutions (averaged over 10 draws of the input matrix Y); furthermore, this total
was calculated under the limit of 100 maximum iterations per solution, and the algorithm met this
limit at each one of the largest 50 regularization parameter values t. Recall that each one of these
Frank-Wolfe iterations is computationally equivalent to a stagewise iteration. Accordingly, 500 steps
of the stagewise algorithm, with € = 50, ran in about an order of magnitude less time—93 seconds
versus 990 seconds. The message is that the Frank-Wolfe algorithm experiences serious difficulty
in producing solutions at a level of accuracy close to that of proximal gradient descent, especially
for lower levels of regularization. Using the second stopping rule, Frank-Wolfe ran much faster, and
computed 100 solutions in about 997 iterations, or 154 seconds. However, there are two important
points to stress. First, this rule is not generally available in practice, as it depends on performance
measured with respect to the true matrix B*. Second, the termination behavior under this rule is
actually somewhat misleading, because once the mean squared error curve begins to rise (in the left
plot of Figure 5, after about ¢ = 7000 in trace norm), the second rule will always cause Frank-Wolfe
with warm starts to trivially terminate in 1 iteration. Indeed, in the simulated data example, the
Frank-Wolfe algorithm using this rule took about 22 iterations per solution before ¢ = 7000, and
trivially 1 iteration per solution after this point.

4.3 Image denoising

Overview. We study the image denoising problem, cast as a generalized lasso problem with Gaus-
sian signal approximator loss, and 2d fused lasso or 2d total variation regularization (meaning that
the underlying graph is a 2d grid). To compute exact solutions of this problem, we applied a direct
(noniterative) algorithm of Chambolle & Darbon (2009), that reduces this problem to sequence of
maximum flow problems. The “parametric” maximum flow approach taken by these authors is both
very elegant and highly specialized. To the best of our knowledge, their algorithm is one of the
fastest existing algorithms for 2d fused lasso problems (more generally, fused lasso problems over
graphs). For the simulations in this section we relied on a fast C++ implementation provided by
the authors (see http://www.cmap.polytechnique.fr/~antonin/software/), which totals close
to 1000 lines of code. The stagewise algorithm is almost trivially simple in comparison, as our own
C++ implementation requires only about 50 lines of code. For the 2d fused lasso regularizer, the
stagewise update steps reduce to sparse matrix multiplications; refer to Section 3.5 for details.

Examples and comparisons. We inspect two image denoising examples. For the first, we con-
structed a 300 x 200 image to have piecewise constant levels, and added independent N (0, 1) noise

27

to the level of each pixel. Both this true underlying image and its noisy version are displayed in
Figure 6. We then ran the parametric max flow approach of Chambolle & Darbon (2009), to com-
pute exact 2d fused lasso solutions, at 100 values of the regularization parameter. (This algorithm
is direct and does not take warm starts, so each instance was solved separately.) We also ran the
stagewise method in two modes: for 6000 steps with € = 0.0005, and for 500 steps with ¢ = 0.005.
The mean squared error curves for each method are shown in the top left corner of Figure 6, and
timings are given in the bottom table. (All results here have been averaged over 10 draws of the
noisy image, and the timings were recorded on a desktop computer.) We can see that the stagewise
estimates, both with € = 0.0005 and ¢ = 0.005, perform comparably to the exact solutions in terms
of mean squared error, though the estimates under the smaller step size fare slightly better towards
the more regularized end of the path. The 6000 stagewise estimates using ¢ = 0.0005 took about
15 seconds to compute, and the 500 stagewise estimates using ¢ = 0.005 took roughly 1.5 seconds.
The max flow approach required an average of about 110 seconds to compute 100 solutions, with
the majority of computation time spent on solutions at higher levels of regularization (which, here,
correspond to lower mean squared errors). Finally, the estimate from each method that minimized
mean squared error is also plotted in Figure 6; all look very similar and do a visually reasonable
job of recovering the underlying image. That the stagewise approach can deliver such high-quality
denoised images with simple, cheap iterations is both fortuituous and surprising.

The second example considers the stagewise algorithm for a larger-scale image denoising task,
based on a real 640 x 480 image, of Lake Pukaki in front of Mount Cook, New Zealand. We worked
with each color channel—red, green, blue—separately, and the pixel values were scaled to lie between
0 and 1. For each of these three images, we added independent N(0,0.5) noise to the pixel values,
and ran the stagewise algorithm with € = 0.005 for 650 steps. We chose this number of steps because
the achieved mean squared error (averaged over the three color channels) roughly began to rise after
this point. We then recombined the three denoised images—on the red, green, blue color channels—
to form a single image. See Figure 7. Visually, the reconstructed image is remarkably close to the
original one, especially considering the input noisy image on which it is computed. The stagewise
algorithm took a total of around 21 seconds to produce this result; recall, though, that in this time it
actually produced 650 x 3 = 1950 fused lasso estimates (650 steps in three different image denoising
tasks, one for each color).

4.4 Choice of step size

We discuss a main practical issue when running the stagewise algorithm: choice of the step size e.
Of course, when € is too small, the algorithm is less efficient, and when ¢ is too large, the stagewise
estimates can fail to span the full regularization path (or a sizeable portion of it). Our heuristic
suggestion therefore is to start with a large step size €, and plot the progress of the achieved loss
f(z™) and regularizer g(z*)) function values across steps k = 1,2,3, ... of the algorithm. With a
proper choice of €, note that we should see f(z*)) monotone decreasing with k, as well as g(z(*))
monotone increasing with & (this is true of f(Z(t)) and g(&(t)) as we increase the regularization
parameter ¢, in the exact solution computation). If € is too large, then it seems to be the tendency
in practice that the achieved values f(:c(k)) and g(z®)), k = 1,2,3, ... stop their monotone progress
at some point, and alternate back and forth. Figure 8 illustrates this behavior. Once encountered,
an appropriate response would be decrease € (say, halve it), and continue the stagewise algorithm
from the last step before this alternating pattern surfaced.

The heuristic guideline above attempts to produce the largest step size e that still produces an
expansive regularization path of stagewise estimates. This ignores the subtlety that a larger choice
€ may offer suboptimal statistical performance, even if the corresponding estimates span the full
path. This was seen in some examples of Section 4 (e.g., matrix completion, in Figure 5), but not
in others (e.g., group lasso regression, in Figure 4). The issue of tuning e for optimal statistical
performance is more complex and problem dependent. Although it is clearly important, we do not

28

True image Noisy image

3 — ¢ Exact
* Stagewise, eps=0.0005
* Stagewise, eps=0.005
«©
& S
Q
s
S o
s o |
el
o
[
g <
7S
[
(5}
=
N
S S
o
S -
T T T T T T
2e+03 5e+03 2e+04 5e+04
Fused lasso seminorm
Stagewise, e = 0.0005, Stagewise, ¢ = 0.005,
Exact, t = 2055.9
2323 steps 211 steps
,\ .
i
]
|
n
<
o™

‘ Algorithm timings ‘
Method Runtime

Exact: maximum flow, 100 solutions | 109.04 (6.21)
Stagewise: € = 0.0025, 6000 estimates 15.11 (0.18)
Stagewise: € = 0.25, 500 estimates 1.26 (0.02)

Figure 6: Comparisons between exact 2d fused lasso solutions and stagewise estimates on a synthetic
image denoising example. The true underlying 300 x 200 image is displayed in the middle of the top
row. (A color scale is applied for visualization purposes, see the left end of the bottom row.) Over 10
noisy pertubations of this underlying image, with one such example shown in the right plot of the top
row, we compare averaged mean squared errors of the exact solutions and stagewise estimates, in the
left plot of the top row. Average timings for these methods are given in the bottom table. (Standard
deviations are denoted by dotted lines in the error plots, and are in parentheses in the table.) The
stagewise estimates have competitive mean squared errors and are fast to compute. The bottom row
of plots shows the optimal image (i.e., that minimizing mean squared error) from each method, based
on the single noisy image in the top right.

Original image:

Noisy version:

Stagewise, e = 0.001,
650 steps:

(computed in
21.34 seconds)

Figure 7: A more realistic image denoising example using stagewise. We began with a 640 x 480
photograph of Lake Pukaki and Mount Cook, in New Zealand, shown at the top. Working with each
color channel separately, we added noise to form the middle noisy image, and ran the stagewise
algorithm to eventually yield the bottom image, a nice reconstruction.

o
o
S
o
(V]
o
o L
o
S |
w0
3 .
& 3 e
= 8 7
o o _|
o _| [Te)
o
w0
o o -
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
k k

Figure 8: An example displaying a common tendency of stagewise estimates under a choice of step
size € that is too large. We used the group lasso regression data setup from Figure 4 (uncorrelated
case). Both the achieved loss f(x*)) (left plot) and regularizer g(z®)) (right plot) function values
should be monotonic across steps k =1,2,3,.... We see that for the larger step size e = 50 (in red),
progress halts and an alternating pattern begins, with both sequences; for the smaller step size € =5
(in black), progress continues all the way until the end of the path.

study this task in the current paper. We mention the (somewhat obvious) point that strategies like
cross-validation (if applicable, in the given problem setting) could be helpful here.

5 Suboptimality bounds for stagewise estimates

5.1 General stagewise suboptimality

We present a suboptimality bound for estimates produced by the general stagewise algorithm, re-
stricting our attention to a norm regularizer g. The following result makes use of the dual norm g*
of g which, recall, is defined as g*(x) = maxy(.)<1 2T z. Tts proof is based on recursively tracking a
duality gap for the general problem (4), and is deferred until Appendix A.5.

Theorem 1. Consider the general problem (4), assuming that f is differentiable and convez, and g
is a norm. Assume also that V f is Lipschitz with respect to the pair g*, g with constant L, i.e.,

g (Vf(@)=Vf(y) <L-glx—y), alzy.

Fix a regularization parameter value t of interest, and consider running the general stagewise algo-
rithm, Algorithm 2, from z(©) = 2(tg), a solution in (4) at a parameter value to < t. Suppose that
we run the algorithm for k steps, with step size €, such that t, = tg+ ke =t. The resulting stagewise
estimate £F) satisfies

F@®) = f(@(t)) < L(t* —13) + L(t — to)e.
Therefore, if we consider the limiting stagewise estimate at the parameter value t, denoted by Z(t),
as the step size € — 0, then such an estimate satisfies

F@(1) = f(@(1) < L(t* — 1)

31

Remark 1. In the theorem, the kth stagewise estimate z(¥) is taken to be an approximate solution
at the static regularization parameter value t; = tg + ke, not at the dynamic value t;, = g(x(k)), as
we have been considering so far. It is easy to see that with the static choice ty, = ty + ke, we have
g(z(k)) < ty, so that (%) is still feasible at the parameter t;. Furthermore, this choice simplifies the
analysis, and would also simplify running the algorithm in practice (when g is expensive to compute,
e.g., in the trace norm setting).

Remark 2. The assumptions that f is differentiable and that its gradient V f is Lipschitz continuous
are fairly standard in the analysis of optimization algorithms; usually the Lipschitz assumption is
made with respect to a prespecified pair of primal and dual norms, but here instead we utilize the
pair naturally suggested by the problem (4), namely, g, g*. For example, in the least squares setting,
f(B) = %|ly — XB||3, with an arbitrary norm g as the regularizer, the Lipschitz constant of V f is

* T
I = max & X
w20 g(u)

9

which we might write as L = || X7 X||; 4+ in the spirit of matrix norms.

Remark 8. The theorem can be extended to the case when g is a seminorm regularizer. As written,
the Lipschitz constant L would be infinite if g has a nontrivial null space N, that overlaps with V£,
as made precise in (17). However, we could ¢g* redefine as

g*(x) = max xTz,
2ENE, g(2)<1

and one can then check that, under the same conditions, the proof of Theorem 1 goes through just
as before, but now the bounds apply to the modified stagewise estimates in (18), (19).

5.2 Shrunken stagewise framework
For reasons that will become apparent, we introduce a shrunken version of the stagewise estimates.

Algorithm 3 (Shrunken stagewise procedure).

Fize>0, a € (0,1), tg € R. Set (0 = i(ty), a solution in (4) at t = ty. Repeat, fork =1,2,3,...,

z® = a1 L A (47)

where A € argmin (V f(z*~Y), 2) subject to g(z) <. (48)
zER™

The only difference between Algorithm 3 and the existing stagewise proposal in Algorithm 2 is
that the update step in (47) shrinks the current iterate ¥~ by a constant amount a < 1, before
adding the direction A. Note that in the case of unbounded stagewise updates, we would replace
(48) by the subspace constrained version (19), as explained in Section 2.3.

Before we give examples or theory, we motivate the study of the shrunken stagewise algorithm
from a conceptual point of view. It helps to think about lasso regression in particular, with f(8) =
1lly — XB|3 and g(B) = ||Bl1. Recall that in this case, the general stagewise procedure reduces
to classical forward stagewise regression, in Algorithm 1. A step k, forward stagewise updates the
component i of the estimate 3(*~1) such that the variable X; has the largest absolute inner product
with the residual y — X 8*~1; further, it moves ﬂi(k_l) in a direction given by the sign of this inner
product. It is intuitively clear why such a procedure generally yields monotone component paths:
if X; has a large positive inner product with the residual, and we add a small amount € to the ith
coefficient, then in the next step, X; will still have a large positive inner product with the residual.
This inner product will have been slightly decremented due to the change in ith coefficient, but we
will continue to increment the ith coefficient by e (decrement the ith inner product) until another

32

variable attains a comparable inner product with the residual. In other words, the 7th component
path computed by forward stagewise will increase monotonically, and eventually flatten out.

So how does nonmonoticity occur in stagewise paths? Keeping with the above thought experi-
ment, in order for the ith coefficient path to decrease at some point, the variable X; must achieve
a megative inner product with the residual, and this must be largest in magnitude compared to the
inner products from all other variables. Given that X; had a large positive inner product with the
residual in previous iterations, this seems highly unlikely, especially in a high-dimensional setting
with many variables in total. But we know from many examples that the components of the exact
lasso solution path can exhibit many nonmonoticities, even very early on in the regularization path,
and even in high-dimensional settings. To recover the exact path with a stagewise-like algorithm,
therefore, some change needs to be made to counteract the momentum gathered over successive
updates. Zhao & Yu (2007) do just this, as discussed in the introduction, by adding an explicit
backward step to the stagewise routine in which coefficients are driven towards zero as long as this
decreases the loss by a significant amount.

An arguably simpler way to achieve a roughly similar effect is to shrink all coefficients towards
zero at each step. This is what is done by the shrunken stagewise method, in Algorithm 3, via the
parameter a < 1. In shrunken stagewise for lasso regression, the importance of each variable wanes
over steps of the algorithm. Thus, in the absence of attention from the stagewise update mechanism,
a coefficient path slides towards zero, instead of leveling off; for a coefficient path to depart from
zero, or even remain at a constant level, it must regain the attention of the update mechanism by
repeatedly achieving the maximal absolute inner product. This actually represents a fairly different
philosophy from the pure stagewise approach (with o = 1) and the two can be crudely constrasted
as follows: pure stagewise keeps coefficients at constant levels, unless there is good reason to move
them away from zero; shrunken stagewise drives coefficients to zero, unless there is good reason to
keep them on their current trajectories.

We give a small example of shrunken stagewise applied to lasso regression, with n = 20 observa-
tions and p = 10 variables. The rows of the predictor matrix X € R2°*19 were drawn independently
from a Gaussian distribution with mean zero, and a covariance matrix having unit diagonals and
constant off-diagonals p = 0.8. The underlying coefficient vector 3* € R'? had dense support, with
all entries drawn from N(0,1), and the observations y were formed by adding independent N (0, 1)
noise to X *. Figure 9 shows the exact lasso solution path on the left panel, the stagewise path in
the middle panel, and the shrunkage stagewise path on the right. We can see that, at various points,
components of the exact lasso path become nonmonotone, and as expected, the corresponding the
stagewise component paths ignore this trend and level out. The shrunken stagewise component
paths pick up on the nonmonoticities and actually mimick the exact ones quite closely. We note
that the stagewise and shrunken stagewise algorithms were not run here for efficiency, but were run
at fine resolution to reveal their limiting behaviors; both used a small step size ¢ = 0.0001, and the
latter used a shrinkage factor @ = €/10. The two required 100,000 and 500,000 steps, respectively.

To be upfront, we remark that the shrunken stagewise method is not a computationally efficient
approach, and we do not advocate its use in practice. The stagewise algorithm in the above example
could have been run, e.g., with ¢ = 0.01 and for 100 steps, and this would have yielded a sequence
of estimates with effectively the same pattern. But to capture the nonmonotonicities present in
the exact solution path, larger step sizes do not suffice for shrunken stagewise, and the algorithm
needs to be run with e = 0.0001 and for 500,000 steps—this is clearly not desirable for such a small
example with n = 20 and p = 10, and it does not bode well for scalability. We will see in what
follows that the shrunken stagewise estimates provide a bridge between pure stagewise estimates
and exact solutions in the general convex regularization problem (4). Hence we view the shrunken
stagewise estimates as interesting and worthwhile because they provides this connection.

The main reason we choose to study the shrinkage strategy in Algorithm 3, as opposed to, say,
backward steps, is that the shrinkage approach applies outside of the lasso regularization setting;
as far as we can tell, there is no natural analog of backwards steps beyond the sparse setting. In

33

Lasso Stagewise Shrunken stagewise

o~ o o \ [
@ /
L
©
£
T o o © © AN
o
=3
- Ny
\
7 7 7 \
\\ _— \\/
-
o) o o]
)))
T T T T T T T T T T T T
0 2 4 6 0 2 4 6 0 2 4 6

[EIGIF 181 1%

Figure 9: FEzact, stagewise, and shrunken stagewise paths for a small lasso regression problem with
n = 20 observations, and p = 10 correlated predictors. When components of the lasso solution path
become nonmonotone (e.g., top black path, and bottom red path), the corresponding stagewise ones are
more stable and remain at a constant level, but shrunken stagewise matches the nonmonotonicities.

fact, in the general problem setup, the shrinkage factor v in Algorithm 3 somewhat roughly mirrors
what is done by Frank-Wolfe (this is really a different strategy, but still, it is one that computes
exact solutions; compare equations (48) and (51) from Appendix A.1). A general interpretation
of the shrinkage operation in (48) is that it lessens the dependence of the stagewise estimates on
the computed history, i.e., decreases the stability of the computed stagewise component paths, and
implicitly allows for more weight to be placed on the local update directions. Empirical examples
with, e.g., group lasso regression or matrix completion confirm that shrunken stagewise estimates
can be tuned to track the exact solution path even when the pure stagewise path deviates from it.
We do not examine these cases here but instead turn to theoretical development.

5.3 Shrunken stagewise suboptimality

As in Section 5.1, we assume that g is a norm, and write g* for its dual norm. We also consider the
kth shrunken stagewise estimate (%) as an approximate solution in the general problem (4) at a
static value of the regularization parameter, defined recursively as tp = atrp_1 +€. A straightforward
inductive argument shows that g(z(*)) < ¢, i.e., the estimate 2(®) is feasible for the problem (4) at
t = t;. Under this setup, the same limiting suboptimality bound as in Theorem 1 can be established
for the shrunken stagewise estimates. For the sake of space, we do not present this result. Instead
we show that, under additional conditions, the shrunken stagewise estimates overcome the stability
inherent to stagewise, and achieve the idealized behavior suggested by Figure 9, i.e., they converge
to exact solutions along the path. See Appendix A.6 for the proof.

Theorem 2. Consider the general problem (4). Assume, as in Theorem 1, that the loss function f
is differentiable and convez, the reqularizer g is a norm, and V f is Lipschitz with respect to g*, g,
having Lipschitz constant L. Fix a parameter value t, and consider running the shrunken stagewise
algorithm, Algorithm 3, from =(©) = Z(ty), a solution in (4) at a parameter value to < t. Consider
the limiting estimate Z(t) at the parameter value t, as both ¢ — 0 and o — 1. Suppose that

1— _
OLAO and 12a
€

— 0.
€

34

Let k = k(e,) denote the number of steps taken by the shrunken stagewise algorithm to reach the
parameter value tj, = t; note that k — 0o as € = 0, o — 1. Define the effective Lagrange parameters
N = g* (Vf(@®D)),i=1,...k, and assume that these parameters exhibit a weak type of decay:

)\i/tiZCL, ’i:L...T—l,

(C+16*-2, (49)
2 b

Ar/ty <
for some r < k, with r/k — 0 € (0,1), and some constant C. Then the limiting shrunken stagewise
estimate &(t) at the parameter value t, as € — 0 and a — 1, satisfies

f(@(t) = f(&(t)),
i.e., Z(t) is a solution in (4) at the parameter value t.

Remark 1. The result above can be extended to the case when ¢ is a seminorm. We simply need
to redefine g* and the updates in order to accomodate the possibly nontrivial null space N, of g, as
discussed in the third remark following Theorem 1.

Remark 2. The assumption in (49) of Theorem 2 stands out as technical assumption that is hard
to interpret. This condition is used in the proof to control a term in the duality gap expansion that
involves differences of g*(V f(2(")) across successive iterations i,i+ 1. The theorem refers to such a
quantity, \; = ¢g*(V f (:10(")))7 as the “effective Lagrange parameter” at (¥, To explain this, consider
the stationarity condition for the problem (4),

Vf(x)+ v =0,

where v € Jg(z) = argmax . ,)<; 2Tz, This implies that Vf(z) = —\v, or g*(Vf(x)) = A\g*(v) = A,
which gives an expression for the Lagrange parameter associated with a solution of the constrained
problem (4). As z(¥ is not a solution, but an approximate one, we call \; = g*(V f(z(?)) its effective
Lagrange parameter.

The condition (49) says that until some number of steps r along the path, the ratio of effective
Lagrange parameters \; to bound parameters ¢; must not be too small, and then at step r it must
not be too large. This is a formulation of a type of weak decay of A;/t;, i = 1,2,3,.... It is not
intuitively clear to us when (i.e., in what kinds of problems) we should expect this condition to be
satisfied. We can, however, inspect it emprically. For the example lasso problem in Figure 9 (where,
recall, the shrunken stagewise path appears to approach the exact solution path), we plot the ratio
Ai/ti, i =1,2,3,... in Figure 10. This ratio displays a sharp decay across steps of the algorithm,
and so, at least empirically, the assumption (49) seems reasonable. We suspect that in general, the
two hard bounds in (49) can be replaced by a more natural decay condition, and furthermore, there
are characterizable problem classes with sharp decays of the Lagrange to bound parameter ratios.
These are topics for future work.

6 Discussion

We presented a framework for computing incremental stagewise paths in a general regularized es-
timation setting, defined by minimizing a differentiable convex loss function subject to a convex
constraint. The stagewise estimates are explicitly and efficiently computable for a wide variety of
problems, and they provide an approximate solution path for the underlying convex problem of
interest, but exhibit generally more stability as the regularization parameter changes. In some situ-
ations this approximation (i.e., the discrepancy between stagewise estimates and solutions) appears
empirically to be quite tight, and in others it does not. All in all, however, we have found that the
stagewise estimates essentially always offer competitive statistical performance (as measured, e.g.,

35

400 500 600
| | |

1X7(y = XB8) oo/ ti
200 300
| |

100
|

o -

T T T T T I
0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

k

Figure 10: A plot of A/t = | X7 (y — XB®)||oo/tr across steps k of the shrunken stagewise algo-
rithm, for the lasso data set of Figure 9. This decay roughly verifies the condition (49) of Theorem 2,
needed to ensure the convergence of shrunken stagewise estimates to exact solutions.

by test error) with that of exact solutions. This suggests that they should be a point of study, even
apart from their ability to approximate solution paths of convex problems, and a rigorous (theoreti-
cal) characterization of the statistical properties of stagewise estimates is an important direction to
pursue in the future. There are many other potential topics for future work, as alluded to throughout
the paper. It is our hope that other researchers will take an interest too, and that this paper marks
the beginning of a deeper understanding of stagewise capabilities.

Acknowledgements

This work was motivated by an attempt to explain the intuitive connection between forward stage-
wise regression and the lasso, in preparing lectures for a graduate class on optimization at Carnegie
Mellon University. We thank co-teacher Geoff Gordon and the students of this class for early inspir-
ing conversations. We also thank Rob Tibshirani, Jerry Friedman, Jonathan Taylor, Jacob Bien,
and Lester Mackey for their helpful feedback. We are grateful to Jacob Bien for his understanding
and patience throughout our (unusually slow) writing process, and to Lester Mackey for enlightening
discussion on the Frank-Wolfe connection. Lastly, we would like to thank the editors and referees
who reviewed this paper, as they provided extremely helpful and constructive reports. We gratefully
acknowledge the funding support from NSF grant DMS-1309174.

36

A Appendix

A.1 Comparison to Frank-Wolfe

We compare our general stagewise procedure to the Frank-Wolfe algorithm for the general convex
minimization problem (4). At any fixed value of ¢, the Frank-Wolfe algorithm begins with #(*) ¢ R"
such that ¢(#(®)) < ¢, and repeats the following steps (Frank & Wolfe 1956, Jaggi 2013):

i = (1 —y)z*=D 4 HA, (50)
where A € argmin (Vf(2*7), 2) subject to g(z) <, (51)
z€R™
and v=2/(k+1), (52)
for k =1,2,3,.... The Frank-Wolfe steps can be seen as iteratively minimizing local linear approx-

imations of the loss function f over the constraint set {x : g(x) < t}, as is done in (51). The actual
updates performed in (50) take successively smaller and smaller steps in the direction of these local
minimizers. Under fairly weak conditions, the Frank-Wolfe iterates satisfy f(z(*)) — f(2(t)) as
k — oo; in fact, as shown in, e.g., Jaggi (2013), the error f(z(*) — f(&(t)) is O(1/k). Jaggi (2013)
also shows how to use the Frank-Wolfe iterates to easily compute a duality gap for the problem (4),
so in practice we could stop iterating when this duality gap is sufficiently small.

At face value, the Frank-Wolfe steps (50), (51), (52) and the stagewise steps (5), (6) appear very
similar. One apparent difference is that the former steps are iterated to ultimately yield a single
estimate at a given value of the regularization parameter ¢, whereas the latter steps are iterated to
yield several estimates (one per iteration) that form a regularization path. We make more substantial
and informative comparisons between the two methods below.

First, consider a setting in which we run the Frank-Wolfe algorithm multiple times, in order to
compute estimates at multiple values of the regularization parameter t; a typical strategy would be
to run the Frank-Wolfe algorithm until convergence at each desired value of ¢, using “warm starts”
(i.e., at the end of each run, we would use the newly computed estimate as the initial guess z© in
the Frank-Wolfe algorithm at the next parameter value). With this in mind, it may be tempting to
compare our stagewise algorithm to something like a 1-step Frank-Wolfe algorithm, where at each
regularization parameter value, we perform a single Frank-Wolfe update to construct our estimate,
rather than iterating the algorithm until convergence. But a more careful examination shows that
these two approaches, the stagewise and 1-step Frank-Wolfe approaches, are actually quite different.
To make the comparison as direct as possible, assume that the 1-step Frank-Wolfe procedure starts
with 2(9) = Z(t¢), a solution in (4) at ¢t = to. It would then compute estimates z(*), k = 1,2,3, ...

at the regularization parameter values ty = tx—1 +€, k=1,2,3,... via
z® = A, (53)
where A € argmin (Vf(z*~Y), 2) subject to g(z) < t, (54)
zER™

which is just a single step of the Frank-Wolfe algorithm at ¢ = ¢, taking as the initial guess z(*=1).
We can see that both the 1-step Frank-Wolfe (53), (54) and stagewise (5), (6) updates utilize a local
linearization of f around previous estimate, and minimize this linear function over a sublevel set
of g, but they do so in subtly different ways. The 1-step Frank-Wolfe approach takes z(*) to be
a minimizer of (Vf(z(*~1)), 2) over the full constraint set {z : g(z) < t3}; the stagewise approach
computes a minimizer of (V f(z(*~1), z) over a highly restricted constraint set {z : g(z) < €}, and
adds this to the last estimate z(*~1) to form (%), In both cases, the estimate (¥ is a feasible point
for problem (4) at t = t;. See Figure 11 for an illustration.

Though seemingly similar, these two strategies result in entirely different paths of estimates.
Generally speaking, the 1-step Frank-Wolfe strategy (53), (54) is not very useful, since its update

37

1-step Frank-Wolfe Stagewise

2(*)

{z:g(x) <tp_1}
{z:g(x) <t}

{z:g(x) <tp}

Figure 11: Illustration of the 1-step Frank- Wolfe and stagewise methods. FEach starts with an estimate
5=V at a reqularization parameter value ty,_1, satisfying g(x*~1)) < t,_1, i.e., a feasible point for
the problem (4) (but not necessarily optimal). At a larger parameter value ty, = tx_1 + €, the 1-step
Frank-Wolfe strategy inflates the constraint set to {x : g(x) < ti}, and chooses its estimate £*) to
be the point most aligned with —Vf(x(’“’l)) over this new constraint set. Note that this means x*)
can be far away from the previous estimate ¥~V at tj,_. (Note also that the typical Frank-Wolfe
strategy, as opposed to the 1-step strategy, would not settle for such a point **) as its estimate at
tr, but would continue iterating from x*) by repeatedly minimizing linear approzimations of f over
{z : g(x) < tx} until convergence.) The stagewise strategy instead builds a shrunken constraint set
{x: g(x) < €} around ¥~ | and considers only the points in this small region as candidates for its
next estimate. It then constructs =¥ using the same logic as above, by finding the point mazimally
aligned with —V f(x*=1)) over the new constraint region. Such differences (between the Frank- Wolfe
and stagewise strategies) may not seem drastic, but they have big implications.

steps discard too much information from previous estimates. Consider, e.g., the ¢; regularization
setting, where g(x) = ||z||1: here each estimate from the 1-step Frank-Wolfe algorithm would have
only one nonzero component, corresponding to the maximum absolute entry of the gradient vector
evaluated at the previous estimate.” Hence, instead of producing a sequence of models that become
progressively more and more dense as the regularization parameter increases, as with the stagewise
algorithm, the 1-step Frank-Wolfe algorithm produces a sequence of trivial models, each with just
one active variable. Similar conclusions can be drawn by looking at settings like group-structured
regularization, trace norm regularization, etc.

We would likely never use the 1-step Frank-Wolfe procedure in practice to compute an (approx-
imate) regularization path, but the insights gained from studying this algorithm carry over to the
more common use case introduced initially: the typical Frank-Wolfe strategy, in which we run the
Frank-Wolfe algorithm until convergence across a sequence of regularization parameter values ty,
k=1,2,3,... with warm starts, discards a lot of information about previously computed estimates.
At a parameter value t, the only information used by the Frank-Wolfe algorithm about the previ-
ously computed estimate z(*~1) is the gradient of f at z(*~1. In particular, in its first step at ty,

7Strictly speaking, if there are ties between the absolute components of the gradient vector at t;, then the estimate
can be taken to be any convex combination t - ZiEI a;e;, where Z is the set of maximizing indices, and each a; > 0
with >7,c7 a; = 1. We do not maintain this distinction throughout our discussion in this section.

38

it chooses the first iterate to minimize the inner product with V f (m(k_l)) over all feasible points.
If this minimizer is far from z(*~1)| then, assuming that the solutions at ¢;_; and t; are close, the
Frank-Wolfe algorithm basically wastes iterations bringing itself back to where it was at the end of
its run for t;_;. Interestingly, the iterations within a run of Frank-Wolfe at a fixed parameter value
ti prevent the algorithm from deviating too far from previous iterates, by means of the shrinkage
factor ~y in (52); however, no such control takes place between runs of the Frank-Wolfe algorithm at
successive parameter values, ty_1 and ty, using warm starts. The stagewise algorithm (5), (6), on
the other hand, shares a great deal of information between estimates at successive iterations (recall
that by definition, the stagewise estimates z(®) and z(*~1 differ by an amount A, controlled to be
small under g), and in this sense, it makes a much more efficient use of its history.

It helps to think about an example. Returning to the ¢; regularization setting, suppose that we
have computed an estimate z(*~1) with, say, 50 nonzero components out of 1000 at some value of
the regularization parameter t;_1. At a slightly larger parameter value t;, the stagewise algorithm
retains essentially all of the information in z(*~!—information about which variables are active,
and the values of their coefficients—and increments (or decrements) another component of z(*—1)
in order to form z(®). By comparison, the Frank-Wolfe algorithm uses z(*~1) as a warm start for its
run at tx, meaning that for its first step, it constructs an iterate with only one nonzero component,
corresponding to the maximal entry of V f (J?(k_l)) in absolute value. In subsequent steps, only one
component of the iterate is adjusted at a time. Said in words, the Frank-Wolfe algorithm at ¢; has
to “relearn” the entire set of active variables (and their coefficient values), starting from the empty
set. This seems like a markedly inefficient use of its computational history, certainly in comparison
to the strategy taken by the stagewise algorithm.®

Of course, a crucial difference to note is that the estimates), k = 1,2,3,... from the Frank-
Wolfe strategy are guaranteed to be solutions in (4) (up to an arbitrarily small level of tolerance) at
t =tn, k=1,2,3,..., but the stagewise estimates), k = 1,2,3,... are not, even as the spacings
between the parameter values tx, k = 1,2,3,... goes to zero. One can also argue that the Frank-
Wolfe algorithm was not designed to be a path following method, and so comparing to stagewise
by simply applying it sequentially with warm starts is unfair. Some authors have in fact considered
a specialized Frank-Wolfe strategy for path following (Giesen, Jaggi & Laue 20124,b, Giesen, Laue,
Muller & Swiercy 2012). The general goal of this work is to construct an approximate solution path
in (4) with a provable approximation guarantee (in terms of the achieved criterion value); this is
done by continuously controlling a duality gap for problem (4) as the parameter ¢ varies, a strategy
that does not depend on the Frank-Wolfe algorithm per se, but can be easily combined with the
Frank-Wolfe algorithm because its iterates readily admit such a duality gap.

An implementation of this idea is described in Appendix A.2, as its details are not important
for the current discussion. This path following algorithm can be setup to ensure a ~-suboptimal
regularization path, for any given v > 0, and operationally it boils down to running Frank-Wolfe
with warm starts over a sequence of adaptively chosen parameter values tg, k = 1,2,3,... (rather
than a given fixed sequence). This adaptive sequence tends to be quite dense for reasonably small
choices of vy (much more dense than a typical fixed sequence of parameter values); for larger values
of v, the adaptive sequence is more spread out, but then it takes many iterations at each parameter
value to converge (especially towards the unregularized end of the path). Altogether, the previous
comparison between the two methods can be drawn here: the Frank-Wolfe path following strategy
does not utilize its history nearly as efficiently as the stagewise algorithm.

The arguments in this subsection were based on high level reasoning, but they are empirically
supported by the examples in Section 4 and Appendix A.2, where we run stagewise and Frank-Wolfe

8For completeness, we should also mention a variant of the Frank-Wolfe algorithm proposed by Jaggi (2013), in
which the shrinkage parameter v in the update step (50) is chosen by exact line search, as opposed to the default
(nonadaptive) value given in (52). This version of Frank-Wolfe has the potential to use more of its history, depending
on how large it sets v (especially in its first step). Still, a key distinction remains: the adaptive Frank-Wolfe strategy
can choose to use more or less of its history, but for the stagewise algorithm, relying strongly on the computed history
is a set decision, not one that is adaptively made over its course.

39

across a variety of scenarios. We can summarize the comparisons drawn, as follows:

e the Frank-Wolfe algorithm, run over a (fixed or adaptively chosen) sequence of regularization
parameter values with warm starts, does not make an efficient use of its computational history
(i.e., the information contained in previously computed estimates), however, it is guaranteed
to produce solutions in (4);

e the stagewise algorithm is comparatively much more efficient at using its history of estimates,
but is not guaranteed to produce solutions in (4).

The fact that the Frank-Wolfe algorithm relinquishes so much information about previously com-
puted estimates may actually be the reason, roughly speaking, that it is able to produce solutions
in (4). After all, the solution path of the convex regularization problem (4) can be highly variable
(e.g., in a high-dimensional lasso problem with correlated predictors, the components of the solu-
tion path can be very wiggly, as predictors can enter and leave the active set many times), and
therefore, by not constraining itself to adhere strongly to its computational past, the Frank-Wolfe
algorithm gives itself the freedom to fit each individual estimate (along a sequence of parameter
values ty, k = 1,2,3,...) as appropriate. In contrast, the stagewise algorithm is constrained to
closely follow its path of previously computed estimates, by construction. One can even look at this
constrained nature of fitting as an additional type of regularization. Except in special circumstances
(e.g., monotone component paths in the lasso problem), the stagewise algorithm does not produce
exact solutions in (4), a seemingly necessary feature of any estimation method that follows its com-
putational history so carefully. But this is not the end of the story; recall that a main theme of
this paper (the third point in Section 1.1) is that the stagewise estimates are statistically useful in
their own right, in spite of their (sometimes extreme) differences to solutions in (4). If we view the
momentum that the stagewise method places on past estimates as an added level of regularization,
then such a claim is perhaps not too surprising.

A.2 Path following with Frank-Wolfe

Assume that g is a norm, and g*(x) = maxy(.)<; 2Tz is its dual norm. We propose below a path
following strategy to compute an approximate regularization path with Frank-Wolfe.

Algorithm 4 (Path following with Frank-Wolfe).
Fiz v,m > 0, and ty € R. Set &(tg) = Z(to), a solution in (4) at t =ty. Repeat, for k =1,2,3,...:

e Calculate
(1—1/m)y
g*(Vf(E(tr-1)))’

ty =tk—1+

and set Z(t) = Z(tg—1) for all t € [ti—_1,tk).

o Use Frank-Wolfe to compute T(ty), an (approzimate) solution in (4) at t = i, having duality
gap at most y/m.

One might notice that the above algorithm differs somewhat from the path following algorithms
in Giesen, Jaggi & Laue (2012q,b), Giesen, Laue, Muller & Swiercy (2012) (specifically, in the way
that it handles the regularization parameter ¢ in (4)); we make modifications that we feel simplify
the path following algorithm in the current setting, but really the main idea follows entirely the work
of these authors. Algorithm 4 constructs a piecewise constant regularization path, Z(t), t > to. It
begins by computing a solution in (4) at some initial value ¢t = ¢y (and at a higher level of accuracy
than the standard set for the overall path), increases ¢ until the computed solution no longer meets
the standard of accuracy as measured by the duality gap, recomputes a solution at this new value
of the parameter, increases ¢, and so on.

40

It is easy to verify that the path output by this algorithm is feasible for (4) at all visited values
of the parameter ¢; moreover, the path has the approximation property

F(@(1) = f(@(t) < v, for all £ (55)

(By all ¢, in the above, we mean all values of ¢ > ¢y visited by the path algorithm.) To show this,
we begin by remarking, as in Jaggi (2013), that the quantity

hi(z) = Jnax, (Vf(x),z = =),

serves as a valid duality gap for problem (4), in that for all feasible z,

f(x) = f(&(t) < hae(2),
It will be helpful to use an equivalent representation of the duality gap:

hi(z) = (Vf(2),2) +t- max (Vf(z),z) = (Vf(z),2) +t g"(VI(2)), (56)

g(2)<1

where we have used the fact that g(az) = |a|g(2), and the definition of the dual norm g*.

Now the argument for (55) is straightforward. By construction, at step k, we compute Z(t;) to
be an approximate solution with the property that hy, (Z(tx)) < v/m. Since the algorithm assigns
Z(t) = Z(ty) for all t < tx11, we must check that hy(Z(tx)) < for all ¢ < tp41. Directly from (56),

he(Z(tr)) = (V (& (), 2(tr)) +t - g* (VF(E(tr)))
<y/mA+ (t—ty) - g" (VI (E(t))).

As tgyr —ti = (v —v/m)/g" (Vf(Z(tx))), the result follows.

We now report on an example of Frank-Wolfe path following in group lasso regression, with the
data setup as in Figure 4 (in the case of uncorrelated predictors). We chose v = 250, hand-tuned to
be the largest possible value of the duality gap bound so that resulting Frank-Wolfe path estimates
differed no more in mean squared error from the exact solutions than the stagewise ones did (with
a step size e = 1). This was measured by the maximum discrepancy in mean squared error over the
100 regularization parameter values at which exact solutions were computed; linear interpolation
was used to compute mean squared errors for Frank-Wolfe and stagewise at these parameter values.
See the left panel in Figure 12 for mean squared error curves. Under this large value of 7y, and m = 5
(the results did not really change by varying m), the path following strategy produced an adaptive
sequence of only 102 regularization parameter values spanning the full path range. However, it took
many iterations at each parameter value (beyond the start of the path) to meet the required duality
gap, as shown in the right panel of Figure 12. The total number of iterations used by the Frank-Wolfe
path following method was over 14,000, which is extremely inefficient, especially viewed next to the
250 iterations needed by stagewise. To emphasize: the comparison here is quite clear-cut, because
iterations of stagewise and Frank-Wolfe are computationally equivalent, and the two methods have
been tuned to yield the same mean squared error performance.

A.3 Small example: fused lasso signal approximation

For a small 1d fused lasso example, in the Gaussian signal approximator setup with n = 20, we
generated a piecewise constant underlying sequence $* € R?C with 5 segments (the levels were
drawn uniformly at random between 1 and 10), and we added N (0, 1) noise to form the observations
y € R?°, Figure 13a displays the 1d fused lasso solution path on the left, and the stagewise path on
the right, constructed from 900 steps using ¢ = 0.01. The two paths look basically the same. In a
rough sense, this is not too surprising, because the 1d fused lasso problem can be rewritten as a lasso

41

1000
|

3 e Exact
— ¢ Stagewise, eps=1
¢ Frank-Wolfe, gam=250

< o

- 8 .
5 9 2 .
= N - .
6 — g o .
- S 2 .
B 2
z g g ’
8 8 £ v
2 2 -'

8] 8 i ‘sc .

N -0
.
o _] 0
¥ st
O | c—
T T T T T T T T
0 50 100 150 0 50 100 150
Group lasso norm Group lasso norm

Figure 12: For the same group lasso setup as in Figure 4 (in the uncorrelated predictors case), we
ran the Frank-Wolfe path following strategy with v = 250 and m = 5. The bound v was chosen to
be as large as possible so that the Frank-Wolfe estimates have competitive mean squared errors with
the stagewise estimates and exact solutions, confirmed by the plot on the left. The right plot shows
the number of iterations needed by Frank-Wolfe to converge at the required duality gap of v/m, as a
function of the visited reqularization parameter value. The mazimum number of iterations was 1000
(hence the algorithm did not converge for the largest two regularization parameter values.) We can
see that a huge number of iterations are needed past the start of the path.

problem with a predictor matrix X equal to the lower triangular matrix of 1s, and for this design, it
is known that the limiting stagewise path (as e — 0) is the exact solution path. (Here X satisfies the
“positive cone condition”, which ensures the lasso components paths are monotone, see Efron et al.
(2004), Hastie et al. (2007).) But to be precise, this latter convergence result refers to the stagewise
algorithm applied to the lasso parametrization directly, and this is not the same as applying the
stagewise method to (the dual of) the 1d fused lasso parametrization, as was done in Figure 13a.
It may be interesting to compare these two stagewise implementations, with the former iteratively
adding step functions together, and the latter iteratively shrinking adjacent components towards
each other. It may also be possible to prove a limiting equivalence between the latter stagewise
method and the exact solution path, from arguments that rely on the monotonicity of the estimated
differences, but we do not pursue these ideas in this paper.

For a 2d fused lasso example, still in the Gaussian signal approximator setup, we took n = 25,
and B* € R? to be an unraveled version of a piecewise constant 5 x 5 image. Pixels in the lower
2 x 2 corner of the image were assigned a common value of 3, and all other pixel values were zero.
We formed y € R?> by adding independent N (0, 1) noise to 3*. The 2d fused lasso regularizer uses a
2-dimensional grid graph over the optimization variable 8 € R?? i.e., this graph joins components of
[that correspond to vertically or horizontally adjacent pixels in the image format. In Figure 13b,
we show the exact 2d fused lasso solution path on the left, and the stagewise path on the right, from
500 steps with € = 0.005. It is not easy to spot many differences between the two (one difference
can be seen when the 2d fused lasso norm is about 10), and altogether the stagewise path appears
to be a very good approximation.

42

1d fused lasso path Stagewise path

2 / 2 /
» o — o 7
2
©
=
S
5]
S)
(@] ©o - © -
< - < -
T I I I I I T I I I I I
0 5 10 15 20 25 0 5 10 15 20 25
g(B(t)) (")

(a) A small 1d fused lasso example with n = 20 points. The left plot shows the exact solution path, and the
right plot shows the stagewise approximation, which is essentially identical.

2d fused lasso path Stagewise path

< — < -

o0 — @ —
8 o - ~
<
°
8 -~ A - —

== %
o — o — —_

I I I
10 20 30 40

9(B(t) g(B®)

(b) A small 2d fused lasso example, using a 5 x 5 image (so that n = 25). The solution path on the left and
stagewise path on the right are only slightly different towards the regularized end of the paths.

20 30 40

o
—_
o

Figure 13: Fused lasso examples in 1d and 2d.

Finally, we emphasize that the stagewise steps in Figures 13a and 13b were derived from the dual,
so the construction of paths proceeded from right to left in the stagewise plots (i.e., the stagewise
paths were built for decreasing values of the regularization parameter ¢ in (37)), contrary to all other
stagewise examples outside of the generalized lasso setting. The stagewise approximation is hence
most accurate at the right end of the plot, and its component paths become more choppy at the left
end. In most foreseeable applications—fused lasso applications or otherwise—this is unfortunately
not a desirable feature. Usually regularized estimates are of primary concern, so we would not want
our iterative algorithm to reach these last, and certainly not with a lower measure of accuracy. An
exception is the case of image denoising (under 2d fused lasso regularization): here estimates at low
levels of regularization are usually interesting, as the underlying (noiseless) image itself is usually
complex, especially for real, large images. The dual stagewise algorithm thrives in this case, as we
saw on the large image denoising examples in Section 4.3.

A.4 Large example: ridge logistic regression

Overview. We investigate two simulated examples of ridge regularized logistic regression. The
ridge logistic regression solutions were computed with the glmnet R package, available on CRAN,
which offers a highly optimized coordinate descent implementation (Friedman et al. 2007, 2010).
The glmnet package allows for lasso, ridge, and mixed (elastic net) regularization, and is actually
more efficient in the presence of lasso regularization (because it utilizes an active set approach, which
takes advantage of sparsity). However, it is still fairly efficient for pure ridge regularization if the
number of variables p is not too large compared to the number of observations n, and the solutions
to be computed correspond to large or moderate amounts of regularization (i.e., it does not need to
compute solutions too close to the unregularized end of the path). Therefore we chose the example
setups to meet these rough guidelines.

Recall, as described in Section 3.4, that the stagewise procedure for ridge regularization is very
simple, and iteratively updates the estimate small amounts in the direction of the negative gradient
(here, the gradient of the logistic loss function). Our C++ implementation of this stagewise routine,
for the examples in the current section, is less than 25 lines of code. Meanwhile, the glmnet package
uses a sophisticated, nuanced Fortran implementation of coordinate descent, which totals thousands
of lines of code. (To be fair, the glmnet Fortran code is multipurpose, in that it solves more than
just ridge regularized logistic regression: it handles elastic net regularized generalized linear models.
Still, the broad comparison stands, between the complexities of the two implementations.)

Examples and comparisons. Both simulation setups used n = 8000 observations and p = 500
predictor variables. The binary inputs y € R3% were drawn independently according to the logistic

probabilities
1

T 1+ exp(— (X5

where the true coefficient vector 5* € R had 50 nonzero components drawn independently from
N(0,1), and the predictor matrix X € R8000%500 wag constructed differently in the two setups. In
the first, the entries of X were drawn independently from N (0, 1), and in the second, the rows of X
were drawn independently from N (0,), where ¥ € R500%500 had unit diagonals and all off-diagonal
elements equal to p = 0.8. In other words, the first setup used uncorrelated predictors and the
second used highly positively correlated predictors.

In both cases, we ran glmnet over 100 regularization parameter values (starting from the regu-
larized end of the path, using warm starts). We also ran the stagewise algorithm with two choices of
step size, € = 0.0025 and € = 0.25. The results are shown in Figure 14. Looking at the uncorrelated
case, in the left plot, first: we can see that, averaged over 10 simulated draws of the observations y
(with fixed X, 8*), both stagewise sequences achieve a competitive minimum misclassification rate
to that of the exact solution path (recorded with respect to independently drawn test inputs drawn

v i=1,...8000, (57)

44

from (57)). In the early stages of the path, the exact solutions exhibit a better misclassification rate
than the stagewise estimates with € = 0.0025, which in turn exhibit a better error rate than the
stagewise estimates with € = 0.25, but all estimates end up at the same minimum misclassification
rate later in the path. The table in the bottom row of Figure 14 shares the computation times for
these methods (averaged over 10 draws of the observations, and recorded on a desktop computer).
The glmnet coordinate descent implementation took an average of 12 seconds to compute its 100
solutions; stagewise with ¢ = 0.0025 took about 3 seconds to compute 150 estimates; stagewise with
€ = 0.25 took 0.3 seconds to compute its 15 estimates.

Uncorrelated predictors Correlated predictors

0.20
|

1o * Exact R * Exact
P * Stagewise, eps=0.0025 * Stagewise, eps=0.000025
e Stagewise, eps=0.25 | * Stagewise, eps=0.0025

Test misclassification rate
0.14
|

0.12
|

Test misclassification rate
0.100 0.105 0.110 0.115 0.120 0.125 0.130
|

L2 norm L2 norm

l Algorithm timings ‘

Method Uncorrelated case

Exact: coordinate descent, 100 solutions 12.12 (0.12)
Stagewise: € = 0.0025, 150 estimates 3.01 (0.01)
Stagewise: € = 0.25, 15 estimates 0.30 (0.01)
Method Correlated case

Exact: coordinate descent, 100 solutions 11.32 (0.31)
Stagewise: € = 0.000025, 2000 estimates 40.21 (0.24)
Stagewise: € = 0.0025, 1000 estimates 20.10 (0.18)

Figure 14: Comparisons between exact and stagewise estimates for ridge regularized logistic regres-
sion, with n = 8000 and p = 500. The top two plots show test misclassification errors committed by
solutions and stagewise estimates in two different scenarios, one with uncorrelated predictors on the
left, and one with highly correlated predictors on the right. The bottom table gives timings for the
glmnet coordinate descent algorithm in computing exact solutions and the stagewise algorithms. (All
test errors and timings were averaged over 10 repetitions from the simulation model; the dotted lines
in the plots show standard deviations, as do the parentheses in the table.) The stagewise algorithm
performs ideally in the uncorrelated scenario, delivering statistically accurate estimates at very low
computational cost; on the other hand, it seriously struggles in the correlated setup, requiring even
smaller step sizes and far more steps to produce statistically meaningful estimates. (In the right plot,
only 10% of the points along the stagewise error curves are drawn, and the standard deviations are
withheld from the e = 0.0025 curve, for visibility.)

45

In terms of the performance of the stagewise algorithm, the correlated problem setup stands in
stark contrast to the uncorrelated one. In fact, this correlated case represents the closest incident
to a failure for stagewise in this paper—to be perfectly clear, though, the “failure” here is entirely
computational. Using step sizes € = 0.000025 and € = 0.0025, the stagewise method needed dispro-
portionately more steps to cover a comparable part of the regularization path. This meant 2000 and
1000 steps when € = 0.000025 and ¢ = 0.0025, respectively. Apparently the effective step length in
this problem is greatly contracted, and the runtimes for computing a full stagewise regularization
path are significantly inflated, as reported in the table in Figure 14. With the smaller step size,
€ = 0.000025, the right plot in Figure 14 shows that the stagewise estimates track the test misclassi-
fication rates of the exact solutions very closely; with the larger step size, € = 0.0025, the estimates
display an odd trend in which their test errors bounce around the solution test errors.

This behavior, and the unusually slow stagewise progress, can be explained by the following
rough geometric perspective. The contours of the logistic loss function f(8) lie close to a tilted
and very thin ellipse in R5%%, due to the highly positively correlated predictor variables X. (This
contours are not exactly elliptical because the Hessian of f is not constant, but locally they are
approximately so.) Starting from the origin, the stagewise algorithm repeatedly adds updates in the
direction of the negative gradient of f. Because the ellipse is so thin, the updates will often pass
“through” the ellipse and make little progress in advancing the /5 norm of the iterates. That is,
the £5 norm of the iterates), k = 1,2,3,... does not consistently increase, unless the step size
€ is very small; otherwise progress it alternates back and forth, some steps advancing the /5 norm
than others. Hence the stagewise coefficients plots, even with the fairly small step size e = 0.0025,
display a distinct zigzag pattern; see Figure 15. This pattern is only exacerbated by multiplication
by X, and the achieved error rates, which are based on the fitted values X5*), k=1,2,3,..., jump
around wildly. (It may be interesting to note that, despite this zigzag behavior, the mean squared
error cruve between the stagewise estimates 3%) under € = 0.0025 and the true parameter §* is
actually still competitive, which is probably not surprising when staring at the strong similarities
between coefficient paths in the top row of Figure 15.) With a small enough step size, e = 0.000025,
this issue disappears, but of course the downside is that it now takes 2000 steps to compute a full
stagewise path. A more thorough understanding of this problem and (hopefully) a computational
remedy are important topics for future work.

A.5 Proof of Theorem 1
The suboptimality bound in this theorem is based on the quantity

hi(z) = Jnax, (Vf(z),z = =)

As remarked in Appendix A.2, this serves as a valid duality gap for the problem (4), in that for all
feasible x, we have f(x) — f(Z(t)) < hy(x), with &(¢) being a solution in (4). This property follows
directly from the first order condition for convexity applied to f. We note that if x is a solution
in (4), then h(x) = 0, because in this case (V f(z),z) < (Vf(x),z) for all feasible z. Also, for the
proof of the theorem, it will be helpful to rewrite h:(z) in the equivalent form:

hi(z) = (Vf(2),2) +1- max (Vf(z),z) = (Vf(2),z) +1 9" (Vf(2)),

9(2)<1

as in Appendix A.2, relying on the fact that g is a norm, and g* its dual norm. Lastly, it will be
helpful to rewrite the stagewise updates (5), (6) as

o) = =) _ 51
where 6~ € argmax (Vf(z*7V), 2) subject to g(z) < 1.

z€R™

46

Ridge logistic path Stagewise path, eps=0.000025 Stagewise path, eps=0.0025

L
g(B(t)) g(B®) g(B®)
o Zoomed in stagewise, eps=0.000025 o Zoomed in stagewise, eps=0.0025 Zoomed in stagewise fit, eps=0.0025
8- = ITIIIIIrrrgrYy
| T |
: g, g, s ,NNNAVAVAVAVAN\f\m\r\r\ W 1\ \1\ \l\l\l\l\!
C|; 72‘.0 212 214 2.‘6 218 310 ? 72i0 2‘.2 2T4 2T6 2‘.8 3T0
g(B®) g(B™)

Figure 15: Ezact and stagewise coefficient plots for one simulated problem under the ridge regularized
logistic regression setup, with correlated predictors. In the top row we excluded many of the coefficient
paths that were close to zero (dashed gray region), and in the bottom row we zoomed in on a select
number of coefficient paths, for visualization purposes.

Proof of Theorem 1. At any arbitrary step k, we compute

he (aM) = (Vf(@®)), 2W) + trg" (V f (2 (k)))
(VF(®), ") — (v f(@™),6%7Y) + trg* (Vf ().

Now we add and subtract terms in order to express the right-hand side in terms of h;, (z(*~1),

h (@) = (VF(@®D), 2% 1 g7 (V(2®7D)) + (VW) = v fF1),270)
(Vf(®),s¢1 >+tkg*(Vf(x(’“))) —thoag™ (Vf (- 1’))

o (2 1)) +(Vf(@®) =V ® D), 20 D) — (v f(a®)) = VD), 607D)
(V@D 5tk 1)>+tk9 (Vf(@®)) — tporg* (Vf(zB))

G ”) +(Vf(@®) = V1), 2®)
(v
i

— €

-1

— €

flath=D), 5= 1>>+tkg"(Vf(")) = ty_1g* (Vf(2*1))
D) 4 (Vf(a®) = VfED), ™) 41, (g7 (Vf(aP) — g" (V£ (FD))].

— €

47

Recursing this, we obtain

k k

ho (2®) =Y (VW) = ViD),aD) + 3 ti[g" (VD)) — g7 (VD).

i=1 =1

where we used the fact that hy, (x(o)) = 0. For the first term, we can apply Holder’s inequality over
the dual pair g, g* to each summand; for the second term, we use the triange inequality ¢*(u —v) >
g*(u) — g*(v). This yields

k
(k) Z —Vf(z (i— 1)) (z) +Ztg Vf (z)) Vf(x(i—l)))

i=1

< 2Ztig* (VD) = Vi)
z:l
< QLZtig(x(i) — (=1

k
< 2LeZti.
=1

In the second inequality, we used the fact that g(z(*) < t¢;, and in the third, we invoked the Lipschitz
assumption on V f. Since t; = tg + ¢, this upper bound is

e, (%)) < Le?k(k + 1) 4 2Lekto.
Finally, we recall that the number of steps k is chosen so that ¢, = tg + ke = ¢, and hence
Ry, (%)) < L(t — t0)? + L(t — to)e + 2L(t — to)to = L(t? — t2) + L(t — to)e,

which completes the proof. O

A.6 Proof of Theorem 2

This proof is similar to that of Theorem 1, although it is a little more involved technically. We will
rely on a few limit calculations that are introduced and proved after the proof of the theorem, in
Lemmas 6 and 7. We will also write the shrunken stagewise updates (47), (48) as

28) = qzk=1) _ e5k-1),

where 6~ € argmax (Vf(z*7V), 2) subject to g(z) < 1.
z€R™

Proof of Theorem 2. Assume without a loss of generality that ¢ty = 0; the arguments needed for the
case of an arbitrary starting value ty are similar but more tedious. As in the proof of Theorem 1,
we compute the duality gap at an arbirary step k of the algorithm,

he (20)) = (Vf(z0), 2®) + g7 (V£ (&™)
=a<Vf(x(k)) G0y — e f (M), 6%71) + g™ (V£ (1)),
a(VF(®), 2%0) + aty_1g* (V@FD)) + a(VF(@®) - VEHED),2070)
— e(Vf(a®),6%7D) 4 49" (Vf(2H))) — atp_rg™ (V(zF7D))
= ahy,_, (@* V) + a(VF(@®) = VF@*), z07D) — ¢(Vf(@®) = VfE*),6¢7D)

48

— e(Vf(a®=D) sE=Dy g ¥ (Vf(x(k))) —atp_19” (Vf(x(k_l)))
= ahy, (@) + (Vf(@®) = V), 2®)
— e(Vf(x(k_l)), §(k_1)> + trg” (Vf(sc(k))) — atg_19" (Vf(x(k_l)))
= ahy,_ (2*) + (V™) = VPD),2W) 4t [0 (V2 ®) = g (VD))

and recursing this, we obtain

k
o () = 37 b D) = V)2 0) 4 30t g (VD) - " (V).

A B

We proceed to bound terms A and B separately.

Term A. We apply Holder’s inequality, and then use the Lipschitz continuity of V f,

k
Z Tt (VD) = V(D)) g(a)

< Lzak thg ('L 1))
<L Z o (1 — a)timy +e). (58)
=1

By definition, t; = at;—1 + € for all : = 1,2,3, ..., and a short inductive argument shows that

) .) 1—at
ti=a'to+ (@ ... Fa+1e=a'ty+ 1 a

€.

Continuing from (58), we can rewrite the bound on term A as

L& SN . . -
A< > b 1-af) 2o

k k
ok 172204 ZalirakZail)
i i=1 i=1
Le? (. 1—aF 1—ak
- = 2 @ —20%k — aF 1k + o a
11—« l1—« 11—«
Lé? 3Le?

§m(1fak)(2+ak)f 1_aakk. (59)

Let M =¢€/((1 — a)t). Note that by the assumptions of the theorem, M — oo as ¢ — 0 and o — 1.
Hence, with a slight reparametrization, we will express the limits € -+ 0, « =+ 1 as € — 0, M — oo.
Now we assume that the number of steps k is chosen so that

t 1-of t
= € =
k l1—«

ie,1—akf=1/M, or

log(1—1/M) log(l— 1/M)
log & ~ log(1 — ¢/(Mt))

k=

49

where we have used that a = 1 —¢/(Mt). Plugging in ¢/(1 —a) = Mt and 1 —o* = 1/M into (59),
our bound is
A< LMt*(3—1/M) — 3LMt(1 —1/M)ek
= 3LtM(t — ek) — Lt* + 3Ltek.
——

—_————
a b

By Lemma 6, we have a — —3Lt?/2 as € — 0, M — oo, and b — 3Lt? as ¢ — 0, M — co. Therefore,

in the limit, we have
A< —3Lt?/2 — Lt* + 3Lt* = Lt?/2.

Term B. We decompose

k

= > oF g (VD)) - gt (VD)) +Za’“ ti]g" (VI(®)) = g* (V)]

1=r+1

c d

and now consider each of ¢,d in turn.

Term c. Using the triangle inequality and the Lipschitz continuity of V f,

k

c < Z ak_itz‘g* (Vf(x(i)) _ vf(x(i—l)))
i=r+1
k

<L Z ozkfitig(;v(i) - x(ifl))
1=r+1

9k
= Le Z "1 =) (2 - oY)

11—«
i=r+1
Le? - k—i i i—1 Le® & ki i—1
:m;a 1-a)2-a)’1_%; (1—a2-a"").
c1 Cc2

From the previous set of arguments, ¢; < Lt?/2 as € — 0, M — oo. Further, following these same
arguments (but with » in place of k),

Lé2 1-— 1—a"
co =T < o —2a"r—a" " tr4+a” @)

1- l1-«a l1-«a
(156(1 (1—a”)(2+a") - 3]16104’”%)
(1561 (1 - ok)2+ aF) - fL_i;akkD
k- T(L —(1-1/M)F)(2+ (1 - 1/M)F) _%(1_1/1\4) ’“)
(LM2t2 (1-1/M)?)(2+ (1—1/M)?)—%(1—1/1\4) ek(p).

50

In the last line above, we have abbreviated ¢ = r/k, and we recall that ¢ — 6 as e — 0, M — oo by
assumption. We expand the last expression, and omit the leading term a*~" since it converges to 1:

LM (1—(1—-1/M)%?)(2+ (1 —1/M)¥) — %(1 — 1/M)%ekyp

3LMt

(07

=3LM**(1— (1—1/M)%) — (1—1/M)%?ekp — LM?*t*(1— (1 — 1/M)“")2

3¢ Ltek
[0

= 3pLEM (t — ek) + 3LEM (M(1— (1-1/M)%) — 9) +
— LEEM2(1— (1 —1/M)%)* 4 3pLtMek(1/a — 1)

— —30Lt?/2 + 30(1 —) Lt*/2 + 30°Lt> — 0> Lt> + 0

= 0% Lt?)2.

M(1—(1—1/M)%)

The limits of the first four terms on the second to last line are due to Lemmas 6 and 7; the last term
converges to 0 as M(1 — a) = €/t — 0. Hence, in the limit, we have co > 62Lt?/2, and

c<el —ey < LE?)2 — 021t /2 = (1 — 6%)Lt? /2.

Term d. We expand this term as

r—1

d= Z o oty — ti)g” (Vf(ac(i))) +a* g (Vf(x(r))) —a* gt (Vf(x(o)))

i=1

r—1
= —ezakflfig* (Vf(g;(i))) T ab gt (Vf(x(r))) R (Vf(m(o))).

i=1
We now apply the bounds from the decay condition (49) in the theorem, which gives
r—1

d< —CLeZa’“*lfiti +

(C+1)62 -2
i=1 2

Lo~ t2

CLE X2 L (C+1er—2
=— Za il -)+ ———"La" 2
1—ozi=1 2
~CLé? Le? 1)6% — 2
= (10 E)chkr(lofl)+1c ¢ akil(r71)+7(c+ 2) Lo ¢2
- -«
—CLée? | w1, CLe? ., (C+1)0*-2_,
< TEE gk gkl 2 gkt T OY T Ay
_(1_a)2(a !)+1—aa r+ 5 t

2 _
= —CLMQtQ((l —1/M)'~¥ — l(1 - 1/M)> + CLMt(l —1/M)ekyp + %Lt?
(0% (0%

In the above, we have again written ¢ = r/k. Continuing with the first part of this upper bound,

1

«

CLMt

— CLM23((1=1/M)'=% = ~(1-1/M)) +

CLM¢>

(1 —1/M)ekep

=CLM*t*(1/a— (1-1/M)""%) —
_ CLt?

(1 -9+ E ar(eh 1)

M(M(l (1= 1/M)%) = (1 - 80)) + @M(ek —t) - @CO:Ltek

+CL*(1)a —1)M?*(1 — 1/M) ¢

pCLt
——c¢
a

o1

— 0(1 —0)CLt*/2 + 0CLt* /2 — OCLt* + 0
= —0°CLt*)2.

In the second to last line, the first three terms converge according to Lemmas 6 and 7. The last one
converges to 0 since M2(1 — a) = ¢2/((1 — a)t?) — 0 by assumption. Therefore, in the limit, we
have

d < —0*CLt* /2 + ((C + 1)6* — 2)Lt? /2 = (6% — 2) Lt /2.

Putting it all together. To finish, we have shown that in the limit as ¢ — 0, M — oo,
hi(2(t)) = A+ B < Lt?/2 4+ (1 — 0*)Lt? /2 + (0> — 2)Lt*/2 = 0.
This completes the proof. O
Below are two helper lemmas used in the proof of Theorem 2.
Lemma 6. For any fized t, the following limits hold as € — 0, M — oo:

log(1 —1/M)
“log(1 — ¢/(M?))

log(1—-1/M)
M (Glogu —e/(M1)) t) iz

— 1,

Proof. Both limits can be verified using a Taylor expansion of log(1+ x) around x = 0. For the first,
note that

log(1 —1/M) e/M +¢€/(2M?) +¢/(3BM3) + ...
“Tog(1 — ¢/(Mt)) _ ¢/(Mt) + €2/(2M22) + €3/ (3M3t3) + ..
o 1+1/(2M)+1/(3M?) + ...
1/t e/ (2Mt2) 4 €2/ (3M2t3) 4. ..

— t.

And for the second,

M<6 log(1 —1/M) t) :M1+1/(2M)+1/(3M2)+...—t(1/t+e/(2Mt2)+...)
log(1 — €/(Mt)) 1/t +€/(2Mt2) + 2 /(3M213) + . ..
C1/241/BM) 4. — (¢/(2t) + 2 /BME*) +...)
N 1/t +e/(2Mt2) + €2 /(3M2t3) + . ..

— t/2.
O
Lemma 7. Let ¢ = (M) be such that ¢ — 0 as M — oo. The following limits hold, as M — oo:

M(1—(1—1/M)#) =0,
M(M(1 — (1= 1/M)?) - <p) 5 0(1—6)/2.

Proof. We use a Taylor expansion of (1 4 z)® around z = 0. In particular,

M(l—(l—l/M)“’):MKf)l\l/[— (i)&pt(‘g)]\;g—]

52

_ (P (P L (P) L
1 2/ M 3) M2
0
—>(1>—9.
(Note that here (f) denotes the generalized binomial coefficient, for nonintegral x.) Also,
Aoy o) =M () (VL ()L
M(M(1-(1-1/M)%) -) MKJ <2>M+<3>M2 L
__(PY (P L _
—()+ (5)5 -
0\ 6(1—-0)
%_@_ —

53

References

Argyriou, A., Evgeniou, T. & Pontil, M. (2006), ‘Multi-task feature learning’, Advances in Neural
Information Processing Systems 19.

Bakin, S. (1999), Adaptive regression and model selection in data mining problems, PhD thesis,
School of Mathematical Sciences, Australian National University.

Boyd, S. & Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press, Cambridge.

Buhlmann, P. & Yu, B. (2010), ‘Boosting’, Wiley Interdisciplinary Reviews: Computational Statistics
2(1), 69-74.

Candes, E. J. & Recht, B. (2009), ‘Exact matrix completion via convex optimization’, Foundations
of Computational Mathematics 9(6), 7T17-772.

Candes, E. J. & Tao, T. (2010), ‘The power of convex relaxation: near-optimal matrix completion’,
IEEE Transactions on Information Theory 56(5), 2053-2080.

Chambolle, A. & Darbon, J. (2009), ‘On total variation minimization and surface evolution using
parametric maximum flows’, International Journal of Computer Vision 84, 288-307.

Chen, J. & Ye, J. (2014), ‘Sparse trace norm regularization’, Computational Statistics 29(3—4), 623~
629.

Draper, N. & Smith, H. (1966), Applied Regression Analysis, Wiley, New York.

Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2004), ‘Least angle regression’, Annals of
Statistics 32(2), 407-499.

Efroymson, M. (1966), ‘Stepwise regression—a backward and forward look’, Fastern Regional Meet-
ings of the Institute of Mathematical Statistics .

Eilers, P. & Marx, B. (1996), ‘Flexible smoothing with B-splines and penalties’, Statistical Science
11(2), 89-121.

Frank, M. & Wolfe, P. (1956), ‘An algorithm for quadratic programming’, Naval Research Logistics
Quarterly 32(1-2), 95-110.

Friedman, J. (2001), ‘Greedy function approximation: a gradient boosting machine’, Annals of
Statistics 29(5), 1190-1232.

Friedman, J. (2008), Fast sparse regression and classification. Unpublished manuscript, http://
www-stat.stanford.edu/~jhf/ftp/GPSpub.pdf.

Friedman, J., Hastie, T., Hoefling, H. & Tibshirani, R. (2007), ‘Pathwise coordinate optimization’,
Annals of Applied Statistics 1(2), 302-332.

Friedman, J., Hastie, T. & Tibshirani, R. (2010), ‘Regularization paths for generalized linear models
via coordinate descent’, Journal of Statistical Software 33(1), 1-22.

Friedman, J. & Popescu, B. (2004), Gradient directed regularization. Unpublished manuscript,
http://www-stat.stanford.edu/~jhf/ftp/pathlite.pdf.

Giesen, J., Jaggi, M. & Laue, S. (2012a), ‘Approximating parametrized convex optimization prob-
lems’, ACM Transactions on Algorithms 9(1), 1-17.

54

Giesen, J., Jaggi, M. & Laue, S. (2012b), ‘Regularization paths with guarantees for convex semidefi-
nite optimization problems’, Proceedings of the International Conference on Artificial Intelligence
and Statistics 15.

Giesen, J., Laue, S., Muller, J. & Swiercy, S. (2012), ‘Approximating concavely parametrized opti-
mization problems’, Advances in Neural Information Processing Systems 25.

Golub, G. H. & Van Loan, C. F. (1996), Matriz computations, The Johns Hopkins University Press,
Baltimore. Third edition.

Green, P. & Silverman, B. (1994), Nonparametric Regression and Generalized Linear Models: A
Roughness Penalty Approach, Chapman & Hall/CRC Press, Boca Raton.

Harchaoui, Z., Douze, M., Paulin, M., Dudik, M. & Malick, J. (2012), ‘Large-scale image clas-
sification with trace-norm regularization’, IEEE Conference on Computer Vision and Pattern
Recognition pp. 3386-3393.

Hastie, T., Taylor, J., Tibshirani, R. & Walther, G. (2007), ‘Forward stagewise regression and the
monotone lasso’, Flectronic Journal of Statistics 1, 1-29.

Hastie, T., Tibshirani, R. & Friedman, J. (2009), The Elements of Statistical Learning; Data Mining,
Inference and Prediction, Springer, New York. Second edition.

Hiriart-Urruty, J.-B. & Lemarechal, C. (1993), Convex Analysis and Minimization Algorithms,
Springer, Berlin. Two volumes.

Hoerl, A. & Kennard, R. (1970), ‘Ridge regression: biased estimation for nonorthogonal problems’,
Technometrics 12(1), 55-67.

Jaggi, M. (2013), ‘Revisiting frank-wolfe: Projection-free sparse convex optimization’, Proceedings
of the International Conference on Machine Learning 30.

Jaggi, M. & Sulovsky, M. (2010), ‘A simple algorithm for nuclear norm regularized problems’,
Proceedings of the International Conference on Machine Learning 27.

Kelley, J. E. (1960), ‘The cutting-plane method for solving convex programs’, Journal of the Society
for Industrial and Applied Mathematics 8(4), 703-712.

Kim, S.-J., Koh, K., Boyd, S. & Gorinevsky, D. (2009), ‘¢; trend filtering’, STAM Review 51(2), 339—
360.

Knudsen, E. (2013), Stagewise regression: competing with the state of the art via an efficient, sim-
ple, iterative algorithm, Undergraduate honors thesis, Department of Statistics, Carnegie Mellon
University.

Mazumder, R., Hastie, T. & Tibshirani, R. (2010), ‘Spectral regularization algorithms for learning
large incomplete matrices’, Journal of Machine Learning Research 11, 2287-2322.

Meier, L., van de Geer, S. & Buhlmann, P. (2008), ‘The group lasso for logistic regression’, Journal
of the Royal Statistical Society: Series B 70(1), 53-71.

Obozinski, G., Taskar, B. & Jordan, M. (2010), ‘Joint covariate selection and joint subspace selection
for multiple classification problems’; Statistics and Computing 20(2), 231-252.

Ramsay, J. (2005), Parameter flows. Unpublished manuscript.

Rosset, S., Zhu, J. & Hastie, T. (2004), ‘Boosting as a regularized path to a maximum margin
classifier’, Journal of Machine Learning Research 5, 941-973.

55

Rudin, L. 1., Osher, S. & Faterni, E. (1992), ‘Nonlinear total variation based noise removal algo-
rithms’, Physica D: Nonlinear Phenomena 60, 259-268.

Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. (2013), ‘A sparse group lasso’, Journal of
Computational and Graphical Statistics 22(2).

Teo, C. H., Le, Q., Smola, A. & Vishwanathan, S. V. N. (2007), ‘A scalable modular convex solver
for regularized risk minimization’, Proceedings of the International Conference on Knowledge Dis-
covery and Data Mining 13.

Teo, C. H., Vishwanathan, S. V. N.; Smola, A. & Le, Q. (2010), ‘Bundle methods for regularized
risk minimization’, Journal of Machine Learning Research 11, 311-365.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal of the Royal Sta-
tistical Society: Series B 58(1), 267—288.

Tibshirani, R. J. (2013), ‘The lasso problem and uniqueness’, Electronic Journal of Statistics 7, 1456—
1490.

Tibshirani, R. J. (2014), ‘Adaptive piecewise polynomial estimation via trend filtering’, Annals of
Statistics 42(1), 285-323.

Tibshirani, R. J. & Taylor, J. (2011), ‘The solution path of the generalized lasso’, Annals of Statistics
39(3), 1335-1371.

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. & Knight, K. (2005), ‘Sparsity and smoothness via
the fused lasso’, Journal of the Royal Statistical Society: Series B 67(1), 91-108.

Tikhonov, A. (1943), ‘On the stability of inverse problems’, Doklady Akademii Nauk SSSR
39(5), 195-198.

Turlach, B., Venables, W. & Wright, S. (2005), ‘Simultaneous variable selection’, Technometrics
47(3), 349-363.

Wahba, G. (1990), Spline Models for Observational Data, Society for Industrial and Applied Math-
ematics, Philadelphia.

Wang, Y.-X., Sharpnack, J., Smola, A. & Tibshirani, R. J. (2015), ‘Trend filtering on graphs’,
Proceedings of the International Conference on Artificial Intelligence and Statistics 18, 1042-1050.

Yuan, M. & Lin, Y. (2006), ‘Model selection and estimation in regression with grouped variables’,
Journal of the Royal Statistical Society: Series B 68(1), 49-67.

Zhao, P. & Yu, B. (2007), ‘Stagewise lasso’, Journal of Machine Learning Research 8, 2701-2726.

56

