Take-Home Final Exam
Statistical Computing, 36-350
Due December 7, 2015 at 11:59pm

Bonus: Maps for the masses

For this bonus problem, you should use the cleaned data set from question 1 of the final exam. This cleaned
census data frame should have 70877 rows and 31 columns. For simplicity, we’ve posted this cleaned census
data to the class website, and below we load in the plyr package (hint: this will again be very useful for this
bonus question), and read in the cleaned data frame.

library(plyr)

load(url("http://www.stat.cmu.edu/~ryantibs/statcomp/exams/censusCleaned.RData"))
dim(census)

[1] 70877 31

In what follows, you will fill in missing pieces of various functions that are designed to ultimately plot a
county-level color map of a particular US state. The colors in the map will reflect the values of a particular
numeric variable (column) available in the census data frame. For example, after finishing this question, a
call to

my.state.map(census, bb.df, state="Texas", var="pct_Hispanic_ACS_09_13")

should produce the following plot:

Setup: color wheel. Let’s begin by simply demo-ing the function my.color.fun(), which you will use to
color in the various counties in your eventual plot. This function takes as input a vector x of values between
0 and 1, and returns a vector of colors that lie on a specturm between green and white. Check it out:

my.color.fun = function(x) {
fun = colorRamp(terrain.colors(50))
cols = rgb(fun(x),max=255)
return(cols)

[}

Demo the color function

= 100

seq(0,1,length=n)

.col = my.color.fun(x)
plot(rep(0,n),x,pch=19,cex=2,col=x.col)

MW B R

1.0

04 0.6

0.2

I I I I I
-1.0 -0.5 0.0 0.5 1.0

rep(0, n)

As you can see above, we have colored in points according to their height, and green corresponds to low
values, while white corresponds to high values. To reiterate, my.color.fun() only takes values between 0
and 1.

Setup: maps and boundaries. Now let’s load the maps package (this will need to be installed prior to
calling 1library()), and try a few demo plots. In the first plot, we’re going to plot all the counties in the
US; in the second, we’re going to limit the viewable longitudes and latitudes by setting the x1im and ylim
arguments:

library (maps)

##

Attaching package: 'maps'

##

The following object is masked from 'package:plyr':
#i#

ozone

map ("county")

map("county", xlim=c(-124.48200,-114.13121), ylim=c(32.52883,42.00952))

The first plot looks cool, but is far too busy to see individual county-level detail. We can see that the second
plot has picked out a bounding box, in terms of longitudes and latitudes, for the state of California. Here
we just happened to know that the longitudes for California were in between -124.48200 (western most part)
and -114.13121 (eastern most part), and the latitudes for California were in between 32.52883 (southern most
part) and 42.00952 (northern most part).

How did we know such numbers? We computed them from a data table of bounding boxes for all counties
in the US. This data table is available on the course website, and the code below reads it in:

bb.df = read.csv("http://www.stat.cmu.edu/~ryantibs/statcomp/exams/bounding.csv")
dim(bb.df)

[1]1 3221 11

head (bb.df)

statefips countyfips name corner_sw_lat corner_sw_lon corner_nw_lat
1 1 1 Autauga 32.30757 -86.92124 32.70821
2 1 3 Baldwin 30.14656 -88.03731 31.31902
3 1 5 Barbour 31.61756 -85.74843 32.14825
4 1 7 Bibb 32.83152 -87.42199 33.24693
5 1 9 Blount 33.76517 -86.96336 34.26048
6 1 11 Bullock 31.88028 -85.99926 32.30529
corner_nw_lon corner_ne_lat corner_ne_lon corner_se_lat corner_se_lon
1 -86.92124 32.70821 -86.41117 32.30757 -86.41117
2 -88.03731 31.31902 -87.36659 30.14656 -87.36659
3 -85.74843 32.14825 -85.04882 31.61756 -85.04882
4 -87.42199 33.24693 -86.87602 32.83152 -86.87602
5 -86.96336 34.26048 -86.30352 33.76517 -86.30352
6 -85.99926 32.30529 -85.41004 31.88028 -85.41004

Each row in the data frame bb.df corresponds to a particular county in the US. The first 2 columns give the
state FIPS code and county FIPS code. The next 8 columns give the latitudes and longitudes for the 8 corners
of the bounding box of the county: southwest, northwest, northeast, and southeast corners, respectively. You
will want to use this data, on bounding boxes for counties, to get bounding box for states (each state being
comprised, of course, of many counties).

Part a: bounding boxes for states. Fill in the following function to get a bounding box for a particular
state, given the census data frame, the bb.df data frame, and the state name state (this name is assumed
to match one of the names in the census$State_name column).

my.state.lims = function(census, bb.df, state) {
TODO: compute the proper = and y limits
xmin = 0; xmax = 0; ymin = 0; ymax = O;
return(c(xmin,xmax,ymin,ymax))

}

Test it out with state="California". It should match the numbers given above.

Part b: region names. We have bounding boxes for states, so we can set the right plot limits with map(),
but how about the colors? For this we use the following commands:

map("county", xlim=c(-124.48200,-114.13121), ylim=c(32.52883,42.00952))
map("county", add=TRUE, fill=TRUE, col=my.color.fun(c(0.1,0.9)),

region=c("california,sonoma","california,los angeles"))

The first call to map() produces our map of California with black boundaries between counties and no colors.
The second call to map() draws on top of this map (note the argument add=TRUE). We set £i11=TRUE, and
then specify two colors through the col argument (here, a green and a pink), and then two region names
through the region argument (here Sonoma County and Los Angeles County). Note the format required
for the region name by the map() function:

o all lowercase letters;
o state name first, followed by a comma;
e then county name, without a preceding space.

Other examples include “california,san francisco” (for San Francisco County in California) or “pennsylva-
nia,allegheny” (for Allegheny County in Pennsylvania).

Fill in the following function to get the region names for all counties in a particular state, given the census
data frame, and the state name state (again, this name is assumed to match one of the names in the
census$State_name column). The returned region names must conform to the format specified above, so
that they can be eventually passed to map().

my.region.names = function(census, state) {
TODO: figure out the region names
region.names = ""
return(region.names)

}

Part c: county-level averages. We can now plot the counties in a particular state, and also color each one
with a (possibly different) color of our choosing, by setting the col and region arguments in map(). Here
we are interested in making those colors informative, by having them reflect the level of some variable that
has been measured in the census; in particular, we’re going to consider columns 8 through 31 as candidate
variables for this task.

Let’s take the 8th column, called Med_HHD_Inc_ACS_09_13, as an example. Looking at the values of this

column across all census tracts in California:

dat = subset(census, subset=State_name=="California", select="Med HHD Inc_ACS_09_13")
summary (dat)

Med_HHD_Inc_ACS_09_13
Min. : 10509
1st Qu.: 43463
Median : 60361

Mean : 66574
3rd Qu.: 82996
Max. : 250001

We can see that there are 7802 census tracts in California, and for these, the median household income
ranges from $2499 in one census tract all the way up to $250,001 in another. (Pause: wow! That’s a huge
variation...) We'd like to somehow plot county-specific median household incomes on our map of California.
For this we need to do two things:

1. for each county in California, compute the average median household income among all its census
tracts;
2. scale these values, computed in step 1, to lie between 0 and 1.

A word about step 1: we actually want to perform population-weighted county averages rather than
pure averages. Given numbers x1,...x, and weights w,...w,, we can define a weighted average of the x;’s
by:

(w214 ...+ wy - x,) /(w1 + ...+ wy).

Here, we are asking for the same thing, but just asking for the weights to be defined by the populations of
the various census tracts.

Fill in the function below, which performs county-level averages of a particular census variable, for all counties
in a particular state. The arguments passed in are the census data frame, the state name state (this name
is assumed to match one of the names in the census$State_name column), and the variable name var (this
name is assumed to match one of the names of the columns 8 through 31 of census). The function must
perform population-weighted averages, and it must then scale these average values to lie between 0 and 1.

my.county.avgs = function(census, state, var) {
TODO: compute these county-level averages, then scale to lie in [0,1]
avgs.scaled = 0
return(avgs.scaled)

}

Part d: finally, the maps! Last but not least, we want to write a function that ties in all these tasks
together. Fill in the function below, which given the census data frame, a state name state (assumed to
be found in the census$State_name column), and the variable name var (assumed to match one of the
names of the columns 8 through 31 of census), plots a map of the counties in this state, with the colors
corresponding to the county-level averages of the variable in question. First, the code to be completed, and
then some comments afterward:

my.state.map = function(census, bb.df, state="Pennsylvania',
var="Med_House_value_ACS_09_13") {
TODO: error checking here

From part a, zlim and ylim
lims = my.state.lims(census,bb.df,state)

From part b, region names
region.names = my.region.names(census,state)

From part c, county-level averages, scaled
avgs.scaled = my.county.avgs(census,state,var)

TODO: plot the map!

invisible(avgs.scaled)

You must fill in two parts of code above. First, you must perform a bunch of error checking on the inputs,
namely, on the state and var arguments:

o if state is not one of the names found in census$State_name, then you must exit the function and
throw an error to this effect;

e if var is not one of the names found in the columns 8 through 31 of census, then you again must exit
and throw an error to this effect;

o if state is “Alaska”, “Hawaii”, or “District of Columbia”, then you must exit and throw an error (since
the map() function can’t handle plotting the counties in these states).

(Hint: recall stop(), or stopifnot().)

Second, you must fill in the plotting code, to produce a map of the desired state, where the counties are
colored in according to the my.color.fun. () function, as applied to the county-level scaled averages of the
variable in question. (Hint: this will look similar to the sample code in part b, above.) Importantly, if any
counties are missing (i.e., they may have been thrown out of the census data frame in the data cleaning
process in question 1 of the exam) then they should be colored in gray.

Once completed, you can test your function out by calling my.state.map(census, bb.df, state="Texas",
var="pct_Hispanic_ACS_09_13"), and compare to the graphic given at the beginning of this bonus problem.

Part e: choose your team name, and compete! This bonus problem will be graded using a class-wide
friendly competition. Decide on a “team name”—which can be completely self-identifying or non-identifying,
up to you—and enter it below. If you choose to participate in this bonus, then we will run live tests on the
last day of class on your function my.state.up(), so make sure you code it up precisely as instructed (and
of course, it goes without saying, make sure your submission knits ...)!

My team name is [SOMETHING BRILLIANT HERE]

	Bonus: Maps for the masses

