
Homework 6
Statistical Computing, 36-350
Due Wednesday Oct 28, 2015

Your homework must be submitted in R Markdown format. We will not (indeed, cannot) grade homeworks
in other formats. Your responses must be supported by both textual explanations and the code you generate
to produce your result. (Just examining your various objects in the “Environment” section of R Studio is
insufficient—you must use scripted commands.)

Flu in the US

We will practice data transformations of a data set consisting of aggregate influenza level measurements in
Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia. Using the following
code, read in the data frame flumat.

load(url("http://www.stat.cmu.edu/~ryantibs/statcomp/homework/flu.Rdata"))

Call head(flumat) to examine the first few rows of flumat. This data frame contains three columns:

wili: weekly influenza occurrences (“wili” stands for weighted influenza like illness percentage) for the these
six states, during the time period between 1997 and the first part of 2013. There are some missing values in
the first few seasons, don’t panic! This is normal.

season: flu is a seasonal epidemic, and the seasons are defined as week 21 of the current year through the
following year’s week 20. Season 1 consists of the commensurate weeks of 1997-1998, season 2 is that of
1998-1999, and so forth.

week: calendar week numbers of each observations.

1. Notice the seasons are out of order. Reorder the data in increasing order of season. Check that it
worked, by producing a plot of the flu measurements over time, and comparing to http://www.stat.
cmu.edu/~ryantibs/statcomp/homework/wiliplot.pdf, found on the course website. Label and format
your plot legibly.

2. Say we are interested in flu occurrence in December (week 49 through 52). Extract these rows and call
this data frame flumat.12. Display the first ten rows. Using tapply() or some *ply function of your
choice, extract the mean December wili in each season, and plot them over time (line plot). Report the
seasons with the highest three and lowest three average December flu measurements, and plot them
as points in red and blue respectively in the same plot. What is the overall distribution of December
averages? The mean and standard deviation of these averages?

3. flumat is currently arranged in increasing order of season. Rearrange flumat to be arranged by week
number, while preserving the increasing order of seasons, and call this new data frame flumat.by.week.
Display the first and last 10 rows.

4. flumat is currently in long format, which means that the data are stacked vertically by season.
Sometimes it is convenient to transform such data into wide format with horizontal stacking. In our
case, this will mean that each season’s flu occurrences are stacked horizontally as columns – i.e. each
column contains a season’s wili values. Do this transformation and call it flumat.wide, and display
the first ten rows using head(). Note: the resulting matrix should have 52 rows – the 1st row with 21st
calendar week’s measurements, the second row with that of week 22, and so forth. (Hint: probably the
most straightforward way of doing this is to use a for loop, and fill in the wide matrix one row at a
time, by week. A more streamlined, but also more advanced strategy, would be to use the reshape()
function in R.)

1

http://www.stat.cmu.edu/~ryantibs/statcomp/homework/wiliplot.pdf
http://www.stat.cmu.edu/~ryantibs/statcomp/homework/wiliplot.pdf

Bonus: Already loaded in your computer is new partially observed flu occurrence for season 17 – flumat.new
– that is formatted in the same way as flumat. Merge it with the wide-formatted flumat.wide using merge()
while preserving the formatting details of flumat.wide. Display the first six rows of the new data frame.
(Hint: You may want to make a new column in flumat.wide and use it to align the merge.)

Bug hunt

In this part of the homework you will debug several pieces of almost-functional code. Start by setting
eval=TRUE for a block of code, then use debugging techniques developed in class to find any problems in
that block. After correcting those problems, explain in words what changes you made and why. Your final
submission should have the setting eval=TRUE, and everything should run.

5. Find the nearest zero of a function using the Newton-Raphson method [http://en.wikipedia.org/wiki/
Newton’s_method], coded in zero.finder(). Be sure that zero.finder provides useful error messages
when it encounters a problem. Hint: add extra intermediate outputs to diagnose what the function is
doing.

zero.finder <- function (fn, start, tol=1e-6, delta=1e-4) {
pp <- start
repeat {

grad.fn <- (fn(pp+delta) - fn(pp-delta))/(2*delta)
pp <- pp + fn(p)/grad.fn
if (abs(fn(pp)) < tol) break

}
pp

}

zero.finder (function(x) {1 - x^2}, 1.5) # should be 1
zero.finder (function(x) {1 - x^2}, 0.5) # should be 1
zero.finder (function(x) {x^3 - 7*x^2 + 7*x + 15}, 3.5) # should be 3
zero.finder (function(x) {x^3 - 7*x^2 + 7*x + 15}, -1.5) # should be -1
zero.finder (function(x) {x^3 - 7*x^2 + 7*x + 15}, 4.5) # should be 5
zero.finder (function(x) {1/(1-x^2)}, 1) # what should happen here?

6. The Fibonacci sequence is better defined dynamically, and one attempt at this is in dynamic.fibonacci().
It should return the numbers corresponding to 1,1,2,3,5,8,13 ... for those values, and NA for any
disallowed values.

dynamic.fibonacci <- function (nn) {
if (!(is.integer(nn)) | (nn<1)){

print ("Bad input")
return (NA)

}
my.fib <- c(1,1)
for (kk in 3:nn) my.fib[kk] <- my.fib[kk-1] + my.fib[kk-2]
return my.fib[nn]

}
dynamic.fibonacci(7) #Should be 13
dynamic.fibonacci(5) #Should be 5
dynamic.fibonacci(1) #Should be 1
dynamic.dibonacci(1.5) #Should be NA
dynamic.dibonacci(0) #Should be NA

2

http://en.wikipedia.org/wiki/Newton's_method
http://en.wikipedia.org/wiki/Newton's_method

7. Returning to the flu data above, how well does the week 50 wili predict the week 51 wili? We’ll extract
the relevant data using two boolean vectors, then perform a simple regression. Does the regression
coefficient make sense? A plot may help here.

flumat.copy = flumat #We'll work on a copy of the data
week50 = (flumat.copy$week = 50) #The first boolean vector
week51 = (flumat.copy$week = 51) #The second boolean vector
week50wili = flumat.copy$wili[week50,]
week51wili = flumat.copy$wili[week51,]
flureg = lm(week51wili~week50wili)

3

	Flu in the US
	Bug hunt

