
Homework 8
Statistical Computing, 36-350
Due Wednesday Nov 11, 2015

Your homework must be submitted in R Markdown format. We will not (indeed, cannot) grade homeworks
in other formats. Your responses must be supported by both textual explanations and the code you generate
to produce your result. (Just examining your various objects in the “Environment” section of R Studio is
insufficient—you must use scripted commands.)

In this homework you’ll explore various optimization algorithms for forming statistical estimates in linear
regression.

1. Run the following code block to create synthetic regression data, with 100 observations and 10 predictor
variables:

n = 100; p = 10; s = 3
set.seed(0)
x = matrix(rnorm(n*p),n,p)
b = c(-0.7,0.7,1,rep(0,p-s))
y = x %*% b + rt(n,df=2)

Notice that only 3 of the 10 predictor variables in total are actually relevant in predicting the response.
(That is, only the first three coefficients in b are nonzero.) Examine the correlation coefficients between
predictor variables x and the response y; would you be able to pick out each of the 3 relevant variables based
on correlations alone?

2. Note that the noise in the above simulation (the difference between y and x %*% b) was created from
the rt() function, which draws t-distributed random variables. The t-distribution has thicker tails
than the normal distribution, so we are more likely to see large noise terms than we would if we used a
normal distribution. Verify this by plotting the normal density and the t-density on the same plot, with
the latter having 3 degrees of freedom. Choose the plot ranges appropriately, and draw the densities in
different colors, so that the plot is easy to read.

3. Because we know that the noise in our regression has thicker tails than the normal distribution, we are
more likely to see outliers. Hence we’re going to use the Huber loss function that we covered several
times in lecture, which is more robust to outliers:

psi = function(r, c=1) {
return(ifelse(r^2 > c^2, 2*c*abs(r)-c^2, r^2))

}

Write a function called huber.loss() that takes in as an argument a coefficient vector beta, and returns the
sum of psi() applied to the residuals (from regressing y on x). x and y should not be provided as arguments,
but referred to directly in the function. You may stick with the default cutoff of c=1. This Huber loss is
going to take the place of the usual (nonrobust) linear regression loss, i.e., the sum of squares of the residuals.

4. Using the grad.descent() function from lecture, run gradient descent starting from beta=rep(0,p),
to get an estimate of the coefficients beta that minimize the Huber loss, when regressing y on x.
Use the settings max.iter=200, step.size=0.001, and stopping.deriv=0.1. Store the output of
grad.descent() in gd. How many iterations did it take to converge, and what are the final coefficient
estimates?
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Note: you may need to run install.packages("numDeriv") in order to load the numDeriv library.

5. Using gd, construct a vector crit of the criterion values encountered at each step of gradient descent.
Note: here the criterion function for minimization is the Huber loss. Plot these criterion values against
the iteration number, to confirm that gradient descent is indeed making the criterion smaller at each
iteration. How does the progress of the algorithm compare at the start (early iterations) versus towards
the end (later iterations)?

6. Rerun gradient descent as in question 4, but with step.size=0.1. Compute the new criterion values
across iterations, and plot the last fifty criterion values. What do you notice now? Is the criterion
decreasing at each step, and has gradient descent converged at the end (settled on a single criterion
value)? What can you deduce from your plot is happening to the coefficient estimates (confirm this by
looking at the xmat values in gd)?

7. Inspect the coefficients from the first gradient descent run (stored in gd), and compare them to the
true (unknown) underlying coefficients b constructed in question 1. They should be pretty close for
the first 3 variables, but the next 7 are not very accurate—that is, they’re not all close to 0, as they
should be. In order to fix this, we’re going to apply a sparsified version of gradient descent (formally
known as proximal gradient descent). Modify the function grad.descent() so that at every iteration
k, after taking a gradient step but before saving the new estimated coefficients, we threshold small
values in these coefficients to zero. Here small means less than or equal to 0.05, in absolute value. Call
the new function sparse.grad.descent() and rerun with the same settings as in question 4, in order
to produce a sparse estimate of the regression coefficients. Stores the results in gd.sparse. What are
the final coefficient estimates?

8. Now compute estimates of the regression coefficients in the usual manner, using lm(). How do these
compare to those from question 4, from question 7? Compute the mean squared error between each of
these three estimates of the coefficients and the unknown coefficients b. Which is best?

9. Rerun your Huber loss minimization in questions 4 and 7, but on different data. That is, just generate
another copy of y, per the same formula as you used in question 1: y = x %*% b + rt(n,df=2). How
do the new coefficient estimates look from gradient descent, and sparsified gradient descent? Which
has a better mean squared error when measured against the b used to generate data in question 1?
What do you deduce about the sparse method (e.g., what does this suggest about the variability of its
estimates)?

In order to ensure that your results are comparable to other students’, please run the following before
generating a new y vector:

set.seed(10)

10. Repeat the experiment from question 9, generating 10 new copies of y, running gradient descent and
sparse gradient descent, and recording each time the mean squared errors of each of their coefficient
estimates to b. Report the average mean squared error, for gradient descent, and its sparse variant,
over the 10 trials. Which average lower? Also report the minimum mean squared error, for the two
methods, over the 10 trials. Which is lower? Is this in line with your interpretation of the variability
associated with the sparse gradient descent method?

Bonus: Implement backtracking line search for gradient descent, in a function called backtrack(). It should
take as arguments the function in question f, the current guess at the step.size with a default value of
1, and a maximum number of backtracking iterations max.iter with a default of 50. It should return the
new step size, once the backtracking criterion is met (as defined in lecture), or if this has not been satisfied
in max.iter iterations, the final step size considered. Modify the grad.descent() function so that it uses
backtrack() at each step, rather than a fixed step size. Have this modified function also return the step
sizes chosen by backtracking at each iteration. Now run this on a fresh copy of the data (i.e., generate y once
more), and report the number of iterations until convergence. What do the backtracking step size choices
look like across iterations?
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