
Lab 2
Statistical Computing, 36-350

Friday September 11, 2015

Today’s agenda: manipulation of matrices and lists; more practice with random number generation, and more
reinforcing of core probabilistic and mathematical ideas.

General instructions for labs. Upload an R Markdown file, named .Rmd“, to Blackboard. You will give
the commands to answer each question in its own code block, which will also produce plots that will be
automatically embedded in the output file. Each answer must be supported by written statements as well as
any code used. Include the name of your lab partner at the top of the file.

R Markdown setup. Open a new R Markdown file; set the output to HTML mode and click “Knit HTML”.
This should produce a web page with the knitting procedure executing your code blocks. You can edit this
new file to produce your homework submission. Alternatively, you can start from the lab’s R Markdown file
posted on the course website, as a template.

Part I: Matrices

Many important areas of statistics, machine learning, and engineering use and study matrices that are filled
with i.i.d. (independent and identically distributed) Gaussian entries. The Gaussian distribution is a truly
special one (and central one—get it?).

1. Generate 50,000 random values from a standard Gaussian distribution, denoted N(0, 1), and from these
fill out a 1000 x 50 matrix called mat.

2. What is the mean of the 7th column of mat? The mean of the 37th column? What would you expect
them to be, theoretically?

3. Compute the column means of mat, and store as a vector called mat.col.means.
Check that the mean of the column means is equal to the overall mean of the matrix.

4. Compute the sum of squares of values in each row of mat, and call the resulting vector mat.row.chisq.
Given what you know about how you constructed mat, what distribution do the values in mat.row.chisq
have? (Hint: take a look at the name of this vector!)

5. For each entry in the vector mat.row.chisq, subtract of 50 and divide by
√

100, and call the result
mat.row.chisq.standardized. Plot a histogram of mat.row.chisq.standardized, using hist(),
with a high value of the breaks argument. What does this distribution look like? Why? And what
purpose did the values 50 (the amount we subtracted off) and

√
100 (the amount we divided by) serve?

6. Using the function cor(), compute the correlation of every column of mat with every other column,
and store the answer as mat.cor. What dimension is mat.cor? What is the highest positive correlation
between a pair of (different) columns? Which pair of achieves this highest positive correlation? Now
compute a heatmap of the correlation matrix, using the image() function. Does this picture match
what you’d expect? Why or why not?

Part II: Lists

The singular value decomposition (SVD) is something that you likely encountered in your linear algebra class.
Though it may have seemed abstract when you learned it, the SVD actually plays a really big role in much of
advanced statistical modeling. When you learn things like ridge regression, principal components analysis,
smoothing splines, etc.—all of these things (and more!) can be understood from the perspective of the SVD.
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7. Compute a singular value decomposition of the matrix mat, using the svd() function, and store the result
in a variable called mat.svd. What is the class of mat.svd? What are the names of its components?

8. Mathematically, if we denote mat by a matrix M , then its SVD can be written as M = UDV T , where
D is a diagonal matrix, containing what are called the singular values of M . Using the components of
svd.mat, form the three-term matrix product UDV T . (Hint: you will need to use the diag() function
in order to turn a vector into a diagonal matrix, and the t() function in order to perform the matrix
transpose operation.) Check that is this matrix product is actually equal to the original matrix mat.
(Hint: to check whether all entries of one matrix are equal to the other, you can use all.equal().)

9. Again denoting mat as M , mathematically, compute the cross-product matrix MT M , and call this
mat.cross. Now compute an eigendecomposition of mat.cross, using the eigen() function, and store
the results in a variable called mat.eigen. What is the class of mat.eigen? What are the names of its
components?

10. Check that the squared singular values of mat are equal to the eigenvalues of mat.cross. Bonus: can
you explain why this is the case? (This requires a bit of advanced linear algebra, so don’t worry about
it if you don’t see why this is true. . . )

Part III (Bonus, optional)

11. Verify that the sum of the squared singular values of mat is equal to the sum of its squared entries.
Can you explain why this is the case? (This requires a bit of advanced linear algebra, so don’t worry
about it if you don’t see why this is true. . . )

12. Generate a 2000 x 2000 matrix filled with N(0, 1) entries, called big.mat. Symmetrize this matrix by
defining big.mat.sym to be equal to the sum of big.mat and its transpose.

13. We are going to want to compute an eigendecomposition of big.mat.sym, saved as big.mat.sym.eigen,
but this is going to be costly; to save on computation time, since we only want to look at the eigenvalues,
be sure to set the argument only.values=TRUE in the call to eigen(). Now plot a histogram of the
eigenvalues, with a large setting of the breaks argument. Does this seem to form a definitive shape?
What is it?

14. Note: the above demonstrated a very famous and fundamental result in random matrix theory, called
Wigner’s Semicircle Law. Demonstrate that this same law holds, even when the distribution of entries
is changed from N(0, 1) to something else (for example, try Bernoulli entries).
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