
Lab 6
Statistical Computing, 36-350

Friday October 9, 2015

Today’s agenda: Least squares regression and least absolute deviations regression using grid search.

General instructions for labs. Upload an R Markdown file, named .Rmd“, to Blackboard. You will give
the commands to answer each question in its own code block, which will also produce plots that will be
automatically embedded in the output file. Each answer must be supported by written statements as well as
any code used. Include the name of your lab partner at the top of the file.

R Markdown setup. Open a new R Markdown file; set the output to HTML mode and click “Knit HTML”.
This should produce a web page with the knitting procedure executing your code blocks. You can edit this
new file to produce your homework submission. Alternatively, you can start from the lab’s R Markdown file
posted on the course website, as a template.

Background. We’ll examine two types of regresssion (Linear least squares regression and least absolute
deviations regression), and code a simple version of the two regressions ourselves. First, Gaussian linear
regression can be thought of as finding the best fit linear function to the data, but assuming that the data
contains some independent Gaussian noise

f(x) = a+ bx, y = f(x) +N (0, σ2).

We learned in Homework 2 that one solution was entirely made possible by a simple linear algebra formulation.
We will now demonstrate finding the solution with an alternate approach – using a simple grid-search to find
the minimizer. The data we will use comes from Boston housing data, and has 506 rows and 14 columns.

library(MASS)
data(Boston)
#?Boston # Uncomment this to learn about the Boston housing data
y = log(Boston$medv)
x = log(Boston$lstat)

We will isolate our attention to two variables; median value of owner-occupied homes in $1,000s, and lower
status of the population (percent). Specifically, we will find a linear regression between the response variable
y = log(medv) and x = log(lstat).

Part I: Least Squares Linear Regression

1. First, notice there are some median housing values that are equal to $50,000; these are probably artificial
caps (anything larger than 50,000 is replaced with the cap 50,000 while recording data), so they disrupt
our analysis. Identify these points, and assign to y the log median house values and to x the log crime
rate after having eliminated these points. Having eliminated these points, our model is only suitable
for predictions reasonably within the data range. Use these for the remainder of the lab.

2. Write a loss function called squareloss() that takes in two arguments (scalar values y,u) and returns
the square of the difference:

(y − u)2

Fixing u = 0, evaluate the loss function over a set of equally distant values between -2 and 2 of y and
plot it.
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3. Write a function meanerror() that takes in five arguments (scalar values beta0 and beta1, and vectors
x and y, and a loss function lossfun) and returns the following result. This gives a quantification of
how ‘off’ our function β0 + β1x is, in the training data. For instance, using square loss, this becomes

n∑
i=1

(yi − (β0 + β1xi))2

and using absolute loss, this becomes
n∑

i=1
|yi − (β0 + β1xi)|

which may be helpful for part II.

4. Construct a function lm.gridsearch() that takes in four inputs – the explanatory variable x, the
response variable y, a numeric (scalar) value B, and a function lossfun whose default value of
squareloss – and returns a 2-length vector which contains the best combination of β0 and β1 in a 2D
grid constructed with candidate values each between -B and B. The candidate values should be, by
default 1000 equally spaced points between -B and B. Use it on your data with B=10.

5. Congratulations, now you know two ways to obtain a linear regression. Compare your current solution
to the solution you had obtained from homework 2, which used (XTX)−1XT y (revisit HW2 for details).
Plot the best fit linear regression line (y = β0 + β1x) obtained using the two methods but with different
colors, and overlayed with the data.

6. Fit a linear model using lm() learned in class, and extract the coefficients using coef(). Confirm that
they agree with the results of your grid search.

7. Examine the normality residuals of your linear model using a quantile-quantile plot (QQ plot). Explain
your plot; do the residuals look normal (Gaussian)?

Part II: Least Absolute Deviations Regression

Least absolute deviations (LAD) regression is a different flavor of least squares regression a similar goal; it
finds a best-fit linear function to the data, but using a different loss function. Unfortunately, there does
not exist a clean and easy closed form solution (like (XTX)−1XT y in least squares), so we will use the grid
search we’ve learned in part 1.

8. Write a loss function called absloss() that takes in four arguments (scalar values y,u) and calculates
the following value.

|y − u|

As in problem 1, fixing u = 0, evaluate the loss function over a set of equally distant values between -2
and 2 of y and plot it. Describe how it is different from square loss.

9. Now, simply apply lm.gridsearch() with the loss function absloss and B=10 to find the LAD
regression coefficients β0 and β1.

10. Lastly, plot the two regression lines (least squares and LAD) in the same plot, the least squares model
in red, and the quantile model in black – along with the data points. If all went correctly, the least
square regression should be slightly higher.)

11. (Bonus, optional) Let’s add a couple of misleading points to the dataset, and run the above procedure
again. Add the resulting lines to the plot you made in 10 in the same respective colors as before, but in
dotted lines.
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y = c(y,-4,-5)
x = c(x,3,4)

If the least squares regression changed noticeably, while the LAD regression is very similar, you’ve done
the right thing. This is a strength of least absolute deviations regression; the model estimation is robust
against some influential or outlying points. Why though? For full bonus credit, provide a sensible
explanation.
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