
Lecture 17: Databases
Statistical Computing, 36-350

Wednesday November 18, 2015

Outline

• What databases are, and why
• SQL
• Interfacing R and SQL

Databases

• A record is a collection of fields
• A table is a collection of records which all have the same fields (with different values)
• A database is a collection of tables

Databases versus data frames

• Data frames in R are actually tables

R jargon Database jargon
column field
row record
data frame table
types of the columns table schema
bunch of related data frames database

So, why do we need database software?

• Size

– R keeps its data frames in memory
– Industrial databases can be much bigger
– Work with selected subsets

• Speed

– Clever people have worked very hard on getting just what you want fast (Turing award winner
Michael Stonebraker!)

• Concurrency

– Many users accessing the same database simultaneously
– Lots of potential for trouble (two users want to change the same record at once)

1

The client-server model

• Databases live on a server, which manages them
• Users interact with the server through a client program
• Lets multiple users access the same database simultaneously

SQL

• SQL (structured query language) is the standard for database software
• Mostly about queries, which are like doing a selection in R

debt[debt$Country=="France",c("growth","ratio")]
with(debt,debt[Country=="France",c("growth","ratio")])
subset(debt,subset=(Country=="France"),select=c("growth","ratio"))

• We will see shortly how SQL does stuff like this

Connecting R to SQL

First, though let’s see how to connect SQL to R. Note:

• SQL is a language; database management systems (DMBS) actually implement it and do the work

– MySQL, SQLite, etc.,

• They all have somewhat different conventions
• The R package DBI is a unified interface to them
• Need a separate “driver” for each DBMS

Before running the following, install the packages: DBI, RSQLite. Also, download the database file http:
//www.stat.cmu.edu/~ryantibs/statcomp/lectures/baseball.db, and save it in your working directory.

library(DBI)
library(RSQLite)
drv = dbDriver("SQLite")
con = dbConnect(drv, dbname="baseball.db")

con is now a persistent connection to the database baseball.db

dbListTables(con) # Get tables in the database

[1] "AllstarFull" "Appearances" "AwardsManagers"
[4] "AwardsPlayers" "AwardsShareManagers" "AwardsSharePlayers"
[7] "Batting" "BattingPost" "Fielding"
[10] "FieldingOF" "FieldingPost" "HallOfFame"

2

http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/baseball.db
http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/baseball.db

[13] "Managers" "ManagersHalf" "Master"
[16] "Pitching" "PitchingPost" "Salaries"
[19] "Schools" "SchoolsPlayers" "SeriesPost"
[22] "Teams" "TeamsFranchises" "TeamsHalf"
[25] "sqlite_sequence" "xref_stats"

dbListFields(con, "Batting") # List fields in table Batting

[1] "playerID" "yearID" "stint" "teamID" "lgID"
[6] "G" "G_batting" "AB" "R" "H"
[11] "2B" "3B" "HR" "RBI" "SB"
[16] "CS" "BB" "SO" "IBB" "HBP"
[21] "SH" "SF" "GIDP" "G_old"

batting = dbReadTable(con, "Batting") # Import a table as a data frame
dim(batting)

[1] 93955 24

SELECT

The main tool in the SQL language is SELECT, which allows you to perform queries on a particular table in a
database. It has the form:

SELECT columns or computations
FROM table
WHERE condition
GROUP BY columns
HAVING condition
ORDER BY column [ASC | DESC]
LIMIT offset,count;

Example: picking out columns

Suppose we want to pick out five columns from the table Batting, and we only want to look at the first 10
rows.

dbGetQuery(con, paste("SELECT playerID, yearID, AB, H, HR",
"FROM Batting",
"LIMIT 10"))

playerID yearID AB H HR
1 aardsda01 2004 0 0 0
2 aardsda01 2006 2 0 0
3 aardsda01 2007 0 0 0
4 aardsda01 2008 1 0 0
5 aardsda01 2009 0 0 0
6 aaronha01 1954 468 131 13

3

7 aaronha01 1955 602 189 27
8 aaronha01 1956 609 200 26
9 aaronha01 1957 615 198 44
10 aaronha01 1958 601 196 30

This is our very first SQL query (congrats!). It was very efficient

Note that we can replicate this command on the data frame batting:

batting[1:10, c("playerID", "yearID", "AB", "H", "HR")]

playerID yearID AB H HR
1 aardsda01 2004 0 0 0
2 aardsda01 2006 2 0 0
3 aardsda01 2007 0 0 0
4 aardsda01 2008 1 0 0
5 aardsda01 2009 0 0 0
6 aaronha01 1954 468 131 13
7 aaronha01 1955 602 189 27
8 aaronha01 1956 609 200 26
9 aaronha01 1957 615 198 44
10 aaronha01 1958 601 196 30

This was simply to check our work, and we wouldn’t actually want to do this on a large database, since it’d
be much more inefficient to first read into an R data frame, and then call R commands)

Likewise, throughout this lecture, we’ll be writing R code to check our SQL code, but keep in mind this is
just for the sake of learning (not that you would do this in practice)

Practice problems

Enter your unique ID here:
Work through the following problems (go ahead and fill in the code below). In particular, for each of the
following, explain the SQL commands, and replicate the results using R commands that you write

dbGetQuery(con, paste("SELECT playerID, yearID, AB, H, HR",
"FROM Batting",
"ORDER BY yearID",
"LIMIT 10"))

playerID yearID AB H HR
1 abercda01 1871 4 0 0
2 addybo01 1871 118 32 0
3 allisar01 1871 137 40 0
4 allisdo01 1871 133 44 2
5 ansonca01 1871 120 39 0
6 armstbo01 1871 49 11 0
7 barkeal01 1871 4 1 0
8 barnero01 1871 157 63 0
9 barrebi01 1871 5 1 0
10 barrofr01 1871 86 13 0

4

What's going on here? R equivalent on batting data frame?

dbGetQuery(con, paste("SELECT playerID, yearID, AB, H, HR",
"FROM Batting",
"ORDER BY HR DESC",
"LIMIT 10"))

playerID yearID AB H HR
1 bondsba01 2001 476 156 73
2 mcgwima01 1998 509 152 70
3 sosasa01 1998 643 198 66
4 mcgwima01 1999 521 145 65
5 sosasa01 2001 577 189 64
6 sosasa01 1999 625 180 63
7 marisro01 1961 590 159 61
8 ruthba01 1927 540 192 60
9 ruthba01 1921 540 204 59
10 foxxji01 1932 585 213 58

What's going on here? R equivalent on batting data frame?

dbGetQuery(con, paste("SELECT playerID, yearID, AB, H, HR",
"FROM Batting",
"WHERE HR > 55",
"ORDER BY HR DESC"))

playerID yearID AB H HR
1 bondsba01 2001 476 156 73
2 mcgwima01 1998 509 152 70
3 sosasa01 1998 643 198 66
4 mcgwima01 1999 521 145 65
5 sosasa01 2001 577 189 64
6 sosasa01 1999 625 180 63
7 marisro01 1961 590 159 61
8 ruthba01 1927 540 192 60
9 ruthba01 1921 540 204 59
10 foxxji01 1932 585 213 58
11 greenha01 1938 556 175 58
12 howarry01 2006 581 182 58
13 gonzalu01 2001 609 198 57
14 rodrial01 2002 624 187 57
15 griffke02 1997 608 185 56
16 griffke02 1998 633 180 56
17 wilsoha01 1930 585 208 56

5

What's going on here? R equivalent on batting data frame?

dbGetQuery(con, paste("SELECT playerID, yearID, AB, H, HR",
"FROM Batting",
"WHERE yearID >= 1990 AND yearID <= 2000",
"ORDER BY HR DESC",
"LIMIT 10"))

playerID yearID AB H HR
1 mcgwima01 1998 509 152 70
2 sosasa01 1998 643 198 66
3 mcgwima01 1999 521 145 65
4 sosasa01 1999 625 180 63
5 griffke02 1997 608 185 56
6 griffke02 1998 633 180 56
7 mcgwima01 1996 423 132 52
8 fieldce01 1990 573 159 51
9 anderbr01 1996 579 172 50
10 belleal01 1995 546 173 50

What's going on here? R equivalent on batting data frame?

dbGetQuery(con, paste("SELECT AVG(HR)",
"FROM Batting"))

AVG(HR)
1 2.970549

What's going on here? R equivalent on batting data frame?

dbGetQuery(con, paste("SELECT SUM(HR)",
"FROM Batting"))

SUM(HR)
1 260431

What's going on here? R equivalent on batting data frame?

6

dbGetQuery(con, paste("SELECT teamID, yearID, playerID, MAX(HR)",
"FROM Batting"))

teamID yearID playerID MAX(HR)
1 SFN 2001 bondsba01 73

What's going on here? R equivalent on batting data frame?

dbGetQuery(con, paste("SELECT AVG(HR)",
"FROM Batting",
"WHERE yearID >= 1990"))

AVG(HR)
1 4.199555

What's going on here? R equivalent on batting data frame?

dbGetQuery(con, paste("SELECT teamID, AVG(HR)",
"FROM Batting",
"WHERE yearID >= 1990",
"GROUP BY teamID",
"LIMIT 5"))

teamID AVG(HR)
1 ANA 4.678445
2 ARI 3.849315
3 ATL 4.113379
4 BAL 5.152174
5 BOS 5.126227

What's going on here? R equivalent on batting data frame?

dbGetQuery(con, paste("SELECT teamID, AVG(HR)",
"FROM Batting",
"WHERE yearID >= 1990",
"GROUP BY teamID",
"ORDER BY AVG(HR) DESC",
"LIMIT 5"))

teamID AVG(HR)
1 CHA 6.164251
2 NYA 5.986486
3 TOR 5.760937
4 CAL 5.625731
5 TEX 5.563961

7

What's going on here? R equivalent on batting data frame?

dbGetQuery(con, paste("SELECT teamID, yearID, AVG(HR)",
"FROM Batting",
"WHERE yearID == 1991 OR yearID == 1992",
"GROUP BY teamID, yearID",
"ORDER BY AVG(HR) DESC",
"LIMIT 15"))

teamID yearID AVG(HR)
1 DET 1991 7.740741
2 DET 1992 7.280000
3 NYA 1992 7.086957
4 TOR 1992 7.086957
5 BAL 1991 6.800000
6 NYA 1991 6.681818
7 CHA 1991 6.619048
8 BAL 1992 5.920000
9 CLE 1992 5.772727
10 BOS 1991 5.727273
11 MIN 1991 5.600000
12 TEX 1991 5.531250
13 ML4 1991 5.523810
14 TOR 1991 5.320000
15 SEA 1992 5.137931

What's going on here? R equivalent on batting data frame?

Summary

• A database is basically a way of dealing efficiently with lots of potentially huge data frames
• SQL is the standard language for telling databases what to do, especially what queries to run
• Pretty much everything in an SQL query is something we’ve practiced already in R

– subsetting/selection, aggregation, merging, ordering

• Connect R to the database, send it an SQL query, analyse the returned data frame

8

	Outline
	Databases
	Databases versus data frames
	So, why do we need database software?
	The client-server model
	SQL
	Connecting R to SQL
	SELECT
	Example: picking out columns
	Practice problems
	Summary

