
Lecture 11: Testing and Design
Statistical Computing, 36-350
Wednesday October 21, 2015

Last time: basic debugging

Basic debugging tricks:

• Notifications and alerts that you can add
• Localizing issues and changing input parameters
• Error handling in code

Today: testing and design

Better success through design!

• Some testing principles
• Top-down design of programs
• Re-factoring existing code to a better design
• Example: Jackknife

Procedure versus substance

Our two goals:

• Do we get the right answer (substance)?
• Do we get an answer in the right way (procedure)?

Both are important (don’t forget about the second!)

Hypothesis testing versus software testing

Statistical hypothesis testing: risk of false alarm (size) and probability of detection (power). This balances
type I and type II errors

Software testing: no false alarms allowed. This is going to reduce our power to detect errors; code can pass
all our tests and still be wrong

But! we can direct the power to detect certain errors, including where the error lies, if we test small pieces

• So write and use lots of tests
• And cycle between writing code and testing it

1

Cross-checking answers

When we have a version of the code which we are confident gets some cases right, we should keep it around
(under a separate name)

• Now compare new versions to the old, on those cases
• Keep debugging until the new version is at least as good as the old
• We’ll see an example of this shortly

Pre-design: abstraction

• Abstraction means hiding details and specifics, dealing in generalities and common patterns
• We have talked about lots of examples of this already (variables, data structures, functions)
• The point of abstraction: program in ways which don’t use people as bad computers
• Economics says: rely on comparative advantage

– Computers: good at tracking arbitrary details, applying rigid rules
– People: good at thinking, meaning, discovering patterns

• So we should spend our time on the big picture, organize our programs with this in mind

Top-down design

1. Start with the big-picture view of the problem
2. Break the problem into a few big parts
3. Figure out how to fit the parts together
4. Repeat this for each part

The big-picture view

Step 1: thnk about the big picture

• Resources: what information is available as part of the problem?

– Usually arguments to a function

• Requirements: what information do we want as part of the solution?

– Usually return values

• What do we have to do to transform the problem statement into a solution?

Breaking into parts

Step 2: divide-and-conquer mentality

• Try to break the calculation into a few parts (say, 5 or less)

– Bad: write 500 lines of code, chop it into five blocks of 100 lines
– Good: each part is an independent calculation, using separate data

2

• Advantages of the good way:

– More comprehensible to human beings
– Easier to improve and extend (respect interfaces)
– Easier to debug and test

Put the parts together

Step 3: assuming you’ve written each part, how would you put them together?

• Write top-level code for the function which puts those steps together:

Not actual code
big.job = function(lots.of.arguments) {

intermediate.result = first.step(some.of.the.args)
final.result = second.step(intermediate.result,rest.of.the.args)
return(final.result)

}

• Note: you can actually go and do this very early on! The sub-functions don’t actually have to be
written at this point (only when you run the code eventually)

What about those sub-functions?

Step 4+: you don’t actually have a working program yet, but you have a good setup

• Recursion: because each sub-function solves a single well-defined problem, we can solve it by top-down
design

• The step one level up tells you what the arguments are, and what the return value must be
• The step one level up doesn’t care how you turn inputs to output
• Stop when we hit a sub-problem we can solve in a few steps with built-in

functions

Thinking algorithmically

• Top-down design only works if you understand

– the problem, and
– a systematic method for solving the problem

• Therefore it forces you to think algorithmically
• First guesses about how to break down the problem are often wrong

– but functional approach contains effects of changes
– so don’t be afraid to change the design

3

Refactoring

Even if we didn’t start in top-down design mode, once we have some code, and it (more or less) works,
re-write it to emphasize commonalities:

• Parallel and transparent naming
• Grouping related values into objects
• Common or parallel sub-tasks become shared functions
• Common or parallel over-all tasks become general functions

Re-factoring tends to make code look more like the result of top-down design. This is no accident!

Extended example: the jackknife

• Have an estimator θ̂ of parameter θ. Want the standard error of our estimate, seθ̂
• The jackknife approximation:

– omit case i, get estimate θ̂(−i)

• Take the variance of all the θ̂(−i), multiply by (n− 1)2/n

• Then seθ̂ is given by square root of this

Jackknife for the mean

mean.jackknife = function(vec) {
n = length(vec)
jackknife.ests = vector(length=n)
for (i in 1:n) {

jackknife.ests[i] = mean(vec[-i])
}
variance.of.ests = var(jackknife.ests)
jackknife.var = ((n-1)^2/n)*variance.of.ests
jackknife.stderr = sqrt(jackknife.var)
return(jackknife.stderr)

}

some.normals = rnorm(100,mean=7,sd=5)
mean(some.normals)

[1] 6.560279

se.formula = sd(some.normals)/sqrt(length(some.normals))
se.jackknife = mean.jackknife(some.normals)
max(abs(se.formula-se.jackknife))

[1] 3.330669e-16

4

Gamma parameters

Recall our friend the method of moments estimator:

gamma.est = function(the.data) {
m = mean(the.data)
v = var(the.data)
a = m^2/v
s = v/m
return(c(a=a,s=s))

}

Jackknife for gamma parameters

gamma.jackknife = function(vec) {
n = length(vec)
jackknife.ests = matrix(NA,nrow=2,ncol=n)
rownames(jackknife.ests) = c("a","s")
for (i in 1:n) {

fit = gamma.est(vec[-i])
jackknife.ests["a",i] = fit["a"]
jackknife.ests["s",i] = fit["s"]

}
variance.of.ests = apply(jackknife.ests,1,var)
jackknife.vars = ((n-1)^2/n)*variance.of.ests
jackknife.stderrs = sqrt(jackknife.vars)
return(jackknife.stderrs)

}

data("cats",package="MASS")
gamma.est(cats$Hwt)

a s
19.0653121 0.5575862

gamma.jackknife(cats$Hwt)

a s
2.74062279 0.07829436

Jackknife for linear regression coefficients

5

jackknife.lm = function(df,formula,p) {
n = nrow(df)
jackknife.ests = matrix(0,nrow=p,ncol=n)
for (i in 1:n) {

new.coefs = lm(as.formula(formula),data=df[-i,])$coefficients
jackknife.ests[,i] = new.coefs

}
variance.of.ests = apply(jackknife.ests,1,var)
jackknife.var = ((n-1)^2/n)*variance.of.ests
jackknife.stderr = sqrt(jackknife.var)
return(jackknife.stderr)

}

cats.lm = lm(Hwt~Bwt,data=cats)
coefficients(cats.lm)

(Intercept) Bwt
-0.3566624 4.0340627

"Official" standard errors
sqrt(diag(vcov(cats.lm)))

(Intercept) Bwt
0.6922770 0.2502615

jackknife.lm(df=cats,formula="Hwt~Bwt",p=2)

[1] 0.8314142 0.3166847

Refactoring the jackknife

• Omitting one point or row is a common sub-task
• The general pattern:

figure out the size of the data
for each case

repeat some estimation, after omittingthat case
collect all estimates in a vector as you go

take variances across cases
scale up variances
take the square roots

• Refactor by extracting the common “omit one” operation
• Refactor by defining a general “jackknife” operation

6

The common operation

Let’s define a function for the common operation of omitting one case

omit.case = function(dat,i) {
dims = dim(dat)
if (is.null(dims) || (length(dims)==1)) {

return(dat[-i])
} else {

return(dat[-i,])
}

}

(Exercise: modify so it also handles higher-dimensional arrays)

The general operation

Let’s write a function for the general jackknife workflow

jackknife = function(estimator,dat) {
n = ifelse(is.null(dim(dat)),length(dat),nrow(dat))
omit.and.est = function(i) { estimator(omit.case(dat,i)) }
jackknife.ests = matrix(sapply(1:n, omit.and.est), ncol=n)
variance.of.ests = apply(jackknife.ests,1,var)
jackknife.var = ((n-1)^2/n)*variance.of.ests
jackknife.stderr = sqrt(jackknife.var)
return(jackknife.stderr)

}

Could allow other arguments to estimator, spin off finding n as its own function, etc.

It works!

jackknife(estimator=mean,dat=some.normals)

[1] 0.5189194

max(abs(jackknife(estimator=mean,dat=some.normals) -
mean.jackknife(some.normals)))

[1] 0

max(abs(jackknife(estimator=gamma.est,dat=cats$Hwt) -
gamma.jackknife(cats$Hwt)))

7

[1] 0

est.coefs = function(dat) {
return(lm(Hwt~Bwt,data=dat)$coefficients)

}
est.coefs(cats)

(Intercept) Bwt
-0.3566624 4.0340627

max(abs(est.coefs(cats) - coefficients(cats.lm)))

[1] 0

jackknife(estimator=est.coefs,dat=cats)

[1] 0.8314142 0.3166847

max(abs((jackknife(estimator=est.coefs,dat=cats) -
jackknife.lm(df=cats,formula="Hwt~Bwt",p=2))))

[1] 0

Refactoring + testing

Note: we’ve been just cross-checking our code the whole time against our old code, to make sure it works

Summary

• Top-down design is a recursive heuristic for coding

– Split your problem into a few sub-problems; write code tying their solutions together
– If any sub-problems still need solving, go write their functions

• Leads to multiple short functions, each solving a limited problem
• Disciplines you to think algorithmically
• Once you have working code, re-factor it to make it look more like it came from a top-down design

– Factor out similar or repeated sub-operations
– Factor out common over-all operations

8

	Last time: basic debugging
	Today: testing and design
	Procedure versus substance
	Hypothesis testing versus software testing
	Cross-checking answers
	Pre-design: abstraction
	Top-down design
	The big-picture view
	Breaking into parts
	Put the parts together
	What about those sub-functions?
	Thinking algorithmically
	Refactoring
	Extended example: the jackknife
	Jackknife for the mean
	Gamma parameters
	Jackknife for gamma parameters
	Jackknife for linear regression coefficients
	Refactoring the jackknife
	The common operation
	The general operation
	It works!
	Refactoring + testing
	Summary

