
Lecture 8: Fitting Data
Statistical Computing, 36-350
Wednesday October 7, 2015

In previous episodes

• Loading and saving data sets in R format
• Loading and saving data sets in other structured formats
• Intro to regression modeling

Today

• Using data frames for statistical purposes
• Basics of regression modeling

So you’ve got a data frame

Recall prostate cancer data set from last time:

pros = read.table("http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/prostate.data")
nrow(pros)

[1] 97

head(pros)

lcavol lweight age lbph svi lcp gleason pgg45 lpsa
1 -0.5798185 2.769459 50 -1.386294 0 -1.386294 6 0 -0.4307829
2 -0.9942523 3.319626 58 -1.386294 0 -1.386294 6 0 -0.1625189
3 -0.5108256 2.691243 74 -1.386294 0 -1.386294 7 20 -0.1625189
4 -1.2039728 3.282789 58 -1.386294 0 -1.386294 6 0 -0.1625189
5 0.7514161 3.432373 62 -1.386294 0 -1.386294 6 0 0.3715636
6 -1.0498221 3.228826 50 -1.386294 0 -1.386294 6 0 0.7654678
train
1 TRUE
2 TRUE
3 TRUE
4 TRUE
5 TRUE
6 TRUE

What can we do with it?

• Plot it: examine multiple variables and distributions
• Test it: compare groups of individuals to each other

1

• Model it: try to predict, say, one variable from the others

Recall the variables that we have measured over 97 men:

• lpsa: log PSA score
• lcavol: log cancer volume
• lweight: log prostate weight
• age: age of patient
• lbph: log of the amount of benign prostatic hyperplasia
• svi: seminal vesicle invasion
• lcp: log of capsular penetration
• gleason: Gleason score
• pgg45: percent of Gleason scores 4 or 5

Last time we plotted the distribution of each varaible individually; and computed the correlations between
variables; we learned that

• lcp, the log amount of capsular penetration, is very skewed; a bunch of men with little (or none?), then
a big spread

• lcp and lcavol, the log cancer volumne, are highly positive correlated
• gleason, which records the current Gleason score, and pgg45, which records the historical percentage

of Gleason scores 4 or 5, are highly positively correlated

Visualizing multiple relationships, with pairs()

Can easily look at multiple relationships at once, using the pairs() function:

pairs(~ lcavol + lweight + lcp + lbph, data=pros)

2

lcavol

2.5 3.5 4.5 −1 0 1 2

−
1

1
3

2.
5

3.
5

4.
5

lweight

lcp

−
1

1
2

3

−1 0 1 2 3 4

−
1

1
2

−1 0 1 2 3

lbph

Numerical correlations:

cor(pros[,c("lcavol","lweight","lcp","lbph")])

lcavol lweight lcp lbph
lcavol 1.0000000 0.2805214 0.675310484 0.027349703
lweight 0.2805214 1.0000000 0.164537142 0.442264399
lcp 0.6753105 0.1645371 1.000000000 -0.006999431
lbph 0.0273497 0.4422644 -0.006999431 1.000000000

Inspecting relationships over a subset of the observations

We see that lcp takes a bunch of really low values, that appear to have little relationship with other variables.
For exploratory purposes, let’s get rid of them and see what the correlations look like

pros.subset = pros[pros$lcp > min(pros$lcp),]
nrow(pros.subset) # Beware, we've lost a half of our data!

[1] 52

pairs(~ lcavol + lweight + lcp + lbph, data=pros.subset)

3

lcavol

3.0 3.5 4.0 4.5 −1 0 1 2

0
1

2
3

3.
0

4.
0

lweight

lcp

0
1

2
3

0 1 2 3

−
1

1
2

0 1 2 3

lbph

Numerical correlations:

cor(pros.subset[,c("lcavol","lweight","lcp","lbph")])

lcavol lweight lcp lbph
lcavol 1.0000000 0.2209352 0.8049728 -0.2407405
lweight 0.2209352 1.0000000 0.1134501 0.3381993
lcp 0.8049728 0.1134501 1.0000000 -0.1794318
lbph -0.2407405 0.3381993 -0.1794318 1.0000000

(Go back to our doctor friend . . . ask if this makes sense . . . he tells us that when the recorded capsular
penetration value is that small, it basically means that it couldn’t be accurately measured at that scale)

Testing means between two different groups

Recall that svi, the presence of seminal vesicle invasion, is binary:

table(pros$svi)

##
0 1
76 21

From http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1476128/:

4

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1476128/

“When the pathologist’s report following radical prostatectomy describes seminal vesicle invasion
(SVI) . . . prostate cancer in the areolar connective tissue around the seminal vesicles and outside
the prostate . . . generally the outlook for the patient is poor.”

Does seminal vesicle invasion relate to the weight of the cancer?

Plot it first:

pros$svi = factor(pros$svi) # Making it a factor helps with plotting
plot(pros$svi, pros$lweight, main="lweight versus svi",

xlab="SVI? Yes or no", ylab="Log cancer weight")

0 1

2.
5

3.
0

3.
5

4.
0

4.
5

lweight versus svi

SVI? Yes or no

Lo
g

ca
nc

er
 w

ei
gh

t

Tough to tell! Let’s try a simple two-sample t-test:

t.test(pros$lweight[pros$svi==0], pros$lweight[pros$svi==1])

##
Welch Two Sample t-test
##
data: pros$lweight[pros$svi == 0] and pros$lweight[pros$svi == 1]
t = -1.8266, df = 42.949, p-value = 0.07472
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

5

-0.33833495 0.01674335
sample estimates:
mean of x mean of y
3.594131 3.754927

Not much significance, it appears . . .

What about the relationship to the volume of cancer?

plot(pros$svi, pros$lcavol, main="lcavol versus svi",
xlab="SVI? Yes or no", ylab="Log cancer volume")

0 1

−
1

0
1

2
3

4

lcavol versus svi

SVI? Yes or no

Lo
g

ca
nc

er
 v

ol
um

e

Try a two-sample t-test again:

t.test(pros$lcavol[pros$svi==0], pros$lcavol[pros$svi==1])

##
Welch Two Sample t-test
##
data: pros$lcavol[pros$svi == 0] and pros$lcavol[pros$svi == 1]
t = -8.0351, df = 51.172, p-value = 1.251e-10
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

6

-1.917326 -1.150810
sample estimates:
mean of x mean of y
1.017892 2.551959

Wow, looks very significant! Should go report this to our doctor friend . . .

(Warning: what’s wrong with carrying out 5 more t-tests, for the rest of the variables, and taking the
significant ones?)

Basic regression modeling

Let’s use lm() to fit a basic linear model. Recall that this is a model of the form

Y = β0 + β1X1 + . . .+ βpXp + noise

for response variable Y and predictor variables X1, . . . Xp. Goal is to estimate the coefficients β0, β1, . . . βp

The first argument of lm() is a formula, of the form Y ~ X1 + X2 + ... Xp. For example:

pros.lm.1 = lm(lpsa ~ lcavol + lweight, data=pros)
class(pros.lm.1)

[1] "lm"

names(pros.lm.1)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

pros.lm.1

##
Call:
lm(formula = lpsa ~ lcavol + lweight, data = pros)
##
Coefficients:
(Intercept) lcavol lweight
-0.8134 0.6515 0.6647

Getting an overview with summary()

The function summary() gives us a nice summary of the linear model we just fit:

summary(pros.lm.1)

7

##
Call:
lm(formula = lpsa ~ lcavol + lweight, data = pros)
##
Residuals:
Min 1Q Median 3Q Max
-1.61051 -0.44135 -0.04666 0.53542 1.90424
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.81344 0.65309 -1.246 0.216033
lcavol 0.65154 0.06693 9.734 6.75e-16 ***
lweight 0.66472 0.18414 3.610 0.000494 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.7419 on 94 degrees of freedom
Multiple R-squared: 0.5955, Adjusted R-squared: 0.5869
F-statistic: 69.19 on 2 and 94 DF, p-value: < 2.2e-16

This tells us

• The quantiles of the residuals: ideally, this is a perfect normal dist
• The coefficient estimates
• Their standard errors
• P-values for their individual significance
• (Adjusted) R-squared value: how much variability is explained by the model?
• F-statistic for the overall model significance

Getting rid of the intercept

To get rid of the intercept term, we add +0 to the right-hand side of the formula:

pros.lm.2 = lm(lpsa ~ lcavol + lweight+ 0, data=pros)
summary(pros.lm.2)

##
Call:
lm(formula = lpsa ~ lcavol + lweight + 0, data = pros)
##
Residuals:
Min 1Q Median 3Q Max
-1.63394 -0.51181 0.00925 0.49705 1.90715
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
lcavol 0.66394 0.06638 10.00 <2e-16 ***
lweight 0.43894 0.03249 13.51 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##

8

Residual standard error: 0.7441 on 95 degrees of freedom
Multiple R-squared: 0.9273, Adjusted R-squared: 0.9258
F-statistic: 606.1 on 2 and 95 DF, p-value: < 2.2e-16

Is the intercept approriate? In general, depends on the variables that make up the linear model

Getting estimated coefficients with coef()

How can we access the values of estimated regression coefficients? Well, we could inspect the names of the
fitted object:

names(pros.lm.1)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

Then grab the appropriate component, as in:

pros.lm.1$coefficients

(Intercept) lcavol lweight
-0.8134373 0.6515421 0.6647215

But this is not the best strategy. Instead, let’s use the coef() function:

coef(pros.lm.1)

(Intercept) lcavol lweight
-0.8134373 0.6515421 0.6647215

Learning to use R’s built-in functions like coef() to access certain aspects of fitted statistical models is going
to pay off in the long run, because most object types (beyond those fit by lm()) will allow for this kind of
access

Getting the fitted values with fitted()

What does our model predict for the log PSA scores of the 97 mean in question? How do these compare to
the acutal log PSA scores?

To answer the first question, we could extract the coefficients and then manually multiply and sum the
appropriate values:

pros.coef = coef(pros.lm.1)
pros.fits.1 = pros.coef[1] + pros.coef[2]*pros$lweight +

pros.coef[3]*pros$lcavol

9

This is wrong, oops! We mixed up the order of variables; forgot that lcavol was supposed to come before
lweight

Try again:

pros.fits.2 = pros.coef[1] + pros.coef[2]*pros$lcavol +
pros.coef[3]*pros$lweight

This strategy is laborious and error-prone; it’s better to use fitted(), as in:

pros.fits.3 = fitted(pros.lm.1)
max(abs(pros.fits.3 - pros.fits.2)) # They are the same

[1] 1.332268e-15

For the same reasons as before, it’s good practice to use fitted(), a function that works with many common
statistical objects in R

Let’s plot the actual values versus the fitted ones

plot(pros.fits.3, pros$lpsa, main="Actual versus fitted",
xlab="Fitted values", ylab="Log PSA values")

abline(a=0, b=1, lty=2, col="red")

1 2 3 4

0
1

2
3

4
5

Actual versus fitted

Fitted values

Lo
g

P
S

A
 v

al
ue

s

Appears to be a decent fit

10

Running diagnostics with plot()

We can use the plot() function to run a series of diagnostic tests for our regression:

plot(pros.lm.1)

1 2 3 4

−
2

−
1

0
1

2

Fitted values

R
es

id
ua

ls

lm(lpsa ~ lcavol + lweight)

Residuals vs Fitted

9695

18

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(lpsa ~ lcavol + lweight)

Normal Q−Q

9695

18

11

1 2 3 4

0.
0

0.
5

1.
0

1.
5

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(lpsa ~ lcavol + lweight)

Scale−Location
9695

18

0.00 0.02 0.04 0.06 0.08 0.10

−
2

−
1

0
1

2
3

Leverage

S
ta

nd
ar

di
ze

d
re

si
du

al
s

lm(lpsa ~ lcavol + lweight)

Cook's distance

Residuals vs Leverage

3869

95

The results are pretty good

• Residuals versus fitted plot: points appear randomly scattered, no particular pattern

12

• Normal Q-Q plot: points are more or less along the 45 degree line, so residuals look close to a normal
distribution

• Scale-location and residuals versus leverage plots: points appear to be groups, no points are too far
from the center

There is a science (and an art?) to interpreting these; you’ll learn a lot more in 36-401

Making predictions with predict()

Suppose we had a new observation from a man whose log cancer volume was 4.1, and log cancer weight was
4.5. What would our model estimate his log PSA score would be?

Two ways: manual way, and preferred way using predict():

pros.pred.1 = pros.coef[1] + pros.coef[2]*4.1 +
pros.coef[3]*4.5

pros.new = data.frame(lcavol=4.1, lweight=4.5)
pros.pred.2 = predict(pros.lm.1, newdata=pros.new)
abs(pros.pred.2 - pros.pred.1) # They are the same

1
0

Building a bigger model

We only used two variables in our regression; what happens if we use all 8?

pros.lm.3 = lm(lpsa ~ lcavol + lweight + age +
lbph + svi + lcp + gleason + pgg45,

data=pros)
summary(pros.lm.3)

##
Call:
lm(formula = lpsa ~ lcavol + lweight + age + lbph + svi + lcp +
gleason + pgg45, data = pros)
##
Residuals:
Min 1Q Median 3Q Max
-1.76644 -0.35510 -0.00328 0.38087 1.55770
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.181561 1.320568 0.137 0.89096
lcavol 0.564341 0.087833 6.425 6.55e-09 ***
lweight 0.622020 0.200897 3.096 0.00263 **
age -0.021248 0.011084 -1.917 0.05848 .
lbph 0.096713 0.057913 1.670 0.09848 .
svi1 0.761673 0.241176 3.158 0.00218 **
lcp -0.106051 0.089868 -1.180 0.24115

13

gleason 0.049228 0.155341 0.317 0.75207
pgg45 0.004458 0.004365 1.021 0.31000

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 0.6995 on 88 degrees of freedom
Multiple R-squared: 0.6634, Adjusted R-squared: 0.6328
F-statistic: 21.68 on 8 and 88 DF, p-value: < 2.2e-16

It’s unclear whether the addition variables added much, based on their p-values

Comparing models based on test data

A very robust a sensible way to pit models against each other is to compare their test errors. That is, we
hold out some data, and predict the log PSA values of the unseen observations

That last column in pros? Looks like the designers of the data set already defined training and test sets for
us

head(pros)

lcavol lweight age lbph svi lcp gleason pgg45 lpsa
1 -0.5798185 2.769459 50 -1.386294 0 -1.386294 6 0 -0.4307829
2 -0.9942523 3.319626 58 -1.386294 0 -1.386294 6 0 -0.1625189
3 -0.5108256 2.691243 74 -1.386294 0 -1.386294 7 20 -0.1625189
4 -1.2039728 3.282789 58 -1.386294 0 -1.386294 6 0 -0.1625189
5 0.7514161 3.432373 62 -1.386294 0 -1.386294 6 0 0.3715636
6 -1.0498221 3.228826 50 -1.386294 0 -1.386294 6 0 0.7654678
train
1 TRUE
2 TRUE
3 TRUE
4 TRUE
5 TRUE
6 TRUE

table(pros$train)

##
FALSE TRUE
30 67

Let’s build our two regression models, using only 67 men—our training data:

pros.train = pros[pros$train==TRUE,]
pros.test = pros[pros$train==FALSE,]
pros.lm.train.1 = lm(lpsa ~ lcavol + lweight, data=pros.train)
pros.lm.train.2 = lm(lpsa ~ lcavol + lweight + age +

14

lbph + svi + lcp + gleason + pgg45,
data=pros.train)

pros.pred.1 = predict(pros.lm.train.1, newdata=pros.test)
pros.pred.2 = predict(pros.lm.train.2, newdata=pros.test)
test.err.1 = mean((pros.test$lpsa - pros.pred.1)^2)
test.err.2 = mean((pros.test$lpsa - pros.pred.2)^2)
test.err.1

[1] 0.4924823

test.err.2

[1] 0.521274

We may as well go with the simpler model! Aside from being simpler (which is a plus!) it predicts better, too

Summary

• Plotting, exploring, and performing basic statistical tests in R is easy to do with data frames
• R has powerful regression modeling tools; using them is easy, using them properly requires some training

and care (you’ll see a lot more in 36-401 and 36-402)

15

	In previous episodes
	Today
	So you've got a data frame
	Visualizing multiple relationships, with pairs()
	Inspecting relationships over a subset of the observations
	Testing means between two different groups
	Basic regression modeling
	Getting an overview with summary()
	Getting rid of the intercept
	Getting estimated coefficients with coef()
	Getting the fitted values with fitted()
	Running diagnostics with plot()
	Making predictions with predict()
	Building a bigger model
	Comparing models based on test data
	Summary

