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Optimization
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Previously

• Writing our own functions
• Dividing labor with multiple functions
• Refactoring to create higher-level operations
• Using apply, sapply, etc., to avoid iteration

Outline

• Functions are objects, and can be arguments to other functions
• Functions are objects, and can be returned by other functions
• Example: surface

Functions as objects

• In R, functions are objects, just like everything else!

• This means that they can be passed to functions as arguments
and returned by functions as outputs as well

Functions of functions: computationally

• We often want to do very similar things to many different functions

• The procedure is the same, only the function we’re working with changes

• Thus, write one function to do the job, and pass the function as an argument

• Because R treats a function like any other object, we can do this simply: invoke the function by its
argument name in the body

• We have already seen examples

Functions that take functions as arguments

Some examples we’ve seen:

• apply(), sapply(), etc.: take this function and use it on all of these objects
• nlm(): Take this function and try to make it small, starting from here
• curve(): Evaluate this function over that range, and plot the results
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Peeking at a function’s definition

Typing a function’s name, without parentheses, in the terminal gives you
its source code:

sample

## function (x, size, replace = FALSE, prob = NULL)
## {
## if (length(x) == 1L && is.numeric(x) && x >= 1) {
## if (missing(size))
## size <- x
## sample.int(x, size, replace, prob)
## }
## else {
## if (missing(size))
## size <- length(x)
## x[sample.int(length(x), size, replace, prob)]
## }
## }
## <bytecode: 0x104054e40>
## <environment: namespace:base>

This isn’t always that explicit, because some functions are defined in a lower level language (like C or Fortran)

log

## function (x, base = exp(1)) .Primitive("log")

rowSums

## function (x, na.rm = FALSE, dims = 1L)
## {
## if (is.data.frame(x))
## x <- as.matrix(x)
## if (!is.array(x) || length(dn <- dim(x)) < 2L)
## stop("'x' must be an array of at least two dimensions")
## if (dims < 1L || dims > length(dn) - 1L)
## stop("invalid 'dims'")
## p <- prod(dn[-(id <- seq_len(dims))])
## dn <- dn[id]
## z <- if (is.complex(x))
## .Internal(rowSums(Re(x), prod(dn), p, na.rm)) + (0+1i) *
## .Internal(rowSums(Im(x), prod(dn), p, na.rm))
## else .Internal(rowSums(x, prod(dn), p, na.rm))
## if (length(dn) > 1L) {
## dim(z) <- dn
## dimnames(z) <- dimnames(x)[id]
## }
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## else names(z) <- dimnames(x)[[1L]]
## z
## }
## <bytecode: 0x104cfdbf8>
## <environment: namespace:base>

The function class

Functions are their own class in R:

class(sin)

## [1] "function"

class(sample)

## [1] "function"

resample = function(x) { sample(x, size=length(x), replace=TRUE) }
class(resample)

## [1] "function"

Some facts about functions

• Functions can be put into lists or even arrays
• A call to function() creates and returns a function object

– Can see the body body()
– Can see the arguments with args()
– Can see the environment with environment()

body(resample)

## {
## sample(x, size = length(x), replace = TRUE)
## }

args(resample)

## function (x)
## NULL

environment(resample)

## <environment: R_GlobalEnv>

3



R has separate types for built-in functions and for those written in R:

typeof(resample)

## [1] "closure"

typeof(sample)

## [1] "closure"

typeof(sin)

## [1] "builtin"

• Why closure for written-in-R functions? Because expressions are “closed” by referring to the parent
environment

• There’s also a 2nd class of built-in functions called primitive

Anonymous functions

• function() returns an object of class function
• We usually assign that object to a name
• But if we don’t have an assignment, we get an anonymous function
• Usually part of some larger expression:

sapply((-2):2,function(log.ratio){exp(log.ratio)/(1+exp(log.ratio))})

## [1] 0.1192029 0.2689414 0.5000000 0.7310586 0.8807971

• Anonymous functions are handy when connecting to other pieces of code, especially in things like apply
and sapply

• Won’t cluttering the workspace
• But can’t be examined or re-used later

Example: grad()

• Many problems in statistics come down to optimization (so do lots of problems in economics, physics,
computer science, etc.)

• Lots of optimization routines require the gradient of the objective
function—this is the function that is to be minimized or maximized

• Recall, the gradient of f at x = (x1, . . . xn) is just the vector that collects all the partial derivatives:
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∇f(x) =


∂f(x)
∂x1
...

∂f(x)
∂xn



Note that we do basically the same thing to get the gradient of f at x no matter what f is:

Find partial derivative of f with respect to each component of x
Return the vector of partial derivatives

• It makes no sense to rewrite this every time we change f !

• Hence, write code to calculate the gradient of an arbitrary function

• We could write our own, but there are lots of tricky issues

– Best way to calculate partial derivative?
– What if x is at the edge of the domain of f?

• Fortunately, someone has already done this for us

From the package numDeriv

library(numDeriv)
args(grad)

## function (func, x, method = "Richardson", side = NULL, method.args = list(),
## ...)
## NULL

• func is a function which returns a single floating-point value
• x is a vector, at which we want to evaluate the derivative of func
• Extra arguments in ... get passed along to func
• Other functions in the package for, e.g., the Hessian matrix (matrix of second partial derivatives)

Simple example

So, does it work as advertized?

simpleFun = function(x) {
return(x[1]^2 + 1/3*x[2]^2)

}
(xpt = runif(n=2,min=-2,max=2))

## [1] -1.0116002 -0.7158292
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grad(simpleFun, xpt)

## [1] -2.0232004 -0.4772195

max(abs(grad(simpleFun,xpt) - c(2*xpt[1],2/3*xpt[2])))

## [1] 5.519141e-12

Complex example

Let’s try a more complicated example . . .

complicatedFun = function(x) {
return((1/2*x[1]^2-1/4*x[2]^2+3)*cos(2*x[1]+1-exp(x[2])))

}
(xpt = runif(n=2,min=-2,max=2))

## [1] -0.01966738 -1.34804413

grad(complicatedFun, xpt)

## [1] -3.2988141 0.9415997

We could differentiate the above by hand (and you should, for practice), but here’s another way that saves us
work. Have R calculate the derivatives symbolically:

(d1 = D(expression((1/2*x^2-1/4*y^2+3)*cos(2*x+1-exp(y))), "x"))

## 1/2 * (2 * x) * cos(2 * x + 1 - exp(y)) - (1/2 * x^2 - 1/4 *
## y^2 + 3) * (sin(2 * x + 1 - exp(y)) * 2)

(d2 = D(expression((1/2*x^2-1/4*y^2+3)*cos(2*x+1-exp(y))), "y"))

## (1/2 * x^2 - 1/4 * y^2 + 3) * (sin(2 * x + 1 - exp(y)) * exp(y)) -
## 1/4 * (2 * y) * cos(2 * x + 1 - exp(y))

(ans1 = eval(d1, envir=data.frame(x=xpt[1], y=xpt[2])))

## [1] -3.298814

(ans2 = eval(d2, envir=data.frame(x=xpt[1], y=xpt[2])))

## [1] 0.9415997
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max(abs(grad(complicatedFun, xpt) - c(ans1,ans2)))

## [1] 5.175127e-10

Note: that symbolic calculation using D() is much more limited than numerical calculation using grad(),
i.e., it only works for certain functions that R knows how to differentiate in closed form

Gradient descent

The bread and butter of optimization routines: gradient descent. The idea is simple—just calculate the
gradient of the function you’re trying to (say) minimizing, move in the direction of its negative gradient, and
repeat

With our knowledge of grad(), we can now write a very useful function for peforming gradient descent

grad.descent = function(f, x0, max.iter=200, step.size=0.05,
stopping.deriv=0.01, ...) {

n = length(x0)
xmat = matrix(0,nrow=n,ncol=max.iter)
xmat[,1] = x0

for (k in 2:max.iter) {
# Calculate the gradient
grad.cur = grad(f,xmat[,k-1],...)

# Should we stop?
if (all(abs(grad.cur) < stopping.deriv)) {
k = k-1; break

}

# Move in the opposite direction of the grad
xmat[,k] = xmat[,k-1] - step.size * grad.cur

}

xmat = xmat[,1:k] # Trim
return(list(x=xmat[,k], xmat=xmat, k=k))

}

Let’s try it out on our simple example!

x0 = c(-1.9,-1.9)
gd = grad.descent(simpleFun,x0)
gd$x

## [1] -5.437919e-07 -1.490486e-02
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gd$k

## [1] 144

Note: the minimum here is achieved at (0,0), so this is right

Let’s look at the gradient descent path traversed!

# Evaluate our function over a grid of (x,y) pairs between -2 and 2
ng = 50
xgr = ygr = seq(-2,2,length=ng)
vals = matrix(0,ng,ng)
for (i in 1:ng)
for (j in 1:ng)
vals[i,j] = simpleFun(c(xgr[i],ygr[j]))

# Use the persp function for a nice 3d plot
orig.mar = par()$mar # Save the original margins
par(mar=c(0,0,0,0)) # Make the margins small
r = persp(xgr,ygr,vals,theta=5,phi=80,xlab="",ylab="",zlab="")

# (We'll see cleaner code for these last two steps soon!)

# Draw the gradient descent path on top of this
points(trans3d(x0[1],x0[2],simpleFun(x0),r),col="red",cex=2)
lines(trans3d(gd$xmat[1,],gd$xmat[2,],apply(gd$xmat,2,simpleFun),r),

lwd=4,col="red")
points(points(trans3d(gd$x[1],gd$x[2],simpleFun(gd$x),r),

col="black",cex=2))
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par(mar=orig.mar) # Restore the original margins

The power of gradient descent

This is a very broadly applicable algorithm! Works equally well when f is:

• least squares loss for an ordinary regression
• Huber loss for a robust regression
• negative log likelihood
• cost of a production plan
• etc.

We’ll learn much more next time

Example: gradient descent for linear regression

Let’s set up a linear regression simulation

n = 100
p = 2
pred = matrix(rnorm(n*p),n,p)
beta = c(1,4)
resp = pred %*% beta + rnorm(n)
(lm.coefs = coef(lm(resp ~ pred + 0)))
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## pred1 pred2
## 0.9098495 3.9359503

Let’s now try out gradient descent:

tryCatch({
out = grad.descent(function(beta) { sum((resp-pred%*%beta)^2)},

x0=c(0,0), step.size=0.05, max.iter=200)
}, error = function(err) { cat(err$message) })

## function returns NA at 5.48953455200445e+1482.11405987595638e+149 distance from x.

Uh oh! What the heck happened??

You should practice your debugging skill to confirm this, but the step size is simply too large, and so gradient
descent is not converging

A simple fix is just to take a smaller step size

out = grad.descent(function(beta) { sum((resp-pred%*%beta)^2)},
x0=c(0,0), step.size=1e-3, max.iter=200)

# Accurate to 3 digits in 60 steps, not too shabby!
out$k

## [1] 56

out$x

## [1] 0.9097915 3.9359350

lm.coefs

## pred1 pred2
## 0.9098495 3.9359503

We perhaps don’t want to fiddle around with the step size manually (what’s the problem with this? what’s
the problem with taking it just to be super tiny, so that we always converge?)

Next time, we’ll learn a more principled strategy
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curve()

We’ve seen curve() a few times so far. A call to curve looks like this:

curve(expr, from = a, to = b, ...)

Here expr is some expression involving a variable called x, which is swept from the value a to the value b,
and ... are other plotting arguments

For example:

out = curve(x^2 * sin(x), 0, 1)
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names(out)

## [1] "x" "y"

head(cbind(out$x,out$y))

## [,1] [,2]
## [1,] 0.00 0.000000e+00
## [2,] 0.01 9.999833e-07
## [3,] 0.02 7.999467e-06
## [4,] 0.03 2.699595e-05
## [5,] 0.04 6.398293e-05
## [6,] 0.05 1.249479e-04
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Using curve() with our own functions

If we have defined a function already, we can use it in curve:

psi = function(x,c=1) { ifelse(abs(x)>c,2*c*abs(x)-c^2,x^2) }
curve(psi(x,c=10),from=-20,to=20)
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Problems when our own functions aren’t vectorized

If our function doesn’t take vectors to vectors, curve() becomes unhappy:

gmp = read.table("http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/gmp.dat")
gmp$pop = round(gmp$gmp/gmp$pcgmp)
mse = function(y0,a,Y=gmp$pcgmp,N=gmp$pop) { mean((Y - y0*(N^a))^2) }

tryCatch({
curve(mse(a=x,y0=6611),from=0.10,to=0.15)
}, error = function(err) { cat(err$message) })

## Warning in N^a: longer object length is not a multiple of shorter object
## length

## 'expr' did not evaluate to an object of length 'n'

How do we solve this?
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Define a new, vectorized function, say with sapply:

sapply(seq(from=0.10,to=0.15,by=0.01),mse,y0=6611)

## [1] 154701953 102322974 68755654 64529166 104079527 207057513

mse(6611,0.10)

## [1] 154701953

mse.plottable = function(a,...) { return(sapply(a,mse,...)) }
curve(mse.plottable(a=x,y0=6611),from=0.10,to=0.20, xlab="a",ylab="MSE")
curve(mse.plottable(a=x,y0=5100),add=TRUE,col="blue")
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Alternate strategy: Vectorize() returns a new, vectorized function

mse.vec = Vectorize(mse, vectorize.args=c("a","y0"))
curve(mse.vec(a=x,y0=6611),from=0.10,to=0.20,xlab="a",ylab="MSE")
curve(mse.vec(a=x,y0=5100),add=TRUE,col="blue")
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surface()

• curve takes an expression and, as a side-effect, plots 1d curve by sweeping over x

• Suppose we want something like that but sweeping over two variables

• Let’s build this as a good example of programming with functions and expressions

• Strategy: surface() should make x and y sequences, evaluate the expression at each combination to
get z, and then call persp()—this is the function we used above, for the gradient descent 3d plot

First attempt at surface()

• Only works with vector-to-number functions:

surface.1 = function(f, from.x=0, to.x=1, from.y=0, to.y=1,
n.x=30, n.y=30, theta=5, phi=25, ...) {

# Build the 2d grid
x.seq = seq(from=from.x,to=to.x,length.out=n.x)
y.seq = seq(from=from.y,to=to.y,length.out=n.y)
plot.grid = expand.grid(x.seq,y.seq)
z.vals = apply(plot.grid,1,f)
z.mat = matrix(z.vals,nrow=n.x)

# Plot with the persp function
orig.mar = par()$mar # Save the original margins
par(mar=c(1,1,1,1)) # Make the margins small
r = persp(x.seq,y.seq,z.mat,theta=theta,phi=phi,...)
par(mar=orig.mar) # Restore the original margins
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invisible(r)
}

surface.1(function(p){return(sum(p^3))},from.x=-1,from.y=-1)

x.seq

y.seq

z.m
at

Expressions and evaluation

• curve() doesn’t require us to write a function every time; what’s it’s trick?

• Expressions are just another class of R object, so they can be created and manipulated

• One such manipulation is evaluation, as in

eval(expr,envir)

which evaluates the expression expr in the environment envir. The latter can be a data frame or a list

• If we were to type something like xˆ2+yˆ2 as an argument to surface.1, then R tries to evaluate it
prematurely

• substitute() returns the unevaluted expression

• curve() uses first substitute(expr) and then eval(expr,envir),
having made the right envir
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Second attempt at surface()

surface.2 = function(expr, from.x=0, to.x=1, from.y=0, to.y=1,
n.x=30, n.y=30, theta=5, phi=25, ...) {

# Build the 2d grid
x.seq = seq(from=from.x,to=to.x,length.out=n.x)
y.seq = seq(from=from.y,to=to.y,length.out=n.y)
plot.grid = expand.grid(x=x.seq,y=y.seq)

# Evaluate the expression to get matrix of z values
uneval.expr = substitute(expr)
z.vals = eval(uneval.expr,envir=plot.grid)
z.mat = matrix(z.vals,nrow=n.x)

# Plot with the persp function
orig.mar = par()$mar # Save the original margins
par(mar=c(1,1,1,1)) # Make the margins small
r = persp(x.seq,y.seq,z.mat,theta=theta,phi=phi,...)
par(mar=orig.mar) # Restore the original margins
invisible(r)

}

Now, easier to use!

surface.2(abs(x^3)+abs(y^3),from.x=-1,from.y=-1)

x.seq

y.seq

z.m
at
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Summary

• In R, functions are objects, and can be arguments to other functions

– Use this to do the same thing to many different functions
– Separates writing the high-level operations and the first-order functions
– Use sapply (etc.), wrappers, anonymous functions as adapters

• Functions can also be returned by other functions

– Variables other than the arguments to the function are fixed by the environment of creation
– Manipulating expressions lets us flexibly create functions
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