Lecture 6: Writing and Using Functions

Statistical Computing, 36-350

Monday September 28, 2015

Outline

- Defining functions: tying related commands into bundles
- Interfaces: controlling what the function can see and do
- Example: parameter estimation code

Why functions?

Data structures tie related values into one object
Functions tie related commands into one object
In both cases: easier to understand, easier to work with, easier to build into larger things

Huber loss function

```r
# "Huber" loss function, for outlier-resistant regression
# Inputs: vector of numbers (x)
# Outputs: vector with x^2 for small entries, 2|x|-1 for large ones
psi.1 = function(x) {
  psi = ifelse(x^2 > 1, 2*abs(x)-1, x^2)
  return(psi)
}
```

Our functions get used just like the built-in ones:

```r
z = c(-0.5,-5,0.9,9)
psi.1(z)
```

```r
# [1] 0.25 9.00 0.81 17.00
```

Go back to the declaration and look at the parts:

```r
# "Huber" loss function, for outlier-resistant regression
# Inputs: vector of numbers (x)
# Outputs: vector with x^2 for small entries, 2|x|-1 for large ones
psi.1 = function(x) {
  psi = ifelse(x^2 > 1, 2*abs(x)-1, x^2)
  return(psi)
}
```
Two interfaces: the **inputs** or **arguments**; the **outputs** or **return value**

Calls other functions `ifelse()`, `abs()`, operators `^` and `>`. Could have also called other functions we’ve written

`return()` says what the output is. With no explicit return statement, the function just outputs what’s on the last line

Comments: not required by R, but a very good idea! One-line description of purpose; listing of arguments; listing of outputs

What should be a function?

- Things you’re going to re-run, especially if it will be re-run with changes to arguments
- Chunks of code you keep highlighting and hitting return on
- Chunks of code which are small parts of bigger analyses
- Chunks of code that are very similar to other chunks

Multiple arguments

```r
# "Hubger" loss function, for outlier-resistant regression
# Inputs: vector of numbers (x), scale for crossover (c)
# Outputs: vector with x^2 for small entries, 2c|x|-c^2 for large ones
psi.2 = function(x, c=1) {
  psi = ifelse(x^2 > c^2, 2*c*abs(x)-c^2, x^2)
  return(psi)
}

psi.1(z)
```

```r
## [1] 0.25 9.00 0.81 17.00
```

```r
psi.2(z,1) # Same
```

```r
## [1] 0.25 9.00 0.81 17.00
```

Default values get used if arguments are missing:

```r
psi.2(z) # Same
```

```r
## [1] 0.25 9.00 0.81 17.00
```

Named arguments can go in any order when explicitly labeled:


```
psi.2(z,1)
## [1]  0.25  9.00  0.81 17.00
psi.2(z,c=1) # Same
## [1]  0.25  9.00  0.81 17.00
psi.2(x=z,c=1) # Same
## [1]  0.25  9.00  0.81 17.00
psi.2(c=1,x=z) # Same
## [1]  0.25  9.00  0.81 17.00
psi.2(1,z) # Different!
## [1] -1.25  1.00  0.99  1.00
```

Checking arguments

Odd behavior can occur when arguments are passed that we don’t expect

```
psi.2(x=z,c=c(1,1,1,10))
## [1]  0.25  9.00  0.81 81.00
```

```
 psi.2(x=z,c=-1)
## [1]  0.25 -11.00  0.81 -19.00
```

So we can put few sanity checks into the code

```
# "Huber" loss function, for outlier-resistant regression
# Inputs: vector of numbers (x), scale for crossover (c)
# Outputs: vector with x^2 for small entries, 2c|x|-c^2 for large ones
psi.3 = function(x, c=1) {
  # Scale should be a single positive number
  stopifnot(length(c)==1, c>0)
  psi = ifelse(x^2 > c^2, 2*c*abs(x)-c^2, x^2)
  return(psi)
}
```

Arguments to `stopifnot()` are a series of expressions which should all be TRUE; execution halts, with error message, at first FALSE
What the function can see and do

- Each function has its own environment
- Names here over-ride names in the global environment
- Internal environment starts with the named arguments
- Assignments inside the function only change the internal environment
 (There are ways around this, but they are difficult and probably best avoided)
- Names undefined in the function are looked for in the environment the function gets called from

Environment examples

```r
x = 7
y = c("A","C","G","T","U")
adder = function(y) { x = x+y; return(x) }
adder(1)
```

```r
## [1] 8

x
```

```r
## [1] 7

y
```

```r
## [1] "A" "C" "G" "T" "U"

circle.area = function(r) { return(pi*r^2) }
circle.area(c(1,2,3))
```

```r

truepi = pi
pi = 3 # Valid in 1800s Indiana
circle.area(c(1,2,3))
```

```r
## [1] 3 12 27

pi = truepi # Restore sanity
circle.area(c(1,2,3))
```

```r
```
Respect the interfaces!

Interfaces mark out a controlled inner environment for our code
Interact with the rest of the system only at the interface
Advice: arguments explicitly give the function all the information
- Reduces risk of confusion and error
- Exception: true universals like π
Likewise, output should only be through the return value
More about breaking up tasks and about environments later

Example: fitting a statistical model

Fact: bigger cities tend to produce more economically per capita
A proposed statistical model (Geoffrey West and others):

$$Y = y_0 N^a + \text{noise}$$

where Y is the per-capita “gross metropolitan product” of a city, N is its population, and y_0 and a are parameters

Some empirical evidence

gmp = read.table("http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/gmp.dat")
gmp$pop = gmp$gmp/gmp$pcgmp
plot(gmppop, gmppcgmp, log="x", xlab="Population", ylab="Per-capita economic output ($/person-year)",
main="US metropolitan areas, 2006")
curve(6611*x^(1/8),add=TRUE,col="blue")
We want to fit the model

$$Y = y_0 N^a + \text{noise}$$

to some data. Take $y_0 = 6611$ for today.

Unfortunately there’s not an easy way to do this with a single mathematical formula. But we can do this iteratively. Let’s approximate the derivative of error with respect to a, and move in the opposite direction.

An actual first attempt at code:

```r
maximum.iterations = 100
deriv.step = 1/1000
step.scale = 1e-12
stopping.deriv = 1/100
iteration = 0
deriv = Inf
a = 0.15
while ((iteration < maximum.iterations) & (deriv > stopping.deriv)) {
    iteration = iteration + 1
    mse.1 = mean((gmp$pcgmp - 6611*gmp$pop^a)^2)
    mse.2 = mean((gmp$pcgmp - 6611*gmp$pop^(a+deriv.step))^2)
    deriv = (mse.2 - mse.1)/deriv.step
    a = a - step.scale*deriv
}
list(a=a, iterations=iteration, converged=(iteration<maximum.iterations))
```
What’s wrong with this?

- Not encapsulated: re-run by cutting and pasting code—but how much of it? Also, hard to make part of something larger
- Inflexible: to change initial guess at a, have to edit, cut, paste, and re-run
- Error-prone: to change the data set, have to edit, cut, paste, re-run, and hope that all the edits are consistent
- Hard to fix: should stop when absolute value of derivative is small, but this stops when large and negative. Imagine having five copies of this and needing to fix same bug on each.

Let’s turn this into a function and then improve it

Second attempt

Second attempt, with logic fix:

```r
estimate.scaling.exponent.1 = function(a) {
  maximum.iterations = 100
  deriv.step = 1/1000
  step.scale = 1e-12
  stopping.deriv = 1/100
  iteration = 0
  deriv = Inf
  while ((iteration < maximum.iterations) &&
         (abs(deriv) > stopping.deriv)) {
    iteration = iteration + 1
    mse.1 = mean((gmp$pcgmp - 6611*gmp$pop^a)^2)
    mse.2 = mean((gmp$pcgmp - 6611*gmp$pop^(a+deriv.step))^2)
    deriv = (mse.2 - mse.1)/deriv.step
    a = a - step.scale*deriv
  }
  fit = list(a=a,y0=y0,iterations=iteration,
             converged=(iteration<maximum.iterations))
  return(fit)
}
```

Third attempt

All those magic numbers are bad! Let’s make them defaults
Fourth attempt

Why type out the same calculation of the MSE twice? Let’s create a function for this purpose

```r
mse = function(a, y0, Y, N) { mean((Y-y0*N^a)^2) }
```

```r
estimate.scaling.exponent.3 = function(a, y0=6611, maximum.iterations=100, deriv.step=0.001, step.scale=1e-12, stopping.deriv=0.01) {
    iteration = 0
    deriv = Inf
    while ((iteration < maximum.iterations) && (abs(deriv) > stopping.deriv)) {
        iteration = iteration + 1
        mse.1 = mean((gmp$pcgmp - y0*gmp$pop^a)^2)
        mse.2 = mean((gmp$pcgmp - y0*gmp$pop^(a+deriv.step))^2)
        deriv = (mse.2 - mse.1)/deriv.step
        a = a - step.scale*deriv
    }
    fit = list(a=a, y0=y0, iterations=iteration, converged=(iteration<maximum.iterations))
    return(fit)
}
```

Fifth attempt

We’re locked in to using specific columns of `gmp`; we shouldn’t have to re-write code just to compare two data sets. Let’s make more arguments, with defaults
What have we done?

The final code is shorter, clearer, more flexible, and more re-usable.

Exercises:
- Run the code with the default values to get an estimate of a; plot the curve along with the data points
- Randomly remove one data point—how much does the estimate change?
- Run the code from multiple starting points—how different are the estimates of a?

 Aren’t you just a bit curious?

plm = `estimate.scaling.exponent.4`(0.1)

```r
plm
```

```
## $a
## [1] 0.1258166

## $y0
## [1] 6611

## $iterations
## [1] 62

## $converged
## [1] TRUE
```

```r
plot(gmp$pop, gmp$pcgmp, log="x", xlab="Population", ylab="Per-capita economic output ($/person-year)", main="US metropolitan areas, 2006")
curve(6611*x^plm$a,add=TRUE,col="blue")
```
We already wrote code plot this above ... we've just copied and pasted it. What to do, if we were writing a report and needed to make many such plots (on say, different data sets)?

Yes, that’s right. Write a function to make these kind of plots!

Plotting a fitted model

```r
plot.plm = function(plm, curve.col="blue", log="x", 
                    Y=gmp$pcgmp, N=gmp$pop, ...) {
  # Extract the parameters
  a = plm$a
  y0 = plm$y0
  # Plot the data
  plot(N,Y,log=log,...)
  # Draw the curve
  f = function(x) { return(y0*x^-a) }
  curve(f,x,add=TRUE,col=curve.col)
  invisible(TRUE)
}
```

The ... is a catch-all for any arguments the user wants to pass to the `plot()` function (e.g., `xlab` and `ylab`) The function silently returns a TRUE (hence the `invisible()`, instead of a `return()`)
plot.plm(plm, curve.col="red", ylab="Per-capita economic output ($/person-year)", main="US metropolitan areas, 2006", pch=19, col="gray")
Summary

- Functions bundle related commands together into objects: easier to re-run, easier to re-use, easier to combine, easier to modify, less risk of error, easier to think about
- Interfaces control what the function can see (arguments, environment) and change (its internals, its return value)
- Calling functions we define works just like calling built-in functions: named arguments, defaults