
Lecture 16: More on Split-Apply-Combine
Statistical Computing, 36-350
Monday November 16, 2015

Outline

• Quick review: split-apply-combine and ‘plyr’
• Parallelization
• High-level tips and themes
• Practice problem

Split-apply-combine: general strategy

When performing a repetitive task over a large data set, we can think about the following three general steps:

• Split whatever data object we have into meaningful chunks
• Apply the function of interest to this division
• Combine the results into a new object

This can be especially helpful for ragged data, i.e., data where the dimensions are irregular

Split-apply-combine: how?

Two possible frameworks:

• *apply() functions in base R
• **ply() functions in plyr package
• For the latter functions, can replace ** with characters denoting types:

– First character: input type, one of a, d, l
– Second character: output type, one of a, d, l, or _ (drop)

Example: global unemployment rate over the years

Remember the strikes data set from the last couple of lectures:

strikes = read.csv("http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/strikes.csv")
class(strikes)

[1] "data.frame"

head(strikes)

1

country year strike.volume unemployment inflation left.parliament
1 Australia 1951 296 1.3 19.8 43.0
2 Australia 1952 397 2.2 17.2 43.0
3 Australia 1953 360 2.5 4.3 43.0
4 Australia 1954 3 1.7 0.7 47.0
5 Australia 1955 326 1.4 2.0 38.5
6 Australia 1956 352 1.8 6.3 38.5
centralization density
1 0.3748588 NA
2 0.3751829 NA
3 0.3745076 NA
4 0.3710170 NA
5 0.3752675 NA
6 0.3716072 NA

Question: what is the average global employment rate over the years?

With a for loop:

years = unique(strikes$year)
avg.rate.1 = numeric(length(years))
for (i in 1:length(years)) {

strikes.subset = subset(strikes, year==years[i])
avg.rate.1[i] = mean(strikes.subset$unemployment)

}

With base R:

strikes.split = split(strikes, strikes$year)
avg.rate.2 = sapply(strikes.split, function(df) { mean(df$unemployment) })

With plyr:

library(plyr)
avg.rate.3 = daply(strikes, .(year), function(df) { mean(df$unemployment) })

They should all be the same

plot(years, avg.rate.1, xlab="Year", ylab="Avg unemployment rate")
points(years, avg.rate.2, col="red")
points(years, avg.rate.3, col="blue")
legend("topleft", legend=c("for()", "sapply()", "daply()"),

col=c("black", "red", "blue"), pch=21)

2

1950 1955 1960 1965 1970 1975 1980 1985

2
3

4
5

6
7

8

Year

A
vg

 u
ne

m
pl

oy
m

en
t r

at
e

for()
sapply()
daply()

Why do we like plyr functions?

Because they make it completely transparent what data type goes in, and what data type comes out

• a*ply() : input arrays, as in

processed = a*ply(.data, .margins, .fun, ...)

• d*ply() : input data frames, as in

processed = d*ply(.data, .(splitvariable), .fun, ...)

• l*ply() : input lists, as in

processed = l*ply(.data, , .fun, ...)

(note: only one way to split a list!)

• for the * character, use a,d,l to output an array, data frame, or list, respectively; or use _ to output
nothing

Parallelization

What happens if we have a really large data set and we want to use split-apply-combine?

If the individual tasks are unrelated, then we should be speed up the computation by performing them in
parallel

The plyr functions make this quite easy: let’s take a look at the full specification for daply():

3

daply(.data, .variables, .fun = NULL, ..., .progress = "none",
.inform = FALSE, .drop_i = TRUE, .drop_o = TRUE, .parallel = FALSE,
.paropts = NULL)

The second to last argument .parallel (default FALSE) is for parallelization. If set to TRUE, then it performs
the individual tasks in parallel, using the foreach package

The last argument .paropts is for more advanced parallelization, these are additional arguments to be passed
to foreach

For more, read the foreach package first. May take some time to set up the parallel backend (this is often
system specific)

But once set up, parallelization is simple and beautiful with **ply()! The difference is just, e.g.,

avg.rate.3 = daply(strikes, .(year),
function(df) {mean(df$unemployment)})

versus

avg.rate.4 = daply(strikes, .(year),
function(df) {mean(df$unemployment)}, .parallel=TRUE)

High-level tips and themes

• Often the main work in split-apply-combine lies in the processing function, the one you write before
you call **ply()

• Remember: its input should be a piece of the original data, and you should make it so that it produces
output of a consistent format (if appropriate)

• You can try writing it and debugging it by working with a manually split-off piece of the original data
set (before you call *dply())

• Split-apply-combine and plyr are great . . . but should we always use them?

• Don’t use as simply a fancy way of writing for() loops, as in

aaply(1:n, 1, function(i) {
hundreds of lines of code here

})

• Rather, use when:

– The problem naturally breaks up into smaller chunks
– You can more or less easily write a function to solve the subproblem given a chunk
– You want to reintegrate all the answers at the end

4

Practice problems

Question: what are the trends in the various countries’ unemployment rates over time?

Specifically, our goal is to:

1. Compute a scaled version of unemployment rate for each country in the strikes data frame
2. Produce 35 plots (since there are 35 years total) displaying these rates

Setup: first, let’s just reload the data and the plyr package and the maps package (for your convenience, so
you can run this code block, and then work in the console)

strikes = read.csv("http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/strikes.csv")
library(plyr)
library(maps)

Now here’s are your tasks (go ahead and fill in the code below):

0. Enter your unique ID here:

1. Fill in the following function my.scale(), which, given some subset of the
rows of strikes, returns a vector of scaled values of the unemployment rates,
so that the minimum becomes 0 and the maximum becomes 1

my.scale = function(df) {
min.val = min(df$unemployment)
max.val = max(df$unemployment)
TODO, fill in the right return values

}

Check it by uncommenting the code below; the first 4 return values should be
0.00000000, 0.10588235, 0.14117647, 0.04705882

#my.scale(subset(strikes, country=="Australia"))

2. Now, use dlply(), to run my.scale() on each country in strikes, and get back a
list of scaled unemployment rates

unemployment.scaled.list = 0 # TODO, use dlply()

3. Here, unravel the list, and append it as a column to strikes

strikes$unemployment.scaled = 0 # TODO, unlist unemployment.scaled.list
head(strikes)

5

country year strike.volume unemployment inflation left.parliament
1 Australia 1951 296 1.3 19.8 43.0
2 Australia 1952 397 2.2 17.2 43.0
3 Australia 1953 360 2.5 4.3 43.0
4 Australia 1954 3 1.7 0.7 47.0
5 Australia 1955 326 1.4 2.0 38.5
6 Australia 1956 352 1.8 6.3 38.5
centralization density unemployment.scaled
1 0.3748588 NA 0
2 0.3751829 NA 0
3 0.3745076 NA 0
4 0.3710170 NA 0
5 0.3752675 NA 0
6 0.3716072 NA 0

Here is a function that plots a map of the world, which, given some subset of
the rows of strikes, plots a map of the world and colors in the scaled unemployment
rates for the various countries

my.map = function(df) {
my.colors = colorRamp(heat.colors(50))
map("world", fill=TRUE, col="gray")
map("world", add=TRUE)
map("world", regions=df$country, add=TRUE, fill=TRUE,

col=rgb(my.colors(df$unemployment.scaled),max=255))
mtext(paste("Unemployment intensities during",unique(df$year)[1]))

}

Test it out by first looking the map for the strikes data during the year 1979

my.map(subset(strikes, year==1979))

Unemployment intensities during 1979

6

4. Now, use d*ply() to create 35 plots, and save them in a PDF

pdf(file="scaled.unemployment.by.year.pdf", height=6, width=6)
TODO, use one of the d*ply() functions to make 35 plots
graphics.off()

Take a look at your PDF (with 35 pages to it!). Do you notice something about
the global trend over time? Note that red is low, white is high ...
rates ...

Bonus. Perhaps 35 plots is too much. Repeat these previous steps, but instead
of looking at scaled unemployment rates each year, look at averages over 5 years.
This will give you 7 final plots, instead of 35

7

	Outline
	Split-apply-combine: general strategy
	Split-apply-combine: how?
	Example: global unemployment rate over the years
	Why do we like plyr functions?
	Parallelization
	High-level tips and themes
	Practice problems

