Lecture 14: The Split-Apply-Combine Paradigm

Statistical Computing, 36-350 Monday November 9, 2015

Outline

- A quick reminder of what R can do
- How to make life easier with repeated tasks on large data sets

Refresher

We've used some tools for iterating over objects in R without for() loops:

- subset(): retrieve part of the data according to some condition
- apply(): takes a matrix and a margin, applies a function
- sapply() or lapply(): takes a list (or vector), applies a function
- c() or rbind() or cbind(): concatenate these objects in a known pattern

General strategy

Today we will learn a workflow that can be summmarized in three general steps:

- Split whatever data object we have into meaningful chunks
- Apply the function of interest to this division
- Combine the results into a new object

Sounds simple? It is, but it's powerful when combined with data structures (see Hadoop/MapReduce for how this makes you billions)

Why is this useful without the billions?

- This reinforces the pattern/function approach: what you want to do versus how you want to do
 it
- If the full data set is big, and we've already done the splitting, this makes it tractable on smaller machines

An important application: ragged data

Our previous functions work well with well-composed data: apply() on matrices, sapply() or lapply() on lists and vectors. What about ragged data—where the dimensions of each object aren't necessarily the same?

For this: start with data frames, though we'll be going beyond this eventually

A sociologial application

Politics and labor action: does having a friendlier government make labor action more or less likely?

Data: political economy of strikes

Compiled by Bruce Western, Sociology Dept., Harvard.

- Data frame of 8 columns: country, year, days on strike per 1000 workers, unemployment, inflation, left-wing share of governmentt, centralization of unions, union density
- \bullet 625 observations from 18 countries, 1951–1985
- Note that since $18 \times 35 = 630 > 625$, some years missing from some countries

strikes = read.csv("http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/strikes.csv")

head(strikes)

##		country	year	strike.volume	unemployment	inflation	left.parliament
##	1	Australia	1951	296	1.3	19.8	43.0
##	2	Australia	1952	397	2.2	17.2	43.0
##	3	Australia	1953	360	2.5	4.3	43.0
##	4	${\tt Australia}$	1954	3	1.7	0.7	47.0

##	5	Australia 1955		326	1.4	2.0	38.5
##	6	Australia 1956		352	1.8	6.3	38.5
##		${\tt centralization}$	density				
##	1	0.3748588	NA				
##	2	0.3751829	NA				
##	3	0.3745076	NA				
##	4	0.3710170	NA				
##	5	0.3752675	NA				
##	6	0.3716072	NA				

Research question

"Does having a friendlier government make labor action more or less likely?"

becomes

"Is there a relationship between a country's ruling party alignment (left versus right) and the volume of strikes?"

Lots of ways to approach this problem: simplest is to split it by country.

Functions subset(), split(), tapply()

Take Italy:

```
italy.strikes = subset(strikes, country=="Italy")
```

Or, if you prefer,

```
italy.strikes = strikes[strikes$country=="Italy",]
head(italy.strikes)
```

```
country year strike.volume unemployment inflation left.parliament
##
## 311
         Italy 1951
                               437
                                             8.8
                                                      14.3
                                                                       37.5
## 312
         Italy 1952
                               337
                                             9.5
                                                       1.9
                                                                       37.5
## 313
         Italy 1953
                               545
                                            10.0
                                                       1.4
                                                                       40.2
                                             8.7
## 314
         Italy 1954
                               493
                                                       2.4
                                                                       40.2
         Italy 1955
                                             7.5
                                                       2.3
                                                                       40.2
## 315
                               511
## 316
         Italy 1956
                               372
                                             9.3
                                                       3.4
                                                                       40.2
       centralization density
##
## 311
            0.2513799
## 312
            0.2489860
                            NA
## 313
            0.2482739
                            NA
## 314
            0.2466577
                            NA
## 315
            0.2540366
                            NA
## 316
            0.2457069
                            NA
```

```
italy.fit = lm(strike.volume ~ left.parliament, data=italy.strikes)
plot(italy.strikes$left.parliament, italy.strikes$strike.volume,
    main="Italy strike volume versus left-wing alignment",
    xlab="Strike volume", ylab="Left-wing alignment")
abline(italy.fit, col=2)
```

Italy strike volume versus left-wing alignment

One down, seventeen to go

Tedious and dangerous to do this repeatedly—typos abound. How can we do this in an easier way? First: we need subsets for every country. split() does this nicely:

```
strikes.split = split(strikes, strikes$country)
class(strikes.split)
## [1] "list"
names(strikes.split)
    [1] "Australia"
                       "Austria"
                                      "Belgium"
                                                     "Canada"
                                                                   "Denmark"
        "Finland"
                       "France"
                                      "Germany"
                                                     "Ireland"
                                                                   "Italy"
##
    [6]
                                                                   "Sweden"
   [11] "Japan"
                       "Netherlands"
                                     "New.Zealand"
                                                    "Norway"
## [16] "Switzerland"
                       "UK"
                                      "USA"
```

Now, let's generalize our function. We want the linear model coefficients:

```
my.strike.lm = function (country.df) {
    return(lm(strike.volume ~ left.parliament, data=country.df)$coefficients)
}
my.strike.lm(subset(strikes, country=="Italy"))

## (Intercept) left.parliament
## -738.74531 40.29109
```

We could use a for() loop ...

Easier if we've split!

```
strike.coefs = lapply (strikes.split[1:3], my.strike.lm)
strike.coefs
## $Australia
##
       (Intercept) left.parliament
      414.7712254
                   -0.8638052
##
##
## $Austria
      (Intercept) left.parliament
##
       423.077279 -8.210886
##
## $Belgium
##
       (Intercept) left.parliament
##
       -56.926780
                        8.447463
```

Combine step

```
do.call(cbind, strike.coefs)
##
                    Australia
                                 Austria
                                            Belgium
## (Intercept)
                  414.7712254 423.077279 -56.926780
## left.parliament -0.8638052 -8.210886
Or, in one step:
strike.coefs = sapply(strikes.split[1:3], my.strike.lm)
strike.coefs
##
                    Australia
                                 Austria
                                            Belgium
## (Intercept)
                  414.7712254 423.077279 -56.926780
## left.parliament -0.8638052 -8.210886
                                           8.447463
All together now
coefs = sapply(strikes.split, my.strike.lm)
coefs
##
                    Australia
                                 Austria
                                            Belgium
                                                       Canada
## (Intercept)
                  414.7712254 423.077279 -56.926780 -227.8218 -1399.35735
                                           8.447463
## left.parliament -0.8638052 -8.210886
                                                      17.6766
                                         Germany
                   Finland
                                France
                                                  Ireland
                   108.2245 202.4261408 95.657134 -94.78661 -738.74531
## (Intercept)
## left.parliament 12.8422 -0.4255319 -1.312305 55.46721
                                                             40.29109
                      Japan Netherlands New.Zealand
                                                        Norway
## (Intercept)
                  964.73750 -32.627678
                                           721.3464 -458.22397 513.16704
## left.parliament -24.07595
                               1.694387
                                           -10.0106
                                                      10.46523 -8.62072
##
                                     UK
                                               USA
                  Switzerland
## (Intercept)
                   -5.1988836 936.10154 111.440651
## left.parliament 0.3203399 -13.42792
                                          5.918647
```

las=2, cex.axis=0.5)

abline(h=0,col="grey")

Countrywise labor ativity by left-wing score

Add some more coefficients

```
##
                     Australia
                                   Austria
                                                Belgium
                                                           Canada
## (Intercept)
                   157.9191118 600.6777769 -243.4822938 167.07123
## left.parliament
                     0.5658674 -11.2441604
                                             12.4516118 13.43864
## unemployment
                    -1.1181489 -10.9216990
                                              0.3578217 -48.17903
## inflation
                    30.4666061 -0.5923972
                                             10.2673539 27.21807
```

Countrywise labor ativity by left-wing score

Summary

- Split-apply-combine is a commonly used strategy for dealing with repeated calculations over large data sets
- It is helpful conceptually (forces you to think: i. what are the main chunks of data, ii. what are the main functions to apply, iii. how to put things back together in a sensible way)
- It is also helpful computationally for large data sets
- Turns out there are a whole family of apply() like functions that will make your life even easier, and these are also extra helpful for large data sets (next time)