Lecture 14: The Split-Apply-Combine Paradigm
Statistical Computing, 36-350
Monday November 9, 2015

Outline

e A quick reminder of what R can do
e How to make life easier with repeated tasks on large data sets

Refresher

We’ve used some tools for iterating over objects in R without for () loops:

e subset (): retrieve part of the data according to some condition

e apply(): takes a matrix and a margin, applies a function

o sapply() or lapply(): takes a list (or vector), applies a function

e c() or rbind() or cbind(): concatenate these objects in a known pattern

General strategy
Today we will learn a workflow that can be summmarized in three general steps:

o Split whatever data object we have into meaningful chunks
e Apply the function of interest to this division
e Combine the results into a new object

Sounds simple? It is, but it’s powerful when combined with data structures (see Hadoop/MapReduce for how
this makes you billions)

Why is this useful without the billions?

o This reinforces the pattern/function approach: what you want to do versus how you want to do
it

o If the full data set is big, and we’ve already done the splitting, this makes it tractable on smaller
machines

An important application: ragged data

Our previous functions work well with well-composed data: apply() on matrices, sapply() or lapply() on
lists and vectors. What about ragged data—where the dimensions of each object aren’t necessarily the same?

For this: start with data frames, though we’ll be going beyond this eventually

A sociologial application

Politics and labor action: does having a friendlier government make labor action more or less likely?

Data: political economy of strikes
Compiled by Bruce Western, Sociology Dept., Harvard.

e Data frame of 8 columns: country, year, days on strike per 1000 workers, unemployment, inflation,
left-wing share of governmentt, centralization of unions, union density

e 625 observations from 18 countries, 1951-1985

e Note that since 18 x 35 = 630 > 625, some years missing from some countries

strikes = read.csv("http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/strikes.csv")

head(strikes)

country year strike.volume unemployment inflation left.parliament
1 Australia 1951 296 1.3 19.8 43.0
2 Australia 1952 397 2.2 17.2 43.0
3 Australia 1953 360 2.5 4.3 43.0
4 Australia 1954 3 1.7 0.7 47.0

5 Australia 1955 326 1.4 2.0 38.5
6 Australia 1956 352 1.8 6.3 38.5
centralization density
1 0.3748588 NA
2 0.3751829 NA
3 0.3745076 NA
4 0.3710170 NA
5 0.3752675 NA
6 0.3716072 NA

Research question

“Does having a friendlier government make labor action more or less likely?”
becomes

“Is there a relationship between a country’s ruling party alignment (left versus right) and the volume of
strikes?”

Lots of ways to approach this problem: simplest is to split it by country.
Functions subset (), split(), tapply()

Take Italy:

italy.strikes = subset(strikes, country=="Italy")

Or, if you prefer,

italy.strikes = strikes[strikes$country=="Italy",]
head(italy.strikes)

country year strike.volume unemployment inflation left.parliament
311 TItaly 1951 437 8.8 14.3 37.5
312 Italy 1952 337 9.5 1.9 37.5
313 Italy 1953 545 10.0 1.4 40.2
314 Italy 1954 493 8.7 2.4 40.2
315 Italy 1955 511 7.5 2.3 40.2
316 Italy 1956 372 9.3 3.4 40.2
centralization density
311 0.2513799 NA
312 0.2489860 NA
313 0.2482739 NA
314 0.2466577 NA
315 0.2540366 NA
316 0.2457069 NA

italy.fit = lm(strike.volume ~ left.parliament, data=italy.strikes)
plot(italy.strikes$left.parliament, italy.strikes$strike.volume,
main="Italy strike volume versus left-wing alignment",
xlab="Strike volume", ylab="Left-wing alignment")
abline(italy.fit, col=2)

Italy strike volume versus left-wing alignment

o}
IS
2 g
S
5 « o > 3
T (@)
o> n o}
% o 8
L 8 O o 8
I3) (@) (@)
-4 o
o o o}
S - g o o
Ire} (@]
o) o o
[[[[[[
38 40 42 44 46 48

Strike volume

One down, seventeen to go

Tedious and dangerous to do this repeatedly—typos abound. How can we do this in an easier way?

First: we need subsets for every country. split() does this nicely:

strikes.split = split(strikes, strikes$country)
class(strikes.split)

[1] "list"

names (strikes.split)

[1] "Australia" "Austria" "Belgium" "Canada" "Denmark"
[6] "Finland" "France" "Germany" "Ireland" "Italy"
[11] "Japan" "Netherlands" "New.Zealand" "Norway" "Sweden"
[16] "Switzerland" "UK" "USA"

Now, let’s generalize our function. We want the linear model coefficients:

my.strike.lm = function (country.df) {

return(lm(strike.volume ~ left.parliament, data=country.df)$coefficients)
}
my.strike.lm(subset(strikes, country=="Italy"))

#i (Intercept) left.parliament
#it -738.74531 40.29109

We could use a for() loop ...

strike.coefs = NULL
my.countries = c("France", "Italy", "USA")
for (this.country in my.countries) {

strike.coefs = cbind(strike.coefs,

my.strike.lm (subset(strikes, country==this.country)))

}
colnames(strike.coefs) = my.countries
strike.coefs

#i# France Italy USA
(Intercept) 202.4261408 -738.74531 111.440651
left.parliament -0.4255319 40.29109 5.918647

Easier if we’ve split!

strike.coefs = lapply (strikes.split[1:3], my.strike.lm)
strike.coefs

$Australia

it (Intercept) left.parliament
414.7712254 -0.8638052
##

$Austria

#it (Intercept) left.parliament
423.077279 -8.210886
##

$Belgium

#it (Intercept) left.parliament
-56.926780 8.447463

Combine step

do

##
##
##

call(cbind, strike.coefs)

Australia Austria Belgium
(Intercept) 414.7712254 423.077279 -56.926780
left.parliament -0.8638052 -8.210886 8.447463

Or, in one step:

strike.coefs = sapply(strikes.split[1:3], my.strike.lm)
strike.coefs

##
##
##

Australia Austria Belgium
(Intercept) 414.7712254 423.077279 -56.926780
left.parliament -0.8638052 -8.210886 8.447463

All together now

coefs = sapply(strikes.split, my.strike.lm)

coefs

Australia Austria Belgium Canada Denmark
(Intercept) 414.7712254 423.077279 -56.926780 -227.8218 -1399.35735
left.parliament -0.8638052 -8.210886 8.447463 17.6766 34.34477
#it Finland France Germany Ireland Italy

(Intercept) 108.2245 202.4261408 95.657134 -94.78661 -738.74531

left.parliament 12.8422 -0.4255319 -1.312305 ©55.46721 40.29109

Japan Netherlands New.Zealand Norway Sweden

(Intercept) 964.73750 -32.627678 721.3464 -458.22397 513.16704

left.parliament -24.07595 1.694387 -10.0106 10.46523 -8.62072

Switzerland UK USA

(Intercept) -5.1988836 936.10154 111.440651

left.parliament 0.3203399 -13.42792 5.918647

plot(coefs[2,],xaxt="n",xlab="",ylab="Regression coefficient",

main="Countrywise labor ativity by left-wing score")

axis(side=1,at=seq(along=colnames(coefs)),labels=colnames(coefs),

las=2,cex.axis=0.5)

abline (h=0,col="grey")

Countrywise labor ativity by left-wing score

O
= (@)
< T O
@ o
O
=
S
o _
[SIEPN| o
c
O
2 o ©
8 O
I ~ (@) o)
o2 o o O
O
o
N_
' o)
[[[[[[[[[[[[[[[[[[
8 2 3] s = 5 £ ® s 2 S S g]
E & o g °® 3 g N = 9 £
B = =
z 2 2

Add some more coefficients

my.strike.lm.better =

}

function(country.df) {
return(Ilm(strike.volume ~ left.parliament + unemployment
data=country.

df)$coefficients)

coefs2 = sapply(strikes.split, my.strike.lm.better)

coefs2[,1:4]

+ inflation,

#i# Australia Austria Belgium Canada
(Intercept) 157.9191118 600.6777769 -243.4822938 167.07123
left.parliament 0.5658674 -11.2441604 12.4516118 13.43864
unemployment -1.1181489 -10.9216990 0.3578217 -48.17903
inflation 30.4666061 -0.5923972 10.2673539 27.21807
plot(coefs[2,],xaxt=”n”,xlab=””,ylab=”Regression coefficient",

main="Countrywise labor ativity by left-wing score")
axis(side=1,at=seq(along=colnames(coefs)),labels=colnames(coefs),

las=2,cex.axis=0.5)

points(coefs2[2,], col="red")

abline(h=0,col="grey")

Countrywise labor ativity by left-wing score

o
£ 9 © o
o s
©
= o
S
o _|
[S NN OO
[
S c ° o© 6
o
4 e _) 0
qafov - o © -
o 8 0 @) 8
N
! 8
r- 11 1t 1 11 1T 1T T*T T*T T T T T T 1
5 £ g 8§ § o & 5 = S 08 2 & 8
= e © 5 s H
z 2 [2]
4
Summary

o Split-apply-combine is a commonly used strategy for dealing with repeated calculations over large data
sets

o It is helpful conceptually (forces you to think: i. what are the main chunks of data, ii. what are the
main functions to apply, iii. how to put things back together in a sensible way)

o It is also helpful computationally for large data sets

o Turns out there are a whole family of apply () like functions that will make your life even easier, and
these are also extra helpful for large data sets (next time)

	Outline
	Refresher
	General strategy
	Why is this useful without the billions?
	An important application: ragged data
	A sociologial application
	Data: political economy of strikes
	Research question
	Functions subset(), split(), tapply()
	One down, seventeen to go
	We could use a for() loop …
	Easier if we've split!
	Combine step
	All together now
	Add some more coefficients
	Summary

