Lecture 14: The Split-Apply-Combine Paradigm
Statistical Computing, 36-350
Monday November 9, 2015

Outline

e A quick reminder of what R can do
e How to make life easier with repeated tasks on large data sets

Refresher

We’ve used some tools for iterating over objects in R without for () loops:

e subset (): retrieve part of the data according to some condition

e apply(): takes a matrix and a margin, applies a function

o sapply() or lapply(): takes a list (or vector), applies a function

e c() or rbind() or cbind(): concatenate these objects in a known pattern

General strategy
Today we will learn a workflow that can be summmarized in three general steps:

o Split whatever data object we have into meaningful chunks
e Apply the function of interest to this division
e Combine the results into a new object

Sounds simple? It is, but it’s powerful when combined with data structures (see Hadoop/MapReduce for how
this makes you billions)

Why is this useful without the billions?

o This reinforces the pattern/function approach: what you want to do versus how you want to do
it

o If the full data set is big, and we’ve already done the splitting, this makes it tractable on smaller
machines

An important application: ragged data

Our previous functions work well with well-composed data: apply() on matrices, sapply() or lapply() on
lists and vectors. What about ragged data—where the dimensions of each object aren’t necessarily the same?

For this: start with data frames, though we’ll be going beyond this eventually



A sociologial application

Politics and labor action: does having a friendlier government make labor action more or less likely?

Data: political economy of strikes
Compiled by Bruce Western, Sociology Dept., Harvard.

e Data frame of 8 columns: country, year, days on strike per 1000 workers, unemployment, inflation,
left-wing share of governmentt, centralization of unions, union density

e 625 observations from 18 countries, 1951-1985

e Note that since 18 x 35 = 630 > 625, some years missing from some countries

strikes = read.csv("http://www.stat.cmu.edu/~ryantibs/statcomp/lectures/strikes.csv")

head(strikes)

## country year strike.volume unemployment inflation left.parliament
## 1 Australia 1951 296 1.3 19.8 43.0
## 2 Australia 1952 397 2.2 17.2 43.0
## 3 Australia 1953 360 2.5 4.3 43.0
## 4 Australia 1954 3 1.7 0.7 47.0



## 5 Australia 1955 326 1.4 2.0 38.5
## 6 Australia 1956 352 1.8 6.3 38.5
##  centralization density
## 1 0.3748588 NA
## 2 0.3751829 NA
## 3 0.3745076 NA
## 4 0.3710170 NA
## 5 0.3752675 NA
## 6 0.3716072 NA

Research question

“Does having a friendlier government make labor action more or less likely?”
becomes

“Is there a relationship between a country’s ruling party alignment (left versus right) and the volume of
strikes?”

Lots of ways to approach this problem: simplest is to split it by country.
Functions subset (), split(), tapply()

Take Italy:

italy.strikes = subset(strikes, country=="Italy")

Or, if you prefer,

italy.strikes = strikes[strikes$country=="Italy",]
head(italy.strikes)

## country year strike.volume unemployment inflation left.parliament
## 311  TItaly 1951 437 8.8 14.3 37.5
## 312  Italy 1952 337 9.5 1.9 37.5
## 313 Italy 1953 545 10.0 1.4 40.2
## 314 Italy 1954 493 8.7 2.4 40.2
## 315  Italy 1955 511 7.5 2.3 40.2
## 316 Italy 1956 372 9.3 3.4 40.2
## centralization density
## 311 0.2513799 NA
## 312 0.2489860 NA
## 313 0.2482739 NA
## 314 0.2466577 NA
## 315 0.2540366 NA
## 316 0.2457069 NA




italy.fit = lm(strike.volume ~ left.parliament, data=italy.strikes)
plot(italy.strikes$left.parliament, italy.strikes$strike.volume,
main="Italy strike volume versus left-wing alignment",
xlab="Strike volume", ylab="Left-wing alignment")
abline(italy.fit, col=2)

Italy strike volume versus left-wing alignment
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Strike volume

One down, seventeen to go

Tedious and dangerous to do this repeatedly—typos abound. How can we do this in an easier way?

First: we need subsets for every country. split() does this nicely:

strikes.split = split(strikes, strikes$country)
class(strikes.split)

## [1] "list"

names (strikes.split)

## [1] "Australia"  "Austria" "Belgium" "Canada" "Denmark"
## [6] "Finland" "France" "Germany" "Ireland" "Italy"
## [11] "Japan" "Netherlands" "New.Zealand" "Norway" "Sweden"
## [16] "Switzerland" "UK" "USA"




Now, let’s generalize our function. We want the linear model coefficients:

my.strike.lm = function (country.df) {

return(lm(strike.volume ~ left.parliament, data=country.df)$coefficients)
}
my.strike.lm(subset(strikes, country=="Italy"))

#i (Intercept) left.parliament
#it -738.74531 40.29109

We could use a for() loop ...

strike.coefs = NULL
my.countries = c("France", "Italy", "USA")
for (this.country in my.countries) {

strike.coefs = cbind(strike.coefs,

my.strike.lm (subset(strikes, country==this.country)))

}
colnames(strike.coefs) = my.countries
strike.coefs

#i# France Italy USA
## (Intercept) 202.4261408 -738.74531 111.440651
## left.parliament -0.4255319 40.29109 5.918647

Easier if we’ve split!

strike.coefs = lapply (strikes.split[1:3], my.strike.lm)
strike.coefs

## $Australia

it (Intercept) left.parliament
# 414.7712254 -0.8638052
##

## $Austria

#it (Intercept) left.parliament
## 423.077279 -8.210886
##

## $Belgium

#it (Intercept) left.parliament
## -56.926780 8.447463

Combine step



do

##
##
##

call(cbind, strike.coefs)

Australia Austria Belgium
(Intercept) 414.7712254 423.077279 -56.926780
left.parliament -0.8638052 -8.210886  8.447463

Or, in one step:

strike.coefs = sapply(strikes.split[1:3], my.strike.lm)
strike.coefs

##
##
##

Australia Austria Belgium
(Intercept) 414.7712254 423.077279 -56.926780
left.parliament -0.8638052 -8.210886  8.447463

All together now

coefs = sapply(strikes.split, my.strike.lm)

coefs

## Australia Austria Belgium Canada Denmark
## (Intercept) 414.7712254 423.077279 -56.926780 -227.8218 -1399.35735
## left.parliament -0.8638052 -8.210886 8.447463 17.6766 34.34477
#it Finland France Germany Ireland Italy

## (Intercept) 108.2245 202.4261408 95.657134 -94.78661 -738.74531

## left.parliament 12.8422 -0.4255319 -1.312305 ©55.46721  40.29109

## Japan Netherlands New.Zealand Norway Sweden

## (Intercept) 964.73750 -32.627678 721.3464 -458.22397 513.16704

## left.parliament -24.07595 1.694387 -10.0106  10.46523 -8.62072

## Switzerland UK USA

## (Intercept) -5.1988836 936.10154 111.440651

## left.parliament  0.3203399 -13.42792  5.918647

plot(coefs[2,],xaxt="n",xlab="",ylab="Regression coefficient",

main="Countrywise labor ativity by left-wing score")

axis(side=1,at=seq(along=colnames(coefs)),labels=colnames(coefs),

las=2,cex.axis=0.5)

abline (h=0,col="grey")



Countrywise labor ativity by left-wing score
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Add some more coefficients

my.strike.lm.better =

}

function(country.df) {
return(Ilm(strike.volume ~ left.parliament + unemployment
data=country.

df)$coefficients)

coefs2 = sapply(strikes.split, my.strike.lm.better)

coefs2[,1:4]

+ inflation,

#i# Australia Austria Belgium Canada
## (Intercept) 157.9191118 600.6777769 -243.4822938 167.07123
## left.parliament 0.5658674 -11.2441604 12.4516118 13.43864
## unemployment -1.1181489 -10.9216990 0.3578217 -48.17903
## inflation 30.4666061 -0.5923972 10.2673539 27.21807
plot(coefs[2,],xaxt=”n”,xlab=””,ylab=”Regression coefficient",

main="Countrywise labor ativity by left-wing score")
axis(side=1,at=seq(along=colnames(coefs)),labels=colnames(coefs),

las=2,cex.axis=0.5)

points(coefs2[2,], col="red")

abline(h=0,col="grey")




Countrywise labor ativity by left-wing score
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Summary

o Split-apply-combine is a commonly used strategy for dealing with repeated calculations over large data
sets

o It is helpful conceptually (forces you to think: i. what are the main chunks of data, ii. what are the
main functions to apply, iii. how to put things back together in a sensible way)

o It is also helpful computationally for large data sets

o Turns out there are a whole family of apply () like functions that will make your life even easier, and
these are also extra helpful for large data sets (next time)
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