
Recitation 1: R Studio, Data Frames, and Flow Control
Statistical Computing, 36-350
Monday September 21, 2015

R Studio

In R Studio there are (by default) four “panes” to work in.

• Upper Left: Source Pane
• Lower Left: Console
• Upper Right: “Workspace”
• Lower Right: “Plots/Help”

These can all be configured, but we’ll stick with the default configuration for now.

Source Pane

The Source Pane provides several helpful features:

• Highlighting
• Line Numbering
• Indentation and Parentheses

Console Pane

The console “is” R. You feed commands into it, and it produces output. It also keeps track of variables,
functions, etc. that you define, and the previous commands you’ve given.
The console pane is where you directly interact with the console. You can do this by typing commands in
directly, or by running them from the source pane.
The output from the console is often given in the console. Plots appear separately (by default in the
“Plots/Help” pane).

Workspace

You can view a few different things in the upper right. By default you’ll see the Environment, where R shows
you what things it’s keeping track of (Data frames, variables, functions). Many of these things, e.g. data
frames and functions, can be opened in the source pane for viewing.
You can also view the commands the console has run, in the order it ran them.

1

Plots/Help

Plots is self-explanatory. Note that you can flip back and forth between various plots you’ve made.

The Help browser allows you to search for documentation on functions you are using, or might use. You can
also access these from the console. Great when you know roughly what you want to do, but need to check
syntax. Also, check the “See Also” at the bottom if you’re not sure what function you’re looking for.

Data Frames

A data frame is a fancy list. Let’s load the data frame from the lecture:

library(datasets)
states = data.frame(state.x77, Abbr=state.abb,

Region=state.region, Division=state.division)

class(states)

[1] "data.frame"

typeof(states)

[1] "list"

Basic Access: Row

states['Alabama',]

Population Income Illiteracy Life.Exp Murder HS.Grad Frost Area
Alabama 3615 3624 2.1 69.05 15.1 41.3 20 50708
Abbr Region Division
Alabama AL South East South Central

Basic Access: Column

head(states['Population'] ,10)

2

Population
Alabama 3615
Alaska 365
Arizona 2212
Arkansas 2110
California 21198
Colorado 2541
Connecticut 3100
Delaware 579
Florida 8277
Georgia 4931

Also states$Population

Basic Access: Single Entry

states['Alabama','Population']

[1] 3615

Fancy Access: Slice

“Slicing” a data frame returns a new data frame with the desired rows and/or columns

states[1:4,c('Population','Income')]

Population Income
Alabama 3615 3624
Alaska 365 6315
Arizona 2212 4530
Arkansas 2110 3378

Fancy Access: Conditions

Let’s look at the big states:

states[states$Population>10000,c('Area','Region')]

Area Region
California 156361 West
Illinois 55748 North Central
New York 47831 Northeast
Ohio 40975 North Central
Pennsylvania 44966 Northeast
Texas 262134 South

3

Can also save this condition in a vector

bigstates = states$Population>10000
states[bigstates,'Abbr']

[1] CA IL NY OH PA TX
50 Levels: AK AL AR AZ CA CO CT DE FL GA HI IA ID IL IN KS KY LA MA ... WY

Flow Control: For Loops

Generate the first 10 elements of the Fibonacci sequence

fibonacci = c(1,1)
for (i in 3:10){

fibonacci[i] = fibonacci[i-1]+fibonacci[i-2]
}
fibonacci

[1] 1 1 2 3 5 8 13 21 34 55

Flow Control: While Loops

A random walk

position = 0
total_steps = 0
while(abs(position) < 10){

my.rand = runif(1)
if (my.rand>0.5){

step = 1
} else {

step = -1
}
position = position + step
total_steps = total_steps + 1

}

total_steps

[1] 18

position

[1] 10

4

Bonus: Plotting

Basic Plotting: provide x and y data:

plot(states$Area,states$Population)

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
50

00
10

00
0

20
00

0

states$Area

st
at

es
$P

op
ul

at
io

n

Bonus: Pretty Plots

We can pass additional parameters to plot that tell it what the plot should look like.

plot(states$Area,states$Population,xlab='Area',ylab='Population',main='Nice Plot!')

5

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
50

00
10

00
0

20
00

0

Nice Plot!

Area

P
op

ul
at

io
n

Bonus: More Points on One Plot

Let’s split the states up by population density

popdensity = states$Population/states$Area
dense = (popdensity>median(popdensity))
sparse = (popdensity<=median(popdensity))

Then make a plot with both

plot(states$Area[dense],states$Population[dense],col='blue',xlab='Area',ylab='Population',main='Nice Colors!',xlim=c(0,6e5))
points(states$Area[sparse],states$Population[sparse],col='red',xlim=c(0,6e5))

6

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0
50

00
10

00
0

20
00

0

Nice Colors!

Area

P
op

ul
at

io
n

Bonus: More Plots

You can produce side-by-side plots by setting a global parameter

par(mfrow=c(1,2))
plot(states$Area,states$Population,xlab='Area',ylab='Population',main='Super')
plot(states$Area,states$Income,xlab='Area',ylab='Income',main='Sweet!')

7

0e+00 2e+05 4e+05

0
50

00
10

00
0

20
00

0

Super

Area

P
op

ul
at

io
n

0e+00 2e+05 4e+05

30
00

40
00

50
00

60
00

Sweet!

Area

In
co

m
e

8

	R Studio
	Source Pane
	Console Pane
	Workspace
	Plots/Help
	Data Frames
	Basic Access: Row
	Basic Access: Column
	Basic Access: Single Entry
	Fancy Access: Slice
	Fancy Access: Conditions
	Flow Control: For Loops
	Flow Control: While Loops
	Bonus: Plotting
	Bonus: Pretty Plots
	Bonus: More Points on One Plot
	Bonus: More Plots

