
Lab 9: Simulation

Statistical Computing, 36-350

Week of Tuesday October 26, 2021

Name:
Andrew ID:
Collaborated with:

This lab is to be done in class (completed outside of class time if need be). You can collaborate with your
classmates, but you must identify their names above, and you must submit your own lab as an knitted PDF
file on Gradescope, by Friday 9pm, this week.

This week’s agenda: practice writing functions and running simulations.

Q1. Basic random number generation
• 1a. Generate the following objects, save them to variables (with names of your choosing), and call

head() on those variables.
– A vector with 1000 standard normal random variables.
– A vector with 20 draws from Beta(0.1, 0.1).
– A vector of 2000 characters sampled uniformly from “A”, “G”, “C”, and “T”.
– A data frame with a column x that contains 100 draws from Unif(0, 1), and a column y that

contains 100 draws of the form yi ∼ Unif(0, xi). Do this without using explicit iteration.
YOUR CODE GOES HERE

• 1b. We’ve written a function plot.cum.means() below which plots cumulative sample mean as the
sample size increases. The first argument rfun stands for a function which takes one argument n
and generates this many random numbers when called as rfun(n). The second argument n.max is an
integer which tells the number samples to draw. As a side effect, the function plots the cumulative
mean against the number of samples.
plot.cum.means: plot cumulative sample mean as a function of sample size
Inputs:
- rfun: function which generates random draws
- n.max: number of samples to draw
Ouptut: none
plot.cum.means = function(rfun, n.max) {

samples = rfun(n.max)
plot(1:n.max, cumsum(samples) / 1:n.max, type = "l")

}

Use this function to make plots for the following distributions, with n.max=1000. Then answer: do the
sample means start concentrating around the appropriate value as the sample size increases?

– N(−3, 10)
– Exp(mean = 5)
– Beta(1, 1)

1

Hint: for each, you should construct a new single-argument random number generator to pass as the
rfun argument to plot.cum.means(), as in function(n) rnorm(n, mean=-3, sd=sqrt(10)) for the
first case.

YOUR CODE GOES HERE

• Challenge. Find a distribution whose sample mean should not converge (in theory) as the sample size
grows. Call plot.cum.means() with the appropriate random number generator and n.max=1000.

YOUR CODE GOES HERE

• 1c. For the same distributions as Q1b we will do the following.

– Generate 10, 100, and 1000 random samples from the distribution.
– On a single plot, display the ECDFs (empirical cumulative distribution functions) from each set of

samples, and the true CDF, with each curve being displayed in a different color.

In order to do this, we’ll write a function plot.ecdf(rfun, pfun, sizes) which takes as its arguments
the single-argument random number generating function rfun, the corresponding single-argument
conditional density function pfun, and a vector of sample sizes sizes for which to plot the ecdf.

We’ve already started to define plot.ecdf() below, but we’ve left it incomplete. Fill in the definition
by editing the lines with “##” and “??”, and then run it on the same distributions as in Q1b. Examine
the plots and discuss how the ECDFs converge as the sample size increases. Note: make sure to remove
eval=FALSE, after you’ve edited the function, to see the results.

plot.ecdf: plots ECDFs along with the true CDF, for varying sample sizes
Inputs:
- rfun: function which generates n random draws, when called as rfun(n)
- pfun: function which calculates the true CDF at x, when called as pfun(x)
- sizes: a vector of sample sizes
Output: none

plot.ecdf = function(rfun, pfun, sizes) {
Draw the random numbers
samples = lapply(sizes, ??)

Calculate the grid for the CDF
grid.min = min(sapply(samples, min))
grid.max = max(sapply(samples, max))
grid = seq(grid.min, grid.max, length=1000)

Calculate the ECDFs
ecdfs = lapply(samples, ??)
evals = lapply(ecdfs, function(f) f(grid))

Plot the true CDF
plot(grid, ??, type="l", col="black", xlab="x", ylab = "P(X <= x)")

Plot the ECDFs on top
n.sizes = length(sizes)
cols = rainbow(n.sizes)
for (i in 1:n.sizes) {

lines(grid, evals[[i]], col=cols[i])
}
legend("bottomright", legend=sizes, col=cols, lwd=1)

}

2

Q2. Drug effect simulation
We’re going to continue studying the drug effect model that was discussed in the “Simulation” lecture. Recall,
we suppose that there is a new drug that can be optionally given before chemotherapy. We believe those who
aren’t given the drug experience a reduction in tumor size of percentage:

Xno drug ∼ 100 · Exp(mean = R), R ∼ Unif(0, 1),

whereas those who were given the drug experience a reduction in tumor size of percentage:

Xdrug ∼ 100 · Exp(mean = 2).

• 2a. Look the code chunk in the lecture that generated data according to the above model. Write
a function around this code, called simulate.data(), that takes two arguments: n, the sample size
(number of subjects in each group), with a default value of 60; and mu.drug, the mean for the exponential
distribution that defines the drug tumor reduction measurements, with a default value of 2. Your
function should return a list with two vectors called no.drug and drug. Each of these two vectors
should have length n, containing the percentage reduction in tumor size under the appropriate condition
(not taking the drug or taking the drug).

YOUR CODE GOES HERE

• 2b. Run your function simulate.data() without any arguments (hence, relying on the default
values of n and mu.drug), and store the output in results1. Print out the first 6 values in both the
results1$no.drug and results1$drug vectors. Now, run simulate.data() again, and store its output
in results2. Again, print out the first 6 values in both the results2$no.drug and results2$drug
vectors. We have effectively simulated two hypothetical datasets. Note that we shouldn’t expect the
values from results1 and results2 to be the same.

YOUR CODE GOES HERE

• 2c. Compute the following three numbers: the absolute difference in the mean values of no.drug
between results1 and results2, the absolute difference in the mean values of drug between results1
and results2, and the absolute difference in mean values of no.drug and drug in ‘results1“. Of these
three numbers, which one is the largest, and does this make sense?

YOUR CODE GOES HERE

• 2d. Now, we want to visualize the simulated data. Fortunately, the code to visualize the data is already
provided for you in the “Simulation” lecture. Write a function around this code, called plot.data(),
that takes just one argument data, which is a list with components drug and no.drug. To be clear,
this function should create a single plot, with two overlaid histograms, one fordata$no.drug (in gray)
and one for data$drug (in red), with the same 20 bins. It should also overlay a density curve for each
histogram in the appropriate colors, and produce a legend. One written, call plot.data() on each of
results1, and on results2.

YOUR CODE GOES HERE

• 2e. In just one line of code total, generate a new simulated data set using simulate.data() where
n=1000 and mu.drug=1.1, and plot the results using plot.data(). In one or two sentences, explain
the differences that you see between this plot and the two you produced in the last problem.

YOUR CODE GOES HERE

• 2f. In the next problem, we will be generating many hypothetical data sets to see how many subjects we
need to observe a difference between taking the drug and not taking the drug. To prepare for this, write a
function called simulate.difference(), which takes in the same two arguments as simulate.data(),
namely n and mu.drug, with the same default parameters as before. Your function should generate a
new data set using simulate.data() using the appropriate inputs, and then just return the difference
in means of drug and no.drug (no absolute value). Run this function twice with no arguments (hence,

3

using the default parameters) to see that your function is returning different numbers, and run the
function once with n=1000 and mu.drug=10. Print out all three return values. This last value should
be substantially larger than the first two.

YOUR CODE GOES HERE

Q3. Running simulations, saving money
For the next few questions, we will work with this hypothetical: suppose we work for a drug company
that wants to put this new drug out on the market. In order to get FDA approval, your company must
demonstrate that the patients who had the drug had on average a reduction in tumor size at least 100
percent greater than those who didn’t receive the drug, or in math:

Xdrug − Xno drug ≥ 100.

Your drug company wants to spend as little money as possible. They want the smallest number n such that,
if they were to run a clinical trial with n patients in each of the drug / no drug groups, they would likely
succeed in demonstrating that the effect size (as above) is at least 100. Of course, the result of a clinical trial
is random; your drug company is willing to take “likely” to mean successful with probability 0.95, i.e.,
successful in 190 of 200 hypothetical clinical trials (though only 1 will be run in reality).

• 3a. Following the code sketch provided at the end of the “Simulation” lecture, write a function called
rep.sim(). This function takes four arguments: nreps (the number of repetitions, with default value
of 200), n and mu.drug (the values needed for simulate.difference(), with the same defaults as
before), and seed (with default value NULL). Your function should run simulate.differences() nreps
number of times, and then return the number of success, i.e., the number of times that the output of
simulate.difference() exceeds 100. Demonstrate your function works by using it with mu.drug=1.5.
Hint: to implement rep.sim(), you could use a for() loop, as shown in the slides, or if you’re interested
in trying an alternative route, you could use the replicate() function. Check the documentation to
understand how the latter function.

YOUR CODE GOES HERE

• 3b. Now we investigate the effect of the sample size n, fixing mu.drug to be 2. For each value of n in
between 5 and 100 (inclusive), run your function rep.sim(). You can do this using a for() loop or
an apply function. Store the number of success in a vector. Just to be clear: for each sample size in
between 5 and 100, you should have a corresponding number of successes. Plot the number of successes
versus the sample size, and label the axes appropriately. Based on your simulation, what is the smallest
sample size for which the number of successes is 190 or more?

YOUR CODE GOES HERE

• 3c. Now suppose your drug company told you they only had enough money to enlist 20 subjects in each
of the drug / no drug groups, in their clinical trial. They then asked you the following question: how
large would mu.drug have to be, the mean proportion of tumor reduction in the drug group, in order to
have probability 0.95 of a successful drug trial? Run a simulation, much like your simulation in the last
problem, to answer this question. Specifically, similar to before, for each value of the input mu.drug in
between 0 and 5, in increments of 0.25, run your function rep.sim(), with n=20 and nreps=200. Plot
the number of successes versus the value of mu.drug, and label the axes appropriately. What is the
smallest value of mu.drug for which the number of successes exceeds 190?

YOUR CODE GOES HERE

• 3d. We’re going to modify the simulation setup from the last question and see how it changes the
results we observe. Here is the new setup.
– We start with n=5 subjects (as always, this means 5 subjects with the drug, 5 subjects without

the drug).
– We compute the difference in means between using the drug and not using the drug.

4

– If this difference is larger than or equal to 100, we declare success and stop.
– If the difference is smaller than 100, then we collect 5 new subjects with the drug and 5 new

subjects without the drug.
– Once again, we compute the difference in means between the subjects with the drug and the

subjects without the drug, and we declare success if this difference is equal to or larger than 100.
– We keep incrementing by 5 new subjects with the drug and without the drug until we have a total

of 60 subjects with the drug and 60 subjects without the drug.
– If we still do not observe a difference in means larger than 100 at this point, then we declare the a

failure.
Change the functions simulate.data(), simulate.difference() and rep.sim()—whatever
necessary—to accommodate this new scheme. Then run this simulation with 200 repetitions with
mu.drug=1.5, and print out how many success there were. How does this number compare with the
result you saw earlier in Q3a? Should it be much different?

YOUR CODE GOES HERE

Q4. AB testing
A common task in modern data science is to analyze the results of an AB test. AB tests are essentially
controlled experiments: we obtain data from two different conditions, such as the different versions of a
website we want to show to users, to try to determine which condition gives better results.

• 4a. Write a function to simulate collecting data from an AB test where the responses from the
A condition follow a normal distribution with mean a.mean and standard deviation a.sd, whereas
responses from the B condition follow a normal distribution with mean b.mean and standard deviation
b.sd.

Your function’s signature should be ab.collect(n, a.mean, a.sd, b.mean, b.sd) where n is the
number of samples to collect from each condition and the other arguments are as described above. Your
function should return a list with two named components a.responses and b.responses which contain
the responses for each condition respectively. Try your function out for several values of a.mean, a.sd,
b.mean, and b.sd and check that the sample means and standard deviations approximately match the
appropriate theoretical values.

YOUR CODE GOES HERE

• 4b. Write a function test.at.end(n, a.mean, a.sd, b.mean, b.sd) which uses your function from
Q4a to draw samples of size n and then runs a t-test to determine whether there is a significant difference.
We’ll define this as having a p-value at most 0.05. If there is a significant difference, we return either
“A” or “B” for whichever condition has the higher mean. If there isn’t no significant difference, we
return “Inconclusive”. Hint: recall t.test(), and examine its output on a trial run to figuure out how
to extract the p-value. Run your function with n=2000, a.mean=100, a.sd=20, b.mean=104, b.sd=10
and display the result.

YOUR CODE GOES HERE

• 4c. Waiting until you collect all of the samples can take a while. So you instead decide to take the
following approach.

– Every day you collect 100 new observations from each condition.
– At the end of the day you check whether or not the difference is significant.
– If the difference is significant you declare the higher response to be the winner.
– If the difference is not significant you continue onto the next day.
– As before, if you collect all of the samples without finding a significant different you’ll declare the

result “Inconclusive”.

Note that this kind of sequential sampling is very common in AB testing. Note also the similarity to
what we had you do in Q3d.

5

Write a function test.as.you.go(n.per.day, n.days, a.mean, a.sd, b.mean, b.sd) to imple-
ment this procedure. Your function should return a list with the winner (or “Inconclusive”), as well
and the amount of data you needed to collect.

Run this function on the same example as before with n.per.day=100 and n.days=20 (to match final
sample sizes). Do you get the same result? Do you save time collecting data?

YOUR CODE GOES HERE

• 4d. In practice, most AB tests won’t have a clear winner; instead both conditions A and B will be
roughly equivalent. In this case we want to avoid false positives: saying there’s a difference when there
isn’t really a difference (with respect to the true distributions). Let’s run a simulation that checks the
false positive rate of the two testing regimes.

Setting a.mean = b.mean = 100, a.sd = b.sd = 20, and retaining the number of samples as in the
previous examples conduct 1000 AB experiments using each of previous two setups, in test.at.end()
and test.as.you.go().

For each, calculate the number of “A” results, “B” results, and “Inconclusive” results. Is this what you
would expect to see—recalling that we are declaring significance if the p-value from the t-test is at most
0.05? Does either method of sampling (all-at-once, or as-you-go) perform better than the other, with
respect to controlling false positives? Challenge: can you explain the behavior you’re seeing, with the
sequential sampling?

YOUR CODE GOES HERE

6

	Q1. Basic random number generation
	Q2. Drug effect simulation
	Q3. Running simulations, saving money
	Q4. AB testing

