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Prediction vs. explanation

• Classical statistics focused on inference and unbiased estimators

• Why? Wanted explanations of or information about underlying
data-generating processes

• ML focuses on prediction. A separate goal (Shmueli, 2010; Breiman,
2001), often with very different methods

• But... why should prediction be different? How can a model that predicts
better be further from the ‘truth’?
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A ‘false’ model that predicts better than a ‘true’ one

• All models are ‘wrong’ (Box, 1979), usually because we haven’t or can’t
measure all causal variables or we have the wrong function class

• If we have all causal variables and the right function class, then a ‘false’
model is one with the wrong variables (“misspecified”) (and/or with
incorrect estimates/inferences)

• Can a ‘wrong’ model predict better? Yes.
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A ‘false’ model that predicts better than a ‘true’ one

Setting:

• True (generative) model: y = βpXp+βqXq+ε with ε iid∼ N(0,σ2I)

• Underspecified model: y = βpXp+ε

Theoretical result (Wu, Harris, and McAuley, 2007; Shmueli, 2010):
• An underspecified fit has lower expected MSE when, for
Hp = Xp(X

T
p Xp)

−1XTp ,

Rc := β
T
q X
T
q (In−Hp)Xqβq < qσ

2

E.g., when ‖βq‖1 is small, σ2 is large, or βp and βq are correlated.

• To illustrate, take p = 10, q = 3, βp = 10 ·1p, βq = 1q, and σ = 10 ·
√
Rc .
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A ‘false’ model that predicts better than a ‘true’ one

Generate X= (Xp,Xq) so Xq is correlated with q features in Xp.

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13
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Selection approach

• In practice, would probably use the lasso, not hand-pick features. What
does the lasso give?

• Note: consistency of the lasso is investigated versus the oracle predictor
(minimizer of L0 penalty), not the ‘truth’

• Conditions involve restrictions on the design matrix (van de Geer and
Bühlmann, 2009), which our matrix fails (we think)
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Selection approach
Interestingly, the λ that is optimal over a validation set always selects out the
intercept. Result: neither the true nor the underspecified model!
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out by lasso over 5000 runs
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Bias-variance tradeoff

• The underspecified model and the lasso decrease prediction error versus
‘truth’ by decreasing the variance

• I.e., the bias-variance tradeoff can explain any disconnect between
‘prediction’ and ‘truth’

• But, bias-variance decomposition is specific to L2 loss. Does it generalize
to arbitrary loss functions?

• No. (Only to strictly convex)
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Generalizing the bias-variance tradeoff

• James (2003) defines a systematic operator, S , Sf̂ = argminµ L
(
f̂ −µ

)
.

Mean for L2, median for L1
• Generalized variance should depend only on f̂ , not on Y

• Generalized variance: Var(f̂ ) = E
f̂
[L(f̂ ,Sf̂ )]

• Generalized bias-squared: bias2(Y , f̂ ) = L(SY ,Sf̂ )

• Effect of bias and variance are not necessarily equal to these

• Variance effect VE compares loss from f̂ to loss from a constant.
Systematic effect SE compares loss from using Sf̂ to loss from using SY

VE(Y , f̂ ) = E
f̂ ,Y

[L(Y , f̂ )−L(Y ,Sf̂ )]

SE(Y , f̂ ) = EY [L(Y ,Sf̂ )−L(Y ,SY )]
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• Generalized variance should depend only on f̂ , not on Y

• Generalized variance: Var(f̂ ) = E
f̂
[L(f̂ ,Sf̂ )]

• Generalized bias-squared: bias2(Y , f̂ ) = L(SY ,Sf̂ )

• Effect of bias and variance are not necessarily equal to these

• Variance effect VE compares loss from f̂ to loss from a constant.
Systematic effect SE compares loss from using Sf̂ to loss from using SY

VE(Y , f̂ ) = E
f̂ ,Y

[L(Y , f̂ )−L(Y ,Sf̂ )]
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Applying to 0-1 loss

• Say we have a trained classifier where for some level X = x , we have
P(Y |X = x) = (0.5,0.4,0.1)

• Bayes (optimal) classifier is f ∗(x) = (1,0,0)

• Say that f is not smooth, such that f̂ doesn’t manage to be Bayes at x

• Consider two biased classifiers, f̂1(x) = (0,1,0) and f̂2(x) = (0,0,1) both
with a ‘bias’ of 1, and zero variance

• What if we randomize the predictions? P(f̂1(x)|X = x) = (0.4,0.5,0.1) and
P(f̂2(x)|X = x) = (0.1,0.5,0.4). Both have the same distribution of
probabilities, so, the same variance
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Applying to 0-1 loss

• For 0-1 loss,

VE(Y , f̂ ) = E
f̂ ,Y

[L(Y , f̂ )−L(Y ,Sf̂ )] = E
f̂ ,Y

[I (Y 6= f̂ )− I (Y 6= Sf̂ )]

= P(Y 6= f̂ )−P(Y 6= Sf̂ ) =
(
1−∑

k
i=1πi π̂i

)
−
(
1−πargmaxi π̂i

)
= πargmaxi π̂i

−∑
k
i=1πi π̂i

• Then,

VE(f̂1,Y ) = 0.4− (0.5 ·0.4+0.4 ·0.5+0.1 ·0.1) = .40−0.41= −0.01

VE(f̂2,Y ) = 0.4− (0.5 ·0.1+0.4 ·0.5+0.1 ·0.4) = .40−0.29= 0.11

• The same amount of variance can increase or decrease the expected
accuracy, completely separate from the bias!
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Take-aways

• Strangely enough, models that predict the best are not necessarily ‘true’
(even in terms of associations/correlations)

• The bias-variance tradeoff can help us understand how this is possible for
L2 loss, but other loss functions can be even more strange

• Prediction and explanation are very different tasks!

• Understanding and communicating how exactly this plays out is important
for any application of statistics and machine learning
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Topological Data Analysis

Topological Data Analysis (TDA) refers to data analysis methods
which study properties such as shape, topology and connectedness of
the data.

This includes:

Clustering (particularly Density Based Clustering)
Density Modes and Ridge Estimation
Manifold Learning / Dimension Reduction
Persistent Homology

TDA is useful as a visualization tool and for summarizing
high-dimensional datasets.
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This Project

We review recent work [1] on performing statistical inference for
Density Trees—a particular class of hierarchical clustering methods.

Outline:

Definitions and Tree Topology
Constructing confidence sets via bootstrap
Pruning trees to remove insignificant features

As an application, we generate density trees to visualize distribution
of words in documents
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Density Trees

Suppose the data lies in X ⊂ Rd . Given a density function
f : X → [0,∞),

Let Tf (λ) denote the connected components of the upper level set
{x : f (x) > λ}. These are the high density clusters at level λ.
The density tree is the collection of all such clusters:
{Tf } = Tf = ∪λTf (λ).
This is a tree by construction, i.e. if A,B ∈ {Tf }, then either A ⊂ B,
or B ⊂ A or A ∩ B = φ.

Figure: Obtained from [2]
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Estimated Tree

In general we have an iid sample from the true density X1,X2, . . . ,XN ∼ p.
The Estimated Tree Tp̂h is the tree constructed from the Kernel Density
Estimate:

p̂h(x) =
1

nhd

N∑
i=1

K (
‖x − Xi‖

h
)

Tp̂h(λ) = {x : p̂h(x) > λ}
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Tree Topology

Given a tree {Tf }, we can define the
tree distance function between elements of the tree:

dTf
(C1,C2) = λ1 + λ2 − 2mf (C1,C2) C1,C2 ∈ {Tf }

It can be shown that dTf
is a metric on {Tf }, and hence induces a

metric topology on it.

Lemma

If the true unknown density p is a morse function, then ∃ a constant
h0 > 0, such that ∀h s.t. 0 < h ≤ h0, the true cluster tree, Tp and the
estimated tree Tp̂h have the same metric topology above.

Hence we do not need to let the KDE bandwidth h→ 0. This leads to a
dimension-independent rate of convergence for the bootstrap confidence
set.
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Confidence Sets via Bootstrap

To construct confidence sets, we first need a metric to measure the
“closeness” of two trees. The l∞ metric is defined as,

d∞ (Tp,Tq) = sup
x∈χ
|p(x)− q(x)| = ‖p − q‖∞

The confidence set is defined as Cα = {T : d∞(T ,Tp̂h) ≤ tα} for Tph .

tα can be obtained by the bootstrap:

F̂ (s) =
1

B

B∑
i=1

I(d∞(T̃ i
ph
,Tp̂h) < s)

t̂α = F̂−1(1− α)

Where {T̃ 1
ph
, . . . , T̃B

ph
} are the estimated trees for the bootstrap

samples {X̃ 1
1 , . . . , X̃

1
n }, . . . , {X̃B

1 , . . . , X̃
B
n }.
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Convergence Rate

Theorem

Under regularity conditions on the kernel, the constructed confidence
interval is asymptotically valid and satisfies,

P
(
Tp ∈ Ĉα

)
= 1− α + O

(
log7 n

nhd

) 1
6

(1)

where Ĉα = {T : d∞(T ,Tp̂h) ≤ t̂α}

From the Lemma presented previously, we can fix h to a small constant, to

obtain a dimension-independent rate of O
(
log7 n
n

) 1
6
.
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Notions of Tree Simplicity

The confidence set Ĉα, contains infinitely many trees—including very
complex ones obtained by small perturbations of the density estimate.

We would like to obtain “simple” trees by removing statistically
insignificant features.

A notion of simplicity is given by the following partial ordering:

Definition

For any f , g : X → [0,∞) and their trees Tf , Tg we say Tf � Tg if ∃ a
map Φ : {Tf } → {Tg} which preserves set inclusion relationships, i.e. for
any C1,C2 ∈ {Tf } we have C1 ⊂ C2 iff Φ(C1) ⊂ Φ(C2).

This partial ordering matches intuitive notions of simplicity, for e.g. if
Tf is obtained by removing edges from Tg , then Tf � Tg .
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Pruning Rules

Following two strategies are suggested to prune the empirical tree Tp̂h :

1 Pruning leaves: Remove all leaves of the tree with length less than
2t̂α.

2 Pruning leaves and internal branches: Remove all leaves and
internal branches of the tree with cumulative length less than 2t̂α.

It can be shown that the tree obtained after pruning from either of these
two strategies,

Is simpler than Tp̂h .

Is generated from a valid density function.

And the density function lies in the constructed confidence set.
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Visualization of Word Embeddings

Figure: Cluster tree for Wikipedia Page on Noam Chomsky
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Visualization of Word Embeddings

Figure: Cluster tree for Wikipedia Page on Leonardo da Vinci
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Functional data analysis (FDA)

Functional Data (FD) refer to data recorded during a time interval or
intermittently at several discrete time points.

Functional Data Analysis (FDA) deals with FD for classification,
clustering, regression etc. In FDA, each sample element is considered
to be a function over time, spatial location, wavelength, probability
and so on.

Applications: time series, images, shapes, or more general objects.
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Motivation

Functional predictor regression

Functional response regression

Function-on-function regression

Estimation of the coefficient function

Optimal convergence rate
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Functional Principal Component Analysis(FPCA)

Covariance function

K (s, t) = Cov{X (s),X (t)}

Spectral expansion of covariance

According to the Hilbert-Schmidt theorem,

K (s, t) =
∞∑
k=1

κkφk(s)φk(t)

where κ1 ≥ κ2 ≥ ... > 0. It has
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Functional Principal Component Analysis(FPCA)

Spectral expansion and FPCA

X (t) = µX (t) +
∞∑
k=1

ξkφk(t)

where all the coefficients are listed in the order: ξ1 > ξ2 > ... > 0, then
truncate at k = m,

X (t) ≈ Xm(t) = µX (t) +
m∑

k=1

ξkφk(t)
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Functional linear regression

Functional linear regression

Y (s) = µY (s) +

∫
I
b(s, t)[X (t)− µX (t)]dt + ε(t)

where I = [0, 1].

Regression model by expectation

E (Y |X )(s) = µY (s) +

∫
I
b(s, t)[X (t)− µX (t)]dt

where E (Y |X ) is the conditional expectation of Y as an L2(I )-valued
random variable conditionally on the σ-field generated by X.
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Formulation of estimator

Single Truncation estimator

b̂(s, t) =
mn∑
k=1

1

κ̂k
(

1

n

∑
ξ̂i ,kYi (s))φ̂k(t)

where K (s, t) is estimated in the emprical covariance function:
ˆK (s, t) = 1

n

∑n
i=1(Xi (s)− X̄ (s))(Xi (t)− X̄ (t)).

Expand K̂ (s, t) with eigenvalue {κ̂k}∞k=1 and eigenfunctions {φ̂k}∞k=1.

ξ̂i ,k = inf
I
{Xi (t)− X̄ (t)}φk(t)dt
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Convergence rates

General Assumptions

∃ α > 1, β > 1.5, γ > 0.5,C1 > 0 st

E [||X ||2] <∞,E [||Y ||2|X ] ≤ C1a.s.; E [ξ4
k ] ≤ C1κ

2
k ,∀k ≥ 1;

κk ≤ C1k
−α, κk − κk+1 ≥ C−1

1 k−α−1,∀k ≥ 1;

|bj ,k | ≤ C1j
−γk−β, ∀j , k ≥ 1, β >

α

2
+ 1;

Convergence rate of Single truncation

∃ α > 1, β > 1.5, γ > 0.5,C1 > 0, choose mn such that
mn = o(n1/(2α+2)), then

|||b̂ − b|||2 = Op(n−(2β−1)/(α+2β))
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Some important expansions

On {φj ⊗ φ̂k}∞j ,k=1, expand b and b̂:

b =
∑
j ,k

ḃj ,k(φj ⊗ φ̂k)

b̂ =
∞∑
j=1

mn∑
k=1

b̂j ,k(φj ⊗ φ̂k)

Note: φj ⊗ φ̂k ≡ φj(s)φ̂k(t), b̂j ,k =
n−1

∑n
i=1 ηi,j ξ̂i,k
κ̂k

,

ḃj ,k =
∫∫

b(s, t)(φj ⊗ φ̂k), bj ,k =
∫ ∫

I 2 b(s, t)(φj ⊗ φk)

Set ηci ,j = ηi ,j −
∑n

k=1 ηk,j
n and εci ,j = εi ,j −

∑n
k=1 εk,j
n ,

⇒ ηci ,j =
∑

l ḃj ,l ξ̂i ,l + εci ,j .

⇒ b̂j ,k =
1

κ̂k
(

1

n

n∑
i=1

∑
l

ḃj ,l ξ̂i ,l ξ̂i ,k+
1

n

n∑
i=1

εi ,j ξ̂i ,k) = ḃj ,k+
1

κ̂k
(

1

n

n∑
i=1

εi ,j ξ̂i ,k)

.

⇒ (b̂j ,k − bj ,k)2 . (ḃj ,k − bj ,k)2 +
1

κ̂2
k

(
1

n

n∑
i=1

εi ,j ξ̂i ,k)2
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Rewrite the difference b̂ − b

Break down b̂ − b:

b̂ − b =
∞∑
j=1

mn∑
k=1

(b̂j ,k − bj ,k)(φj ⊗ φ̂k) +
∞∑
j=1

mn∑
k=1

bj ,k{φj ⊗ (φ̂k − φk)}

+ (
∞∑
j=1

∑
k>mn

bj ,k(φj ⊗ φk))
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Rewrite |||b̂ − b|||2

|||b̂ − b|||2 .
∞∑
j=1

mn∑
k=1

(b̂j ,k − bj ,k)2 +

∫∫
{
∞∑
j=1

mn∑
k=1

bj ,k{φj ⊗ (φ̂k − φk)}}2

+
∞∑
j=1

∑
k>mn

b2
j ,k

.
∞∑
j=1

mn∑
k=1

1

κ̂2
k

(
1

n

n∑
i=1

εi ,j ξ̂i ,k)2

︸ ︷︷ ︸
eigenvalue error

+
∞∑
j=1

mn∑
k=1

(ḃj ,k − bj ,k)2

︸ ︷︷ ︸
coefficient error

+

∫∫
{
∞∑
j=1

mn∑
k=1

bj ,k{φj ⊗ (φ̂k − φk)}}2

︸ ︷︷ ︸
basis error

+
∞∑
j=1

∑
k>mn

b2
j ,k︸ ︷︷ ︸

higher-order term
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Bound the eigenvalue error

To bound
∑∞

j=1

∑mn
k=1

1
κ̂2
k

( 1
n

∑n
i=1 εi ,j ξ̂i ,k)2, we have

|κ̂k/κk − 1| . kα|κ̂k − κk | . mα
n |||K̂ − K ||| = Op(1)

Since εi ,j are independent with mean zero conditionally on
X n

1 = {X1, ...,Xn}, we get

E [(
1

n

n∑
i=1

εi ,j ξ̂i ,k)2|X n
1 ] =

1

n2

n∑
i=1

E [ε2
i ,j |X n

1 ]ξ̂2
i ,k

With Bessel’s inequality :∑∞
j=1 E [ε2

i ,j |X n
1 ] = E [

∑∞
j=1 ε

2
i ,j |X n

1 ] ≤ E [||Ei ||2|X n
1 ] ≤ C1, we have

E [
∞∑
j=1

mn∑
k=1

1

κ̂2
k

(
1

n

n∑
i=1

εi ,j ξ̂i ,k)2|X n
1 ] .

1

n

mn∑
k=1

1

κ̂k
= Op(n−1mα+1

n )

⇒
∞∑
j=1

mn∑
k=1

1

κ̂2
k

(
1

n

n∑
i=1

εi ,j ξ̂i ,k)2 = Op(n−1mα+1
n )

Ruixi Fan, Shuo Zhao (Carnegie Mellon University)PCA-Based estimation for functional linear regression with functional responsesCCML, 2017 19 / 37



Decompose the coefficient error

To bound
∑∞

j=1

∑mn
k=1(ḃj ,k − bj ,k)2, generally we assume that

inf l :l 6=k |κ̂k − κl | > 0, then

φ̂k − φk =
∑

l :l 6=k(κ̂k − κl)−1φl
∫ ∫

(K̂ − K )(φ̂k ⊗ φl) + φk
∫

(φ̂k − φk)φk

ḃj ,k − bj ,k =
∑
l :l 6=k

bj ,l(κ̂k − κl)−1

∫ ∫
(K̂ − K )(φk ⊗ φl)

+
∑
l :l 6=k

bj ,l{(κ̂k − κl)−1 − (κk − κl)−1}
∫ ∫

(K̂ − K )(φk ⊗ φl)

+
∑
l :l 6=k

bj ,l(κ̂k − κl)−1

∫ ∫
(K̂ − K )((φ̂k − φk)⊗ φl)

+ bj ,k

∫
(φ̂k − φk)φk

:= Tj ,k,1 + Tj ,k,2 + Tj ,k,3 + Tj ,k,4
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bound component Tj ,k ,4,Tj ,k ,3

It is clear that |Tj ,k,4| . j−γk−β||φ̂k − φk ||.
Since |

∫ ∫
(K̂ − K ){(φ̂k − φk)⊗ φl}| ≤ |||K̂ − K ||||̇|φ̂k − φk ||,

we will get the following:
|Tj ,k,3| . j−γ |||K̂ − K ||| · ||φ̂k − φk ||

∑
l :l 6=k

l−β

|κk−κl |
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bound Tj ,k ,1

Based on the assumption that κk ' k−α, we can choose k ≥ 1 and C > 1
large enough so that κk/κk/C ≤ 1/2 and κ[Ck]+1/κk ≤ 1/2,∀k ≥ k0,
where [.] is a ceiling function. Now, we can partition the sum into three

parts:
∑

l :l 6=k =
∑[k/C ]

l=1 +
∑[Ck]

l=[k/C ]+1 +
∑∞

l=[Ck]+1

Through suitable estimation, we can get the following:

[k/C ]∑
l=1

l−β

(κl − κk)
.


1, if β > α + 1

log k , if β = α + 1

kα−β+1, if β < α + 1

∞∑
l=[Ck]+1

l−β

(κk − κl)
. kα−β+1

[Ck]∑
[k/C ]+1

l−β

|κk − κl |
.

{
1, β > α + 1

kα−β+1 log k , β ≤ α + 1

⇒ E (T 2
j ,k,1) . n−1j−2γk−α
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bound Tj ,k ,2

Define the event An:

An = {|κ̂k − κl | ≥ |κk − κl |/2,∀k : 1 ≤ k ≤ mn,∀l 6= k}

On the event An,

|Tj ,k,2| . j−γ |||K̂ − K |||
∑
l :l 6=k

l−β v̂k,l
|κk − κl |2

where v̂k,l = | 1n
∑n

i=1 ξi ,kξi ,l − ξ̄k ξ̄l |, then we have

E{(
∑
l :l 6=k

l−β

|κk − κl |2
v̂k,l)

2} ≤ [(
∑
l :l 6=k

l−β

|κk − κl |2
E{v̂2

k,l})1/2]2

. n−1k−α(
∑
l :l 6=k

l−β−α/2

|κk − κl |2
)
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bound Tj ,k ,2

Using the same splitting trick in the Tj ,k,1 part, we can get

∑
l :l 6=k

l−β−α/2

|κk − κl |2
= (

[k/C ]∑
l=1

+

[Ck]∑
l=[k/C ]+1

+
∞∑

l=[Ck]+1

)
l−β−α/2

|κk − κl |2

.
[k/C ]∑
l=1

l3α/2−β + k2α+2

[Ck]∑
l=[k/C ]+1

l−β−α/2

|k − l |2
+

k2α
∞∑

l=[Ck]+1

l−β−α/2

. 1 + k3α/2−β+1 log k + k3α/2−β+2 + k3α−β+1

. 1 + k3α/2−β+2

⇒ |Tj ,k,2| . n−1k2α−2β+4

Ruixi Fan, Shuo Zhao (Carnegie Mellon University)PCA-Based estimation for functional linear regression with functional responsesCCML, 2017 24 / 37



Summarize over Tj ,k ,1∼4, (bound coefficient error)

∞∑
j=1

mn∑
k=1

(T 2
j ,k,1 + ...+ T 2

j ,k,4) = Op(n−1 + n−2{m3
n + m2α−2β+5

n (logmn)2})

= Op(
1

n
)
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Bound the basis error

Using Parseval’s identity,∫∫
{
∞∑
j=1

mn∑
k=1

bj ,k{φj ⊗ (φ̂k − φk)}}2 =
∞∑
j=1

∫
{

mn∑
k=1

bj ,k(φ̂k − φk)}2

. mn

∞∑
j=1

mn∑
k=1

b2
j ,k ||φ̂k − φk ||2

. mn

mn∑
k=1

k−2β||φ̂k − φk ||2

= Op(n−1mn)
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bound the high-order term

And the square of L2-norm of the high-order term is:

(
∞∑
j=1

∑
k>mn

bj ,k(φj ⊗ φk))2 =
∞∑
j=1

∑
k>mn

b2
j ,k = Op(m−2β+1

n )

(Orthogonality of the basis set)
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Put all four terms together

|||b̂ − b|||2 .
∞∑
j=1

mn∑
k=1

1

κ̂2
k

(
1

n

n∑
i=1

εi ,j ξ̂i ,k)2

︸ ︷︷ ︸
eigenvalue error=Op(n−1mα+1

n ))

+
∞∑
j=1

mn∑
k=1

(ḃj ,k − bj ,k)2

︸ ︷︷ ︸
coefficient error=Op(n−1)

+

∫∫
{
∞∑
j=1

mn∑
k=1

bj ,k{φj ⊗ (φ̂k − φk)}}2

︸ ︷︷ ︸
basis error=Op(n−1mn)

+
∞∑
j=1

∑
k>mn

b2
j ,k︸ ︷︷ ︸

higher-order term=Op(m−2β+1
n )

= Op(n−1mα+1
n + m−2β+1

n )

Take mn ∼ n1/(α+2β), we have

|||b̂ − b|||2 = Op(n−
2β−1
α+2β )
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Minimax rate

Cameron-Martin space

Let Pb,x denote the distribution of
∫
I b(·, t)x(t)dt + ε(·), and P0 denote

the distribution of ε. Then the Cameron-Martin Space are defined as the
following:

H = {h =
∑
j

hjφj :
∑
j

h2
j

λj
<∞}

with the < h, g >H=
∑

j
hjgj
λj
, h =

∑
j hjφj , g =

∑
j gjφj
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Joint distribution of (X ,Y )

Then the probability density can be formulated by Cameron-Martin
formula:

pb,x(y) =
dPb,x

dP0
(y) = exp{−

∑
j

(
∑

k bj ,kxk)2

2λj
+

∑
j

yj
∑

k bj ,kxk
λj

}

where y =
∑

j yjφj .
If we denote by Q the distribution of X, then the joint distribution of
(X ,Y ) is given by pb,x(y)dP0(y)dQ(x)
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Estimation of distribution

Then let νn = [n1/(α+2β)], and

bθ =
2νn∑
νn+1

k−βθk−νn(φ1 ⊗ φk)

where θ ∈ {0, 1}νn , thus the probability density function is the following:

pbθ,x(y) = exp{−
(
∑2νn

k=νn+1 k
−βθk−νnxn))2

2λ1
+

y1
∑2νn

k=νn+1 k
−βθk=νnxk

λ1
}

If we define p̃θ,x(y) = pbθ,x(y), then the estimated distribution is
p̃θ,x(y)dP0(y)dQ(x) for each θ.
Let (X1,Y1), ..., (Xn,Yn) be i.i.d from P̃θ, then the estimator of bθ is:

b̄n =
∑
j ,k

b̄j ,k(φj ⊗ φk)
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Get the lower bound of |||b̄n − bθ|||2

∀θ, θ′ ∈ {0, 1}νn , let ρ(θ, θ′) =
∑νn

k=1 |θk − θ′k | (Hamming distance), then

Pθ{|||b̄n − bθ|||2 ≥ (2νn)−2β

4
c} ≥ Pθ{ρ(θ̄n, θ) ≥ c}

According to Assouad’s Lemma, we have

max
θ

Eθ{ρ(θ̄n, θ)} ≥ νn
4
e−1/2λ1

Then apply Paley-Zygmund inequality, we have

Pθ{|||b̄n − bθ|||2 ≥ (2νn)−2β

4

1

16
e−1/(2λ1)} ≥ Pθ{ρ(θ̄n, θ) ≥ νn

8
e−1/(2λ1)}

≥ 1

16
e−1/2λ1
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Get lower bound of |||b̄n − bθ|||2

Therefore

max
θ

Pθ{|||b̄n − bθ|||2 ≥ µ−2β+1
n

2β + 5
e−1/(2λ1)} ≥ 1

16
e−1/(2λ1)

Notice that ν−2β+1
n ∼ n−(2β−1)/(α+2β), then apply Chebyshev inequality,

we have the lower bound like that in the lecture note:

inf
b̄n

sup
θ

Eθ|||b̄n − bθ|||2 & n−
2β−1
α+2β
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Summary

Single Truncation estimator:

b̂(s, t) =
mn∑
k=1

1

κ̂k
(

1

n

∑
ξ̂i ,kYi (s))φ̂k(t)

Covergence rate of ordinary least-square linear regression:
||b̂ − b||22 . σp(X )−1

√
p/n.

Convergence rate of PCA-based functional linear regression:

|||b̂ − b|||2 . Op(n−
2β−1
α+2β ).
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Inference of Sparse 
Gaussian Graphical Models: 

Algorithms and Theory
Ifigeneia Apostolopoulou



Applications of Gaussian 
Graphical Models (GGM)

• Popular tool for learning network structure 
over a large number of continuous variables

• Neuroscience
• Computational Biology
• Natural Language Processing
• Computational Finance
• Energy Forecasting



Mathematical Formulation 
Given  𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … ,𝑿𝑿𝑵𝑵~𝑵𝑵 𝝁𝝁,𝚺𝚺 ,𝑿𝑿𝒊𝒊𝝐𝝐𝑹𝑹𝒑𝒑, estimate 
the covariance matrix 𝛀𝛀 = 𝚺𝚺−𝟏𝟏

The solution of this problems leads to  
inference of the undirected graphical 
model since for 𝑾𝑾 = (𝑾𝑾𝟏𝟏, … ,𝑾𝑾𝒑𝒑) ∼
𝑵𝑵(𝝁𝝁,𝚺𝚺):
𝑊𝑊𝑖𝑖 ⊥ 𝑊𝑊𝑗𝑗||(𝑊𝑊𝑘𝑘,𝑘𝑘 ≠ 𝑗𝑗, 𝑘𝑘 ≠ 𝑖𝑖) ⟺ Ω𝑖𝑖𝑖𝑖 = 0



Proposed Approaches
• Graphical Lasso :

max
𝜴𝜴≻0

log det 𝜴𝜴 − 𝑡𝑡𝑡𝑡 𝛀𝛀𝛀𝛀 − 𝜌𝜌 𝜴𝜴 1

, where 𝑺𝑺 the sample covariance matrix

• In the high-dimensional case: 𝑝𝑝 > 𝑛𝑛
min 𝜴𝜴 1 subject to 𝑺𝑺𝛀𝛀 − 𝑰𝑰 ∞ ≤ 𝜆𝜆

Estimators offer convergence rates  𝑂𝑂𝑃𝑃(𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙/𝑛𝑛)
if the true precision matrix is 𝑠𝑠 −sparse (at most 𝑠𝑠
non zero entries per row)



Conditional Gaussian Graphical 
Models

• Ignore correlations between input variables
• 𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … ,𝑿𝑿𝑵𝑵,𝑿𝑿𝒊𝒊𝝐𝝐𝑹𝑹𝒑𝒑 the input variables, 

𝒀𝒀𝟏𝟏,𝒀𝒀𝟐𝟐, … ,𝒀𝒀𝑵𝑵,𝒀𝒀𝒊𝒊𝝐𝝐𝑹𝑹𝒒𝒒 the output variables 
learn 𝜴𝜴𝒙𝒙𝒙𝒙,𝜴𝜴𝒚𝒚𝒚𝒚 such that 

𝑝𝑝(𝒚𝒚|𝒙𝒙) ∼ 𝑁𝑁(−𝜴𝜴𝒚𝒚𝒚𝒚
−1𝜴𝜴𝒙𝒙𝒙𝒙

𝑇𝑇 𝒙𝒙, 𝜴𝜴𝒚𝒚𝒚𝒚
−1)

• This is a more detailed formulation of the 
multiple regression:
𝒚𝒚 = 𝑩𝑩𝑩𝑩 + 𝝐𝝐



Proposed Approaches
• Solution of the optimization problem:

• Second-order coordinate descent methods 



Subspace Clustering
Alan Mishler & Deepika Bablani



Problem: Clustering is challenging in high dimensions

● Concentration of distance
● Clusters may exist in different lower-dimensional spaces

Solution: Look for clusters in lower dimensional subspaces

● Bottom-up algorithms
● Top-down algorithms
● Model-based methods
● Sparse subspace clustering



● Builds on density based clustering algorithm DBSCAN.

● Can find clusters in axis parallel subspaces.

● Utilizes downward closure property: if cluster is found in subspace S, then 
each subspace T of S also contains a cluster. However, a cluster C in 
subspace C     DB  not necessarily a cluster in T since clusters are required to 
be maximal, and more objects might be contained in the cluster T that 
contains C. However, a density connected set in S is also a 
density-connected set in T.

Bottom-up algorithms (SUBCLU)



Top-down algorithms 
(PROCLUS, ORCLUS)

PROCLUS (“PROJected CLUStering”) 

● Goal: 
○ Partition the data into clusters C1, C2, …, Ck, plus a set of outliers
○ Partition the features into sets of dimensions D1, D2, …, Dk 

corresponding to each cluster
● Method: select k medoids, iteratively assign data points to clusters and 

reduce dimensionality of each cluster

ORCLUS (“abitrarily ORiented projected CLUSter generation”)

● Extension of PROCLUS, looks for non-axis parallel subspaces. 



Treat each data point as a linear combination of normally-distributed latent factors, 
plus normal noise. If Xi is in cluster g, then:

Model-based methods (EPGMMs)

matrix of factor weights

Estimate parameters using Alternating Expectation Conditional Maximization 
(AECM) algorithm



Sparse subspace clustering 
Goal: Represent each data point as a sparse 
combination of other data points.

Assume data come from a union of linear 
subspaces. The best sparse representation 
of each data point should only involve data 
points in the same subspace.

Advantages: no need to specify number of 
clusters or dimensions of subspaces in 
advance.



Conclusions

● Many different approaches
● Since there’s no universal definition of cluster or a 

subspace, there’s no “best” algorithm
● Theoretical performance guarantees exist only for sparse 

subspace clustering



Comparison of Dantizig Selector and Lasso

Xiaoyi Gu, Yufei Yi

May 2, 2017

Xiaoyi Gu, Yufei Yi

Comparison of Dantizig Selector and Lasso



Formulation

Goal

Under y ∈ Rn, X ∈ Rn×p with n� p, and z ∼ N (0, σ2I ) noise,
want to estimate β ∈ Rp from

y = Xβ0 + z , (1)

Lasso

min
β
‖y − Xβ‖`2 + λ‖β‖`1 . (2)

Dantizig Selector

min
β
‖β‖`1 subject to ‖X ∗(y − Xβ)‖`∞ ≤ λpσ. (3)

Xiaoyi Gu, Yufei Yi

Comparison of Dantizig Selector and Lasso



Three Major Assumptions on X

UUP(Uniform Uncertainty Principle)

∃ S < p such that ∀|T | ≤ S, ∃δ such that for all c ∈ R|T |:
(1− δ)‖c‖2`2 ≤ ‖XT c‖2`2 ≤ (1 + δ)‖c‖2`2

IDC(Incoherent Design Condition)

For β0 being Sn-sparse with lim
n→∞

Sn =∞. ∃en > 0 such that:

lim infn→∞
enφmin(e

2
nSn)

φmax (Sn+n) ≥ 18

MIC(Mutual Incoherent Condition)

ρ(S) = max{|〈Xi ,Xj〉| : i ∈ T , j ∈ T c , |T | ≤ S}. X satisfies MIC if
ρ(S)S ≤ 1/K for some K > 0.

Xiaoyi Gu, Yufei Yi

Comparison of Dantizig Selector and Lasso



Comparison under the Restricted Eigenvalue Condition

REC(S , S ′,C0) Restricted Eigenvalue Condition

κ(S ,S ′,C0) := min
T :|T |≤S

min
c:‖cTc ‖`1≤C0‖cT∪R‖`1

‖Xc‖`2√
n‖cT‖`1

> 0,

where R corresponds to the S ′ coordinates of |c| outside T .

Theorem [Bickel, Ritov,Tsybakov]

Suppose β0 is S-sparse and all diagonal elements of 1/n(X ∗X ) is 1,

Under RE(S , S ′, 1) and λp = σ
√

log p/n,

‖β̂d − β0‖2`2 ≤ CS(1 +
√

S/S ′)2
σ2 log p

nκ4(S , S ′, 1)

Under RE(S , S ′, 3) and λ = σ
√
n · log p,

‖β̂l − β0‖2`2 ≤ C ′S(1 + 3
√

S/S ′)2
σ2 log p

nκ4(S , S ′, 3)

Xiaoyi Gu, Yufei Yi

Comparison of Dantizig Selector and Lasso



Statistical Analysis of Random Forests

Ritesh Noothigattu, Ben Parr



Breiman (2001)

● Formally defines a random forest

● Main results
○ No overfitting as more trees are added
○ Error depends on:

■ Individual tree strength
■ Correlation between trees



Biau (2012), Denil et al (2014)

● Biau (2012)
○ Consistency on a previously proposed variant
○ Convergence rate depends only on number of strong features

● Denil et al (2014)
○ A new theoretically tractable variant
○ Proves consistency



Mix-membership Clustering
Boyan Duan, Xiaoyi Yang

Traditional Methods:
-- Graph Representation

Node 2

Node 1

Node 4

Node 6

Node 5

Node 3

(1,2)

(1,4) (1,3)

(3,4)

(3,6)
(3,5)

(5,6)



Traditional Methods:
-- Extend Traditional K-means (NEO K-Means)

1.  Traditional K-means Assignment matrix 𝑌𝑖𝑗
Constrain: 𝑡𝑟𝑎𝑐𝑒(𝑈𝑇𝑈) = 𝑛, Row sum of 𝑌 is 1 vector. 

2.  NEO K-means Assignment matrix 𝑈𝑖𝑗
Constrain:  𝑡𝑟𝑎𝑐𝑒(𝑈𝑇𝑈) = 1 + 𝛼 𝑛, Row sum of 𝑈 ≤ 𝛽𝑛. 

3.  Replace Y in the objective function of K-means into U. 



Clustering based on motif network 

Motif network
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Clustering based on motif network 

Motif network

1
3

2
4

5
6

7
8

Objective:

cut(Sj , Sj)

min(vol(Sj), vol(Sj))
minS1,··· ,Sk

kX

j=1

degree of overlapping

s.t.

kX

j=1

#{nodes 2 Sj}  (1 + ↵)n

S

S

Mathematical guarantee:
Spectral graph methodology for weighted graph



Thank you!



Efficient PAC Reinforcement 
Learning in Contextual 

Decision Processes
Karan Goel 

Deepak Dilipkumar 



Problem Statement

• PAC Reinforcement Learning: Learn a near-optimal 
policy with high probability in sample efficient way 

• Reinforcement Learning v/s Supervised Learning: 
Samples not iid



Contextual Decision Process
• A recent general framework to model the world in 

Krishnamurthy et al. (2016) 

• Subsumes Markov Decision Processes, Partially Observable 
Markov Decision Processes

Bellman Rank of a CDP
• New measure by Jiang et al. (2016) that characterizes 

the complexity of a CDP 

• Most practical problems actually have low Bellman 
rank



Main Paper
• Jiang et al. (2016): Can learn policy for CDP with 

low Bellman Rank with high sample efficiency 

• Algorithm that outputs a near optimal policy with 
high probability given CDP with low Bellman Rank



Thanks!



Online Non-stationary Time Series 
Regression with Autoregressive Models

Lisheng Gao, Rui Peng



Motivation

• Problem Definition
- Time Series: sequence of observations indexed in order (normally chronological)

- Stationarity: finite variation, constant first moment and second moment across time

- Online Optimization: iterative parameter tuning, incomplete knowledge of the future

• Why Important?
- Natural temporal ordering

- Extremely wide applications (signal processing, weather forecasting, mathematical finance...)

• Connection with this course



Preliminaries

• Autoregressive Models:
- ARMA (Autoregressive moving average)

- ARIMA (Autoregressive integrated moving average)

- SARIMA



Theories – ARMA online gradient descent

• Loss –

• Regret –

[1]



Theories – generalized online gradient descent [2]

• Loss –



Theory – theoretical bound



• [1] Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. Online learning for time series prediction. 
arXiv preprint arXiv:1302.6927, 2013.

• [2] Christopher Xie, Avleen Bijral, and Juan Lavista Ferres. An online prediction framework for non-
stationary time series. arXiv preprint arXiv:1611.02365, 2016.

References



Learning Sequential Data:

Hidden Markov Models and 

Beyond
Siqi Chen

10702 Project Presentation
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Motivation

 For many application such as speech recognition, bioinformatics musical 

score following and stock prediction, the time series nature of the data is 

intrinsic, so the usual i.i.d. assumption is no longer appropriate

 HMM is a prototypical methods for modeling times series

 However, it faces several important restrictions:

1. The number of hidden states is finite

2. If we have large number of possible states, then standard HMM may require 

learning too many parameters.

3. Maximum likelihood estimation procedures do not consider the complexity 

of the model, making it hard to avoid over or underfitting



Motivation

 So we consider the following extensions of HMM:

 Factorial HMM

 Switiching State Space Models

 Infinite Hidden Markov Model

 To effectively discuss iHMM, need to consider Hierarchical Dirichlet Process

 This brings the problem of inference algorithms:

 Variational Learning for Switching State Space Models

 Beam Sampling for Infinite Hidden Markov Models



Connection with class

 An in-depth study of some particular instances (HMM and its extensions) of 

dynamic Bayesian network and graphical model

 Hierarchical Dirichlet process (HDP) can be used for clustering

 By placing HMM in the general graphical model framework, the extensions and 

inference algorithms become natural 



Literature 
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model.Neural Information Processing Systems, 14:577–585, 2002.
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HMM

 (i) 𝑌𝑡 is generated by a process whose state 𝑆𝑡 is hidden from the observer. 

 (ii) 𝑆𝑡 has the Markov property: E[f(𝑆𝑡)|𝐹𝑠] = E[f(𝑆𝑡)|𝑆𝑠]

 (iii) 𝑆𝑡 is discrete: 𝑆𝑡 can take K values {1,…,K}

 The model:



Factorial HMM



Factorial HMM



Switching State Space Models



DP,HDP



iHMM
 The Infinite Hidden Markov Model (iHMM), is a non-parametric Bayesian extension of the 

Hidden Markov Models with a infinite number of hidden states. 

 While in principle this will require the state transition matrix have infinite number of 

parameters to estimate, the theory of Dirichlet Processes (DPs) enables us to implicitly 

integrate the parameters out, leaving only a few hyperparameters defining the prior

 HMM involves not a single mixture model, but rather a set of mixture models—one for 

each value of the current state. 

 The current state 𝑆𝑡 indexes a specific row of the transition matrix, with the 

probabilities in this row serving as the mixing proportions for the choice of the next 
state 𝑆𝑡+1

 Thus, to consider a nonparametric variant of the HMM that allows a countable number of 

states, we must consider a set of DPs, one for each value of the current state. Moreover, 

these DPs must be linked, because we want the same set of next states to be reachable 

from each of the current states



iHMM



iHMM



Beam Sampling: why?

 iHMM as a non-parametric Bayesian extension of the HMM.

 In general, non-parametric Bayesian models are models of infinite capacity, a 

finite portion of which is used to model a finite amount of data. The usual 

idea of searching/averaging over the space of finite models is replaced with 

Bayesian inference over the size of submodel used to explain the data.

 exact Bayesian inference for the iHMM is intractable. The usual 

forwardbackward algorithm cannot be applied since the number of states are 
infinite.



Beam Sampling: idea

 Beam sampling combines the idea of slice sampling and dynamic 

programming. 

 The idea of beam sampling is to introduce auxiliary variables u such that 

conditioned on u the number of trajectories with positive probability is finite. 

 We then apply dynamic programming to compute the conditional probabilities 

of these trajectories and thus sample whole trajectories efficiently. 

 Note that the marginal distribution of other variables is not changed by the 

introduced auxiliary variable U.



Thank you!
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Gradient descent:

Key idea: natural gradient descent (NGD)
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Gradient descent:

Newton method:

Natural gradient:

Key idea: natural gradient descent (NGD)

like Newton method for optimization of probability densities

if
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Natural gradient:

How to approximate NGD?

Explicitly approximating 
and inverting 𝐹𝐹(𝜃𝜃𝑘𝑘)

• Cholesky factorization 
[Groose et al, 2015]

• Kronecker factored 
approximation 
[Martens et al, 2015]

• …

Change features or parameters 
so that 𝐹𝐹 𝜃𝜃𝑘𝑘 ≈ 𝐼𝐼

• Normalization of input  
[LeCun et al, 1991]

• Batch normalization          
[Ioffe et al, 2015]

• Weight normalization 
[Salimans et al, 2015]

• Normalization propagation 
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Problem setting and SIS

I Problem: y = Xβ + ε, where y, ε ∈ Rn, X ∈ Rn×p, β ∈ Rp

I Aim: select o(n) variables from ultra-high dimensional feature

space (p = O(en
ξ
), for ξ > 0).

I Two steps: 1. use SIS to reduce the dimensions to d = Θ(n);
2. use SCAD method to further reduce the dimensions.

I SIS is based on correlation learning: ω = XTy .
I Mγ = {1 ≤ i ≤ p : |ωi | is among the first [γn] largest of all},

where γ ∈ (0, 1), [γn] means the integer part of γn.

I Main property: Under regularity condition with sparsity
assumption, SIS is accurate with high probability:

P(M∗ ⊂Mγ) = 1− O[exp{−Cn1−2κ/ log(n)}]

where M∗ is the true model, C > 0, and κ ∈ (0, 12) is a
parameter.



SCAD

I Problem: ‖ y − Xβ ‖22 /2 +
∑d

j=1 pλj (βj).

I The SCAD penalty is defined as

pλ(|β|) =

{ λ|β| if 0 ≤ |β| ≤ λ;

− |β|
2−2aλ|β|+λ2
2(a−1) if λ ≤ |β| ≤ aλ;

(a + 1)λ2/2 if |β| ≥ aλ,

for some a > 2.

I With SCAD penalty, the estimator has three properties:
sparsity, unbiasedness, and continuity.

I The estimator is root-n consistent (Op(n−1/2)) if λj → 0 for
all j .

I The estimator has oracle properties. And SIS-SCAD also has
oracle properties
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Tuning parameter selection 
in high dimensional 

variables selection tasks

Yu Chen, Haohan Wang 



Challenges Solutions

some tuning parameter has unknown 
components 

  

Tuning insensitive or tuning free 
approaches:  

 
TIGER, Square-Root Lass, B-TREX

data dimension d is scaled with data 
sample size n Extended information criteria 



CONSISTENCY AND 
CONVERGENCE RATES OF 
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GAUSSIAN RBF KERNEL SVMS

• Training Data

• Gaussian RBF Kernel

• SVM as an optimization problem



CONSISTENCY



CONSISTENCY

Comments
• Gaussian RBF kernel is a universal kernel — linear combinations of this kernel can approximate any 

continuous function on the input space.
• When using Gaussian RBF kernel, we can choose 𝛼𝛼 = 𝑑𝑑.
• Gaussian RBF kernel SVMs are universally consistent with appropriate choice of the parameter λ.
• But there does not exist a universal convergence rate for all probability.



PROBABILITY ASSUMPTIONS

Comments
• They both describe noise near the decision boundary.
• They can be related by the envelope order of the probability.



CONVERGENCE RATE 1

Comment
• Under conditions of 𝛼𝛼 → ∞ and 𝑞𝑞 → ∞, optimal rate can be achieved, which approaches 𝑂𝑂(1

𝑛𝑛
).



CONVERGENCE RATE 2

Comments
• This rate is derived under more general condition

• The best rate it can achieve is 𝑂𝑂(𝑛𝑛−
4𝛽𝛽(𝑞𝑞+1)

(2𝑞𝑞+𝑝𝑝𝑝𝑝+4)(1+𝛽𝛽))



DISCUSSION

• Gaussian RBF kernel SVMs are universally consistent; 

• and have optimal fast convergence rate 𝑂𝑂(1
𝑛𝑛

) under some 
assumptions,

• which restrict the noisiness of the data-generating 
distribution near the decision boundary.

• More general convergences rates in report



Learning with
Conditional Random Fields (CRF)
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Brief introduction of CRF

• Brief intro: a discriminative learning 
framework encoded with undirected PGM

• Motivation: Allows for more realistic 
modeling of NLP and image recognition tasks 

• 702 Topics: Probabilistic graphical model, 
Reproducing Kernel Hilbert Space, MLE/MAP



Formulation of CRF

The conditional probability has the following form: 

We estimate the parameters .𝜃𝜃



Learning with CRF

• Given observations (x1, y1), (x2, y2) … (xn, yn),
how to estimate , such that given unseen xk,
we can predict yk by evaluating:

𝜃𝜃



MLE and MAP of CRF

• MLE

The above formulation of ML/MAP learning can be kernelized using the Representer Theorem. 

• MAP

Gaussian:

Laplacian:



Kernel CRF

• Representer Theorem for CRF

Objective Function:

Mercer Kernel:

The solution has the following form: 
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Block-coordinate Descent Algorithms
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Sparse variable selection has wide applications
-- signal processing, computer vision, computational biology…

Standard sparsity: consider individual variables equally
Structured sparsity: utilize spatial structures of variables

Standard Lasso

Group Lasso with disjoint groups

Overlapping group lasso

Hierarchical sparsity

Optimization methods

Bach et al. 2012
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Huang et al.(2011) : under strongly group-sparse assumption, the 
group Lasso has superior performance over the standard Lasso
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same asymptotic guarantees as the least squares estimator
• model selection consistency
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Standard Lasso
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Obozinski et al. (2011): support recovery - the support of መ𝛽
matches the support of ҧ𝛽 with high probability
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Percival et al.(2011):  overlapping group Lasso shares many of the 
same theoretical guarantees as the group Lasso, if the sets of 
groups are not too complex.
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Theorem 6:

Zhao et al.(2009): Composite Absolute Penalties (CAP) family; 
particular overlapping patterns of groups are designed; with-in 
group and group-wise sparsity imposed

Overlapping Group Lasso

Hierarchical sparsity
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Word embeddings, how do they work?
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Word Embeddings

I Given vocabulary w1,w2, . . . ,wn, word embeddings are vectors
v1, v2, . . . , vn ∈ Rd .

I Goal is to capture the semantics of words in a low dimensional
space. Typically d ≈ 300 while n ≈ 105.

I Shown to improve performance when used as features in NLP
tasks, compared to, say, one-hot encoding of words where
d = n.



Example: word2vec (Mikolov et al. 2013)

I Embeddings vi learned on a large text
corpus by modeling probability of word
wi appearing given context word wj .

I Approximates softmax objective

P(wj |wi ) =
exp(v>j hi )∑n
k=1 exp(v>k hi )

where hi are context embeddings and
vi are output embeddings.



Theoretical Questions

I Under what assumptions are popular embedding methods
consistent?

I Why do low dimensional vectors capture the semantics well?
I Many more: relations ≈ directions, syntax words, polysemy. . .
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Explanation 1: Arora et al. 2016

Setup:
I Language generation is a random walk of a unit-length

discourse vector ct ∈ Rd

I Embedding vectors are approximately uniformly distributed in
space.

I ct is a slow random walk: stationary distribution has
‖ct − ct−1‖2 < ε2/

√
d .

I The probability of word w being emitted at time t is
p(w |ct) ∝ exp(〈ct , vw 〉).

Theorem

log p(wi ,wj) =
‖vi + vj‖

2d
− 2 logZ ± ε

where Z is a constant that is close to the partition function and
ε = Õ( 1√

n
) + Õ( 1

d ) + O(ε2).
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Explanation 2: Hashimoto et al. 2016

Given a random walk over embedding vectors that tends to move to
nearby vectors, we can recover the vector distances from the
statistics of the walk.

Setup:
I P(w |w ′) = h( 1

σ‖vw − vw ′‖22) for subgaussian function h

Theorem
Let Cm,n

ij (tn) be the number of times word wj occurs tn words after
wi . There exists ai and bj such that simultaneously over all i , j :

lim
n→∞

− log(Cm,n
ij (tn))− am,ni − bm,nj → ‖xi − xj‖22
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the Graph Construction

Xuan Wu

Institute for Software Research    

Carnegie Mellon University



Motivation

• Labeled data is very few and expensive to obtain

• Unlabeled data is widely available, but barely utilized

• Graph-based SSL methods provide uniform representation for 
heterogeneous data, and are parallelizable, scalable to large data

• In many tasks, we need to first construct the similarity graph 

• Different graphs can lead to different classification accuracies



Gaussian Random Fields Method

• GRF defined as follows:

, where

To maximize             subject to                            for all labeled data,

the solution is  harmonic, satisfying 

on unlabeled data set, and                on labeled data.

And       is given by                         
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Global and Local Consistency Method

Closed Form Solution:  * 1( )F I S Y  



K-NN /   -Neighborhood Graph

• k-NN is more robust to scale and density while an inaccurate 
choice of      in may result in disconnected graphs using    -
neighborhood

• In practice, k-NN usually performs better then      neighborhood

• However, k-NN typically leads to different degrees on different 
nodes











Graph Construction with B-Matching

• The first step is graph sparsification, in which we select a subset of 
edges to satisfy

• The second step is Edge Re-Weighting. Available methods include 
Binary, Gaussian Kernel, and Locally Linear Reconstruction (LLR)



Graph Construction with Spectral Transform

• Consider the following form of kernel

, where        are the eigenvectors of the graph 
La

Laplacian    . 

• We want to choose      s.t the outer product of smaller eigenvalue 
has higher weight.

• To determine      s, zhu et al. proposed to maximize the empirical 
kernel alignment

is

i
L

i



Thank You!
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Reinforcement Learning

Markov Decision Processes with finite state & action space, finite time
horizon M = (S,A,R,P,H, ρ):

S: state space, A: action space.

R: reward function. H: time horizon in an episode.

P: transition probability. ρ: initial state distribution.

An RL algorithm π sequentially maps the sample history to a policy µk ,
k = 1, ...,T/H, evaluated by its regret (stronger than risk):

Regret(T , π,M) =

T/H∑
k=1

VM(µ∗M)− VM(µk) .

Bayes regret: assume M drawn from prior φ,

BayesRegret(T , π, φ) = E [Regret(T , π,M)|M ∼ φ] .

2 / 3



Algorithms (Model Based)

Confidence set based algorithm:
Before each episode k , construct a confidence set Mk for M, act using
the policy that is the most optimistic according to Mk , update the
confidence set.
Best known result: maxM Regret(T , π,M) = O(HS

√
AT ) with high

prob.
A general proof technique:

VM(µ∗
M)− VM(µk) = VM(µ∗

M)− VMk
(µk) + VMk

(µk)− VM(µk)

≤ VMk
(µk)− VM(µk) . (1)

Posterior sampling algorithm:
Before each episode k , sample an MDP Mk from the posterior
distribution Hk for M, act using the optimal policy for Mk , update the
posterior.
Best known result: BayesRegret(T , π, φ) = O(HS

√
AT ).

A general reduction: for any high prob. regret bound for a confidence
set based algorithm derived using (1), the same Bayes regret holds
for the posterior sampling algorithm.
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Modeling Correlated Times 
Series Data
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Predictive Linear Gaussian Model
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Predictive Linear Gaussian Model
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𝐶𝐶𝐶𝐶𝐶𝐶 𝑌𝑌𝑡𝑡−1, 𝜖𝜖𝑡𝑡+𝑑𝑑 = 𝐶𝐶



Relation with Other Models

Linear Dynamical System (LDS)
𝑥𝑥𝑡𝑡 = 𝑇𝑇 𝑥𝑥𝑡𝑡−1 + 𝜎𝜎𝑡𝑡
𝑦𝑦𝑡𝑡 = 𝑂𝑂 𝑥𝑥𝑡𝑡 + 𝛿𝛿𝑡𝑡

𝜎𝜎𝑡𝑡 ~ 𝑁𝑁 0, Σ
𝛿𝛿𝑡𝑡 ~ 𝑁𝑁(0,Δ)
𝑥𝑥0~ 𝑁𝑁(𝜇𝜇0,𝑃𝑃0)

Transition matrix

Observation matrix
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Linear Dynamical System (LDS)
𝑥𝑥𝑡𝑡 = 𝑇𝑇 𝑥𝑥𝑡𝑡−1 + 𝜎𝜎𝑡𝑡
𝑦𝑦𝑡𝑡 = 𝑂𝑂 𝑥𝑥𝑡𝑡 + 𝛿𝛿𝑡𝑡

𝜎𝜎𝑡𝑡 ~ 𝑁𝑁 0, Σ
𝛿𝛿𝑡𝑡 ~ 𝑁𝑁(0,Δ)
𝑥𝑥0~ 𝑁𝑁 𝜇𝜇0,𝑃𝑃0

• Parameter G is a function of transition matrix and observation matrix
• Covariance C is a function of G, Δ, Σ and 𝑃𝑃0
• Predictive Linear Gaussian Model is equivalent to LDS



Relation with Other Models

Autoregressive and Moving Average Model (ARMA)

𝑦𝑦𝑡𝑡 = �
𝑖𝑖=1

𝑑𝑑

Φ𝑖𝑖 𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝑎𝑎𝑡𝑡 + �
𝑖𝑖=1

𝑝𝑝

𝜃𝜃𝑖𝑖 𝑎𝑎𝑡𝑡−𝑖𝑖

White noise

weights



Relation with Other Models

Autoregressive and Moving Average Model (ARMA)

𝑦𝑦𝑡𝑡 = �
𝑖𝑖=1

𝑑𝑑

Φ𝑖𝑖 𝑦𝑦𝑡𝑡−𝑖𝑖 + 𝑎𝑎𝑡𝑡 + �
𝑖𝑖=1

𝑝𝑝

𝜃𝜃𝑖𝑖 𝑎𝑎𝑡𝑡−𝑖𝑖

• Φ𝑖𝑖’s can be seen as each entry in the update matrix G
• LDS subsumes ARMA model
• ARMA model can be represented by Predictive Linear Gaussian Model
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Overview

1 Vanilla SGD

2 SVRG technique

3 Acceleration of SGD

4 SGD on PCA
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Vanilla SGD

In machine learning we often encounter the following problem:

minimize
x∈Rd

{
F (x) = f (x) + φ(x) =

1
n

n∑
i=1

fi (x) + φ(x)

}
where f(x) is usually the loss function and φ(x) is the regularization term. A
lot of regularized empirical risk minimization problem could be written above
form, for example Ridge regression, Lasso, SVM.
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Vanilla SGD

For simplicity we assume there is no regularization term, and the usual
gradient descent method is:

x (t) ← x (t−1) − ηt
n

n∑
i=1

∇fi (x (t−1))

Yifan Sun (Department of Mathematical Sciences) Short title May 1, 2017 4 / 17



Vanilla SGD

However, when n is large, the calculation of n derivatives in one iteration is
very expensive. The vanilla stochastic gradient descent method choose one
particular index uniformly from i ∈ {1, ...n} and calculates:

x (t) ← x (t−1) − ηt∇fi (x (t−1))

More generally, the SGD updates has the form:

x (t) ← x (t−1) − ηtg(x (t−1)) (1)

E[g(x (t−1))] = ∇f (x (t−1)) (2)
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Vanilla SGD

The problem for SGD is its variance, because we randomly choose a ∇fi (x)
as our gradient and this quantity may have very large variance, it introduces
too much noise and prohibits the algorithm from converging fast. The plain
SGD converges at rate Õ(Lε ) where L is the smoothness of f(x). It cannot
converge at a faster rate even if F (x) is strongly convex and smooth.

Yifan Sun (Department of Mathematical Sciences) Short title May 1, 2017 6 / 17



SVRG

Johnson and Zhang[2013] proposed a variance reduction method.The key
idea is to take a snapshot vector x̃ = xk as well as its full gradient
µ̃ = ∇f (x̃) once in every m iteration. The key observation is if we randomly
pick one i ∈ {1...n}, we have E[∇fi (x̃)− µ̃] = 0. Then we can add this
term to our gradient update and get the update rule:

x (t) ← x (t−1) − ηt(∇fi (x (t−1))−∇fi (x̃) + µ̃)
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SVRG

The magic here is that as x (k) → x∗, we have ∇fi (x (k))→ ∇fi (x̃) and
µ̃ = ∇f (x̃)→ 0 hence the variance of the update gradient
∇̃k = ∇fi (x (k))−∇fi (x̃) + µ̃ goes to 0. The iteration complexity is
O((n + κ) log 1

ε ) where κ = L
µ is the condition number.
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Acceleration of SGD

Nesterov’s method could be used for deterministic gradient descent
acceleration, the idea is to do update by:

y = x (k−1) +
k − 2
k + 1

(x (k−1) − x (k−2))

x (k) = y − tk∇f (y)

where the x (k−1) − x (k−2) term is a momentum term that makes us "go
along the descending direction for more distance". In gradient descent this
momentum accelerates the convergence, however in SGD since our updates
is random, the update direction from last steps could deviate far from the
full gradient and hence accumulates the incorrect momentum will lead to
divergence of the algorithm.
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Acceleration of SGD

Allen-Zhu[2017] proposed the state of art acceleration method for SGD
called ’Katyusha’ which converges at rate O((n +

√
nκ) log 1

ε ) for L-smooth
and α-strongly convex function. The update rule is:

x (k+1) ← τ1zk + τ2x̃ + (1− τ1 − τ2)yk (3)

∇̃k+1 ← ∇f (x̃) +∇fi (xk+1)−∇fi (x̃) (4)

y (k+1) ← x (k+1) − 1
3L
∇̃k+1 (5)

z(k+1) ← z(k) − α∇̃k+1 (6)

Yifan Sun (Department of Mathematical Sciences) Short title May 1, 2017 10 / 17



Acceleration of SGD

The key idea is to keep a snapshot of x̃ , and by choosing τ2 = 0.5, in (3)
the updates guarantees that the update of x (k+1) will not deviate too much
from the snapshot. This can be seen as a ’negative momentum’ which
reduces the risks of going in the incorrect momentum direction too much.
z(k) and y (k) in (3) give the ’momentum’ term. (5) and (6) comes out of
the idea of linearly coupling gradient descent and mirror descent algorithm in
[Allen-Zhu and Orecchia 2014], which guarantees the algorithm to descend
fast enough no matter ||∇̃k+1|| is large or small.
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SGD on PCA

Shamir considers the problem of finding the largest eigenvector:

min
w∈Rd :||w ||2=1

−wT (
1
n

n∑
i=1

xix
T
i )w
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SGD on PCA

The algorithm from [Shamir2015] keeps a snapshot w̃ and
ũ := 1

n

∑n
i=1 xi (x

T
i w̃) for m periods, and within this m periods, it picks

it ∈ {1, ...n} uniformly, then the update rule is:

w ′t ← wt−1 + ηt(xitx
T
it wt−1 − xitx

T
it w̃ + ũ) (7)

wt ←
w ′t
||w ′t ||

(8)
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SGD on PCA

Theorem
With proper step choice, with high probability the stochastic gradient
method in T steps gives a Õ(

√
p/T ) optimal solution where p is a

parameter depends on initialization of the algorithm:
If the algorithm is initialized from a warm start point w0 satisfies

1
〈v ,w0〉2 ≤ O(1) where v is the leading eigenvector we want to solve,
then p = O(1)
Under uniform random initialization p = O(d).
Using a more sophisticated random initialization p = O(nA) where nA
is the numerical rank of A = 1

n

∑n
i=1 xix

T
i and nA ≤ d
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SGD on PCA

The proof of the theorem is very elaborate. It uses Azuma-Hoeffding
inequality on martingales, conditional expectation technique and matrix
algebra.
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GAN Minimax Value Function

ᵠg= generator parameters G = generator function

ᵠd= discriminator parameters D = discriminator function

pdata= true distribution pz= noise distribution

discriminator output on generated data

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information 
processing systems. 2014.

discriminator output on true data



Theoretical Results

Optimal D:

At optimality:

With sufficient model capacity, optimality is reached

pdata

G

D

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information 
processing systems. 2014.



Loss-Sensitive Generative Adversarial Networks on 
Lipschitz Densities
● Finite model capacity
● Lipschitz property assumption on the underlying distribution, on the model 

parameters and on the model inputs
● Adaptive margin:

● Objective:

● Theoretical properties:
○ Convergence of generated distribution based on Nash Equilibrium
○ Probabilistically approximate generalization bound given for both the 

generator and the discriminator

Qi, Guo-Jun. "Loss-sensitive generative adversarial networks on lipschitz densities." arXiv 
preprint arXiv:1701.06264 (2017).



Wasserstein GAN

● Uses Earth-Mover distance (a.k.a. Wasserstein-1 distance) instead of 
Jensen-Shannon divergence:

● New value function (assume generator fixed, f parametric family K-Lipschitz):

● Desirable properties of Earth-Mover distance:
○ Continuous and differentiable almost everywhere
○ Guarantee of convergence similar to Jensen-Shannon divergence

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein gan." arXiv preprint 
arXiv:1701.07875 (2017).
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Introduction



1.1. Dynamical system

A dynamical system is a
system whose
• output is decided by its
state and noise

• state evolves with time
over a state space

• state evolves according
to a fixed rule

HMM and RNN are all
dynamical systems[1, 2, 5].

More specifically,

st+1 = f(st) (1)
ot = g(st) + ϵt (2)

Figure 1: A dynamical system[3].

1



1.2. Spectral algorithm

Spectral algorithms factorize matrices of observable moments
to learn a consistent model.

These algorithms are usually

• fast (comparing to E-M and RNN!)
• simple
• consistent
• globally optimum

2



Predictive state representation



2.1. Formulation

Figure 2: Predictive state representation[3].

where ψt = ψ(ot:t+k−1) is future feature, ξt = ξ(ot:t+k) is
extended future feature and ht = h(o1:t−1) is history feature. 3



2.1. Formulation

• PSR is not popular, but it has good theoretical properties.
• Model hierarchy: HMM < PSR < RNN.
• PSR can be extend to non-linear discrete spaces and
continuous space using a Hilbert Space Embedding
technique.

4



2.2. Spectral learning algorithm

Define

• qt = qt|t−1 = E[ψt | o1:t−1] determins P(ot:t+k−1 | o1:t−1)
• pt = pt|t−1 = E[ξt | o1:t−1] determins P(ot:t+k | o1:t−1)

For a linear system, pt = Wqt. we have

E[pt | ht] = E[Wqt | ht] (3)

E
[
E[ξt | o1:t−1] | ht

]
= WE

[
E[ψt | o1:t−1] | ht

]
(4)

E[ξt | ht] = WE[ψt | ht] (5)

We can estimate Ê[ξt | ht], Ê[ψt | ht] from training data, then
use ridge regression to calculate Ŵ. The initial state q̂1 = Ê[ψ1].
To update states, we use qt+1 = ffilter(pt,ot) or qt+1 = fpredict(pt).

5



2.3.1. Refining model: Gradient Descent

If qt+1 = ffilter(qt,ot) =
Botqt

qT∞Botqt
,

where q∞ is a normalization
vector.
The negative log likelihood
function is

L(B1, ...,BM)
=− log(P(O))
=− log(qT∞BoTBoT−1 ...B1q1)

Then, we can use gradient
descent to refine this
model[4].

Figure 3: Character-level
language model performance on
Wikipedia data[4]. RNN could
reach 1.5 - 1.6 bpc[6]. 6



2.3.2. Refining model: RNN

PSR and RNN have very similar
recursive structures. What if
we use a RNN to refine a PSR?
We can just apply
spectral-learned weights to a
RNN and use normal training
algorithms to refine it.

Figure 4: Character-level language
model performance on
PennTreebank.

7



Thanks!
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Introduction to Reinforcement Learning

Agent moving around some discrete, finite world

Choose action from finite collection of actions at every step

At time n, agent at state xn ∈ X choses action an ∈ A

The agent receives probabilistic reward rn. Mean value Rxn(an) is
dependent only on state and action.

Agent moves to next state yn with dynamics

Pr(yn = y |sn, an) = Pxny [an]

Goal: Determine optimal policy that maximizes total expected
discount reward
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State Value Functions

For a given policy π, the value of state x is defined as:

V π(x) = Rx(π(x)) + γ
∑
y

Pxy [π(x)]V π(y)

The agent expects to receive Rx(π(x)) immediately and the moves to
a state that is ’worth’ V π(y) with probability Pxy [π(x)]
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Optimal State Value

Dynamic programming theory states there exists at least one optimal
policy π∗ such that

V ∗(x) = V π∗
(x) = max

a

(
Rx(a) + γ

∑
y

Pxy [a]V π∗
(y)

)

This is a well defined recursive definition with the ability determine
V ∗ and π∗ assuming Rx(a) and Pxy [a] are known.
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Q Values

For a policy π, define Q values (action-values) as:

Qπ(a, x) = Rx(a) + γ
∑
y

Pxy [π(x)]V π(y)

Q value is the expected discounted reward for executing action a at
state x and then following policy π
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Q - Learning

Seeks to learn Q values, state for optimal policy π∗

V ∗(x) = maxa Q
∗(x , a)

This leads to the policy π∗(x) = a∗
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Episodes

Stepping through the environment consists of distance episodes

The nth episodes is defined as the tuple (xn, an, yn, rn, αn)

Current state xn
Current action an
Subsequent state yn
Reward rn
Learning factor αn where

Qn(x , a) = (1− αn)Qn−1(x , a) + αn[rn + γVn−1(yn)]
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Conditions on Convergence

Qn(x , a) is represented as a lookup table

Sequence of episodes has infinite length

Episodes need not be continuous
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Action Replay Process (ARP)

Artificial controlled Markov Process over the sequences of episodes

< x , n >→rt< y , t − 1 >, where at episodes t < n, go from state x to
y with action a.
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Lemma A

Qn(x , a) are the optimal action values for the ARP states < x , n > and
actions
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Lemma B

Given a finite Markov process, from any starting state x , the different
between the value of that state under the finite sequences of s actions
and its value under the same sequences followed by any other action
tends to 0 as n⇒∞
Given l , there exists a higher level h such that the probability can be
made arbitrarily small of moving below l after taking s actions in the
ARP

With probability 1, the probabilities of the ARP and reward function
of the ARP tend to those values in the real process as the level n
increases to infinity

As the dynamics and expected reward functions of the ARP and real
process converge, the Q values of all states converge
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Proof

The ARP tends toward the real process, and so its optimal Q values do as
well. But Qn(a, x) are the optimal Q values for the nth level of the ARP,
and therefore tend to Q∗(x , a)
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The End
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Monte Carlo Methods for Sampling

Hengyuan Hu, Quanbin Ma



Motivation

Sampling is pervasive in statistics and machine learning.
- Draw samples from arbitrary distribution.
- Use samples to estimate intractable terms.
- Extremely hard especially in high dimension.

Use Monte Carlo methods to trade accuracy for efficiency.



Markov Chain Monte Carlo for sampling

Metropolis Hastings Algorithm
- Given a state:
- Proposal:  go to any stochastic 

perturbation of the state. 
- A common choice is following a 

Gaussian: Random Walk
- Correction: rejects any proposals 

that stray too far away from the 
target distribution.

- Consecutive steps are highly 
correlated: inefficient exploration



- Model not only the state, but also velocity.

- Formulated under framework of Hamiltonian dynamics to ensure basic 
properties of MCMC are satisfied.

- Instead of walking, we are now kicking a ball around.

Hamiltonian Monte Carlo



Samples generated for an 100-dimensional Gaussian. (Neal 2011)



Samples generated for an 100-dimensional Gaussian. (Neal 2011)



Samples generated for an 100-dimensional Gaussian. (Neal 2011)



Probabilistic Inference in Graphical Models
via Markov chain Monte Carlo Method

Yuan Liu (刘源)



Motivation
What is inference?
◦ Let 𝐹, 𝐸 be two disjoint subsets of the random variables 𝑉. Denote 𝑅 = 𝑉 − 𝐸 − 𝐹. The
probabilistic inference is to calculate: 𝑝 𝑥𝐹 𝑥𝐸 =

∑ 𝑝(𝑥𝐸,𝑥𝐹,𝑥𝑅)�
𝑥𝑅

∑ 𝑝(𝑥𝐸,𝑥𝐹,𝑥𝑅)�
𝑥𝑅,𝑥𝐹

◦ The calculation of 𝐸𝑥∼𝑝[𝑓(𝑥)]

Why it is important?
◦ We always need to calculate the marginal distribution.

◦ Write the Markov Random Field in log-linear form: 𝑝 𝑥𝑉 = 1
𝑍 exp(∏ 𝑤𝑐𝐹𝑐(𝑥𝑐)�

𝑐∈𝐶 ). The
derivation has the following form: 𝜕

𝜕𝑤𝑐
𝑙 𝑤: 𝐷 = ∑ 𝐹𝑐(𝑥𝑐)�

𝑥∈𝐷 − 𝐸𝑥∼𝑝[𝐹𝑐(𝑥𝑐)]



The Metropolis-Hastings Algorithm
This algorithm maintains a record of the current state 𝑥(𝑡), and the proposal
distribution 𝑞𝑘(𝑥, 𝑥(𝑡)) depends on the current state.

𝐴𝑘 𝑥∗, 𝑥 𝑡 = min(1, 𝑝 𝑥
∗ 𝑞𝑘(𝑥∗,	𝑥(𝑡))

𝑝 𝑥 𝑡 𝑞𝑘(𝑥 𝑡 ,	𝑥∗))

◦ Prove the convergence of this algorithm.
◦ Burning–in the sampler.
◦ Simulated Annealing.
◦ Effective sample size.



Gibbs Sampling
Gibbs sampling is a special case of the Metropolis-Hasting algorithm.
𝑞𝑘 𝑥, 𝑥I = 𝑝 𝑥𝑘I 𝑥JK .

◦ The main advantage of Gibbs sampling is the new state will always be accepted.
◦ How to use it in the Markov Random Field. (Markov Blanket)
◦ Blocking Gibbs Sampling
◦ Convergence Diagnostics: The Gibbs Stopper.



Thank you
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Reinforcement Learning

• Given an MDP 𝑆, 𝐴, 𝛾, 𝑃 𝑠′ 𝑠, 𝑎 , 𝑟 𝑠, 𝑎, 𝑠′

• Find a policy 𝜋 ∶ 𝑆 → 𝐴 that maximizes future reward.

• Q-function:
• Expected future reward starting in state 𝑠, executing 𝑎, and following 𝜋

𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋,𝑃 ෍
𝑡=0

∞

𝛾𝑡𝑟𝑡

• Satisfies the Bellman Equation:
𝑄𝜋 𝑠, 𝑎 = 𝔼𝑎′~𝜋 ⋅ 𝑠 ,𝑠′~𝑃 ⋅ 𝑠, 𝑎 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑄𝜋 𝑠′, 𝑎′



Q learning

• Optimal Q-function satisfies Bellman Optimality Equation:

• We can extract optimal policy by choosing action with highest Q-value.

• Q-learning recovers optimal Q-value:

′



Asynchronous Q-learning Theorem

Meaning: If we use Q-learning update asynchronously, Q-learning still converges 
to optimal Q-value function with some minor assumptions on the MDP.

′



Approximate Q-learning Theorem

Meaning: Q-learning converges to a fixed point which is close to the best 
possible approximation of Q in the linear function class we are considering, 
given some assumptions on the features.



Thank you



Latent-Feature Model & Latent-Feature Lasso

Enxu Yan Xiaofei Shi



Problem Definition: Latent-Feature Model (LFM)

I LFM is a generalization of Mixture Model:

x = W T z + ω.

I z ∈ {0, 1}K : presence or absence of features {Wk,:}Kk=1.

I ω ∈ RD contains noise and bias due to model misspecify.

Goals:

I (i) Estimate W (if model is correct).

I (ii) Minimize r(W ) := E
[
minz∈{0,1}K ‖x −W T z‖2

]
.



Existing and New Results

Let r(W ) := E
[
minz∈{0,1}K ‖x −W T z‖2

]
be the risk.

Table: Summary of Results (N=#samples, D=dim(x), K=#features).

Method Complexity Theoretical Guarantee Assumption

MCMC (NK̂2D) (Z (T ),W (T )) ∼ p(Z ,W |X ) as T →∞ Z ∼IBP(α), x ∼ N(WT z, σ2I )

Varitional (NK̂2D) n/a n/a

MF-Binary (NK)2K Exact Recovery Noiseless with cond. on Z∗

MAD-Bayes (NK3D) Reach local minimum of rN (W ) n/a

Spectral ND + K5 ‖Wj −W∗
τ(j)‖ ≤ ε, N & DK6π−6

minε
−2 z ∼Bern(π), x ∼ N(W∗T z, σ2I )

LF Lasso (ND + K̂2D) (i) r(W )− r(W∗) ≤ ε, N & DKε−3 (i) Any p(x) with bounded domain.

(New) (ii) Exact Recovery (ii) Noiseless with condition on Z∗

I LFLasso enjoys (i) no assumption on p(x) except boundedness, (ii) sample
complexity linear to K and (iii) a lower computational complexity.



Family of Variance Reduction Methods in 
Stochastic Gradient Descent

Xiyu Wang
problem to minimize finite sums：
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝜔𝜔 , P ω = 1

𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑓𝑓𝑖𝑖(𝜔𝜔)

SGD：
• can obtain an 𝑂𝑂 1

𝑇𝑇
convergence rate in expectation;

• Large variance can slow down the convergence

SAG：
• introduces a convex combination of SGD direction samples, and a past stored gradient
• has a biased update direction
• stores all the gradients during calculation



SVRG：
• The update rule is:

• 𝜔𝜔𝑡𝑡 = 𝜔𝜔𝑡𝑡−1 − 𝜂𝜂 𝛻𝛻𝑓𝑓𝑖𝑖𝑡𝑡 𝜔𝜔
𝑡𝑡−1 − 𝛻𝛻𝑓𝑓𝑖𝑖𝑡𝑡 �𝜔𝜔 + 𝛻𝛻𝛻𝛻 �𝜔𝜔

• The learning rate of SVRG can reach the result of SAG, but without storing a table of all the 
gradients.

• Under mild assumptions, even work on non-convex cases 
• The geometric convergence is: 

• 𝐸𝐸[𝑃𝑃 �𝜔𝜔𝑠𝑠 − 𝑃𝑃 𝜔𝜔∗ ] ≤ 𝛼𝛼𝑠𝑠[𝑃𝑃 �𝜔𝜔0 − 𝑃𝑃 𝜔𝜔∗ ]

SAGA：
• Combines the benefit of SVRG and SAG.
• The update rule is:

• 𝜔𝜔𝑡𝑡 = 𝜔𝜔𝑡𝑡−1 − 𝜂𝜂 𝛻𝛻𝑓𝑓𝑖𝑖 𝜔𝜔𝑡𝑡 − 𝛻𝛻𝑓𝑓𝑖𝑖 ∅𝑖𝑖𝑡𝑡 + 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝛻𝛻𝑓𝑓𝑖𝑖 ∅𝑖𝑖𝑡𝑡

• Does not require the additional step to choose the number of inner loops
• If 𝑓𝑓𝑖𝑖 is strongly convex, the convergence is: 
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