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Introduction

Classical statistics focused on inference and unbiased estimators

Why? Wanted explanations of or information about underlying
data-generating processes

ML focuses on prediction. A separate goal (Shmueli, 2010; Breiman,
2001), often with very different methods

But... why should prediction be different? How can a model that predicts
better be further from the ‘truth’?
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A ‘false’ model that predicts better than a ‘true’ one

The paradox e All models are ‘wrong’ (Box, 1979), usually because we haven’t or can’t
measure all causal variables or we have the wrong function class

e If we have all causal variables and the right function class, then a ‘false’
model is one with the wrong variables (“misspecified”) (and/or with
incorrect estimates/inferences)

e Can a ‘wrong’ model predict better? Yes.
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Setting:
o g e True (generative) model: y = 3,X,, + ,X4 + € with ¢ 9 N(0,c21)
e paradox

 Underspecified model: y = 3,X, +¢

Theoretical result (Wu, Harris, and McAuley, 2007; Shmueli, 2010):

e An underspecified fit has lower expected MSE when, for
H, = Xp(XpTXp)flxpT:

Re = BTXT( —Hp)XqBg < qo?
E.g., when ||B,]|1 is small, 2 is large, or 3, and B, are correlated.

e Toillustrate, take p =10, =3, 3,=10-1,, B, =14, and 6 = 10 V/Rc.
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A ‘false’ model that predicts better than a ‘true’ one
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A ‘false’ model that predicts better than a ‘true’ one

MSE of true vs. underspecified over 5000 runs
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Selection approach

e In practice, would probably use the lasso, not hand-pick features. What
does the lasso give?

¢ Note: consistency of the lasso is investigated versus the oracle predictor
(minimizer of Ly penalty), not the ‘truth’

» Conditions involve restrictions on the design matrix (van de Geer and
Bihlmann, 2009), which our matrix fails (we think)
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MSE of true, underspecified, and lasso over 5000 runs

Density
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Selection approach

Interestingly, the A that is optimal over a validation set always selects out the
intercept. Result: neither the true nor the underspecified model!

Fraction of times feature selected
out by lasso over 5000 runs
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Bias-variance tradeoff

e The underspecified model and the lasso decrease prediction error versus
‘truth’ by decreasing the variance

Bias-

e S e |l.e., the bias-variance tradeoff can explain any disconnect between
‘prediction’ and ‘truth’

e But, bias-variance decomposition is specific to L, loss. Does it generalize
to arbitrary loss functions?

e No. (Only to strictly convex)
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Generalizing the bias-variance tradeoff

James (2003) defines a systematic operator, S, St = argmin,, L(f — p).
Mean for L,, median for L;

Generalized variance should depend only on f,noton Y
Bias- Generalized variance: Var(f) = E;[L(f, Sf)]

adooit Generalized bias-squared: bias?(Y,f) = L(SY,5f)

Effect of bias and variance are not necessarily equal to these

Variance effect VE compares loss from 7 to loss from a constant.
Systematic effect SE compares loss from using Sf to loss from using SY

VE(Y,F) =E; [L(Y,F) = L(Y,SF)]
SE(Y,7)=Ey[L(Y,5f)— L(Y,SY)]
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Applying to 0-1 loss

e Say we have a trained classifier where for some level X = x, we have
P(Y|X = x)=(0.5,0.4,0.1)

o Bayes (optimal) classifier is *(x) = (1,0,0)

Bias-
variance
tradeoff

e Say that f is not smooth, such that 7 doesn't manage to be Bayes at x

« Consider two biased classifiers, f;(x) = (0,1,0) and (x) = (0,0,1) both
with a ‘bias’ of 1, and zero variance

 What if we randomize the predictions? P(ﬁ(x)|X = x)=(0.4,0.5,0.1) and
P(f2(x)|X = x)=(0.1,0.5,0.4).
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Applying to 0-1 loss

e Say we have a trained classifier where for some level X = x, we have
P(Y|X = x)=(0.5,0.4,0.1)

o Bayes (optimal) classifier is *(x) = (1,0,0)

Bias-
variance
tradeoff

e Say that f is not smooth, such that 7 doesn't manage to be Bayes at x

« Consider two biased classifiers, f;(x) = (0,1,0) and (x) = (0,0,1) both
with a ‘bias’ of 1, and zero variance

 What if we randomize the predictions? P(ﬁ(x)|X = x)=(0.4,0.5,0.1) and
P(f(x)|X = x) =(0.1,0.5,0.4). Both have the same distribution of
probabilities, so, the same variance
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Applying to 0-1 loss

e For 0-1 loss,

VE(Y,F) =Bz [L(Y,F) = L(Y, SO =Bz [I(Y #F) = I(Y # SF)]
=P(Y£F)~B(Y #5F) = (1- LI m7) — (1~ Torgman 7,)

Bias- _ _ _Vk 7
variance - nargmax, i Zi:l”’ 7j
tradeoff
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e Then,
VE(f,Y)=0.4—(0.5-04+0.4-0.540.1-0.1) = .40 — 0.41 =
VE(f,Y)=0.4—(0.5-0.140.4-0.5+0.1-0.4) = .40 — 0.29 =
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Applying to 0-1 loss
e For 0-1 loss,
VE(Y,F) =Bz [L(Y,F) = L(Y, SO =Bz [I(Y #F) = I(Y # SF)]

=P(Y£F)~B(Y #5F) = (1- LI m7) — (1~ Torgman 7,)

_ k T
variance - ﬂ:argmax, 7 Zi:lﬂ:l 7j
tradeoff

° Then,
VE(f,Y)=0.4—(0.5-0.4+0.4-0.5+0.1-0.1) = .40 — 0.41 =
VE(f,Y)=0.4—(0.5-0.1+0.4-0.5+0.1-0.4) = .40 — 0.29 =

e The same amount of variance can increase or decrease the expected
accuracy, completely separate from the bias!
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Conclusion

e Prediction and explanation are very different tasks!
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Take-aways

Strangely enough, models that predict the best are not necessarily ‘true’
(even in terms of associations/correlations)

The bias-variance tradeoff can help us understand how this is possible for
Lo loss, but other loss functions can be even more strange

Conclusion

Prediction and explanation are very different tasks!

Understanding and communicating how exactly this plays out is important
for any application of statistics and machine learning
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Topological Data Analysis

e Topological Data Analysis (TDA) refers to data analysis methods
which study properties such as shape, topology and connectedness of
the data.

@ This includes:

Clustering (particularly Density Based Clustering)

o Density Modes and Ridge Estimation

e Manifold Learning / Dimension Reduction

o Persistent Homology

@ TDA is useful as a visualization tool and for summarizing
high-dimensional datasets.
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This Project

@ We review recent work [1] on performing statistical inference for
Density Trees—a particular class of hierarchical clustering methods.
@ Outline:

o Definitions and Tree Topology
e Constructing confidence sets via bootstrap
e Pruning trees to remove insignificant features

@ As an application, we generate density trees to visualize distribution
of words in documents
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Density Trees

Suppose the data lies in X C RY. Given a density function
f: X —[0,00),
@ Let T¢(X\) denote the connected components of the upper level set
{x : f(x) > A}. These are the high density clusters at level \.
@ The density tree is the collection of all such clusters:
{Te} = Tr = UrTe(N).
e This is a tree by construction, i.e. if A,B € {T¢}, then either A C B,

or BCAor ANB=¢.
I\
)\

Figure: Obtained from [2]

-
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Estimated Tree

In general we have an iid sample from the true density X1, Xo,..., Xy ~ p.

The Estimated Tree T, is the tree constructed from the Kernel Density
Estimate:

N

R 1 [Ix = Xi

Pn(x) = nhd Z K(T)
i=1

Ta(N) = {x : u(x) > A}
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Tree Topology

tree distance function between elements of the tree:

>
< -

o Given a tree {T¢}, we can define the A

de(C]_,Cz) :)\1+)\2—2mf(C1,C2) C1,C2 S {Tf}

@ It can be shown that d7, is a metric on { T}, and hence induces a
metric topology on it.

If the true unknown density p is a morse function, then 3 a constant
ho > 0, such that Vh s.t. 0 < h < hg, the true cluster tree, T, and the
estimated tree Tp, have the same metric topology above.

Hence we do not need to let the KDE bandwidth h — 0. This leads to a
dimension-independent rate of convergence for the bootstrap confidence

set.
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Confidence Sets via Bootstrap

@ To construct confidence sets, we first need a metric to measure the
“closeness” of two trees. The /5, metric is defined as,

doo (Tp, Tq) = ilég Ip(x) — a(x)| = [Ip — gl

@ The confidence set is defined as C, = {T : duo(T, T5,) < to} for Tp,.
@ t, can be obtained by the bootstrap:

£, = Fl1-a)

Where {f’}h, e, f'g are the estimated trees for the bootstrap
samples {X{,..., X!}, ... {XB,..., XB}.
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Convergence Rate

Under regularity conditions on the kernel, the constructed confidence
interval is asymptotically valid and satisfies,

P(Tp€€a>—1—a+0(|0g7n>6 (1)

where Co = {T : doo(T, Tp,) < ta}

v

From the Lemma presented previously, we can fix h to a small constant, to

1
BN
obtain a dimension-independent rate of O <'°ng> °
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Notions of Tree Simplicity

o The confidence set C,, contains infinitely many trees—including very
complex ones obtained by small perturbations of the density estimate.

@ We would like to obtain “simple” trees by removing statistically
insignificant features.

@ A notion of simplicity is given by the following partial ordering:

Definition

For any f,g : X — [0,00) and their trees T¢, T, wesay Tr < T, if 3 a
map ® : {T¢} — { Tz} which preserves set inclusion relationships, i.e. for
any G, G € {T¢} we have GG C G iff &(C;) C o(G).

@ This partial ordering matches intuitive notions of simplicity, for e.g. if
Tr is obtained by removing edges from T, then T¢ < T,.
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Pruning Rules

Following two strategies are suggested to prune the empirical tree Tp,:
@ Pruning leaves: Remove all leaves of the tree with length less than
2%,.
@ Pruning leaves and internal branches: Remove all leaves and
internal branches of the tree with cumulative length less than 2%,.

It can be shown that the tree obtained after pruning from either of these
two strategies,

Is simpler than Tg,.

Is generated from a valid density function.

And the density function lies in the constructed confidence set.
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Visualization of Word Embeddings
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Figure: Cluster tree for Wikipedia Page on Noam Chomsky

C. Ahuja, B. Dhingra (LTI, CMU) Statistical TDA 12 / 14



Visualization of Word Embeddings
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Figure: Cluster tree for Wikipedia Page on Leonardo da Vinci
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Outline

@ Introduction
e Functional data analysis (FDA)
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Functional data analysis (FDA)

@ Functional Data (FD) refer to data recorded during a time interval or
intermittently at several discrete time points.

@ Functional Data Analysis (FDA) deals with FD for classification,
clustering, regression etc. In FDA, each sample element is considered
to be a function over time, spatial location, wavelength, probability
and so on.

@ Applications: time series, images, shapes, or more general objects.
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Outline

@ Introduction

@ Functional linear regression & Motivation
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Motivation

Functional predictor regression

Functional response regression

Function-on-function regression

Estimation of the coefficient function

Optimal convergence rate
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@ Introduction

@ Functional Principal Component Analysis(FPCA)
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Functional Principal Component Analysis(FPCA)

Covariance function

K(s,t) = Cov{X(s), X(t)}

v

Spectral expansion of covariance

According to the Hilbert-Schmidt theorem,

K(s,t) = riou(s)du(t)

k=1

where k1 > kp > ... > 0. It has

A,
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Functional Principal Component Analysis(FPCA)

Spectral expansion and FPCA
X(t) = px(t) + Y &du(t)
k=1

where all the coefficients are listed in the order: & > & > ... > 0, then
truncate at k = m,

X(t) & Xm(t) = px(t) + Y &xou(t)

k=1
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Outline

@ Introduction

@ Problem statement
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Functional linear regression

Functional linear regression

Y(s) = pv(s) + // b(s, DX (1) — px(£)]dt + e(2)
where | = [0, 1].

Regression model by expectation
EQYIX)(3) = iv(s) + [ bls, DIX(0) = ox(0)e

where E(Y|X) is the conditional expectation of Y as an L2(/)-valued
random variable conditionally on the o-field generated by X.

| N\
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Formulation of estimator

Single Truncation estimator

mn

b, 1) =Y 2-(; YY)l
k=1

Where K(s, t) is estimated in the emprical covariance function:
K(s,t) = 2704 (Xil(s) = X(s))(Xi(t) = X(t)).

Expand K (s, t) with eigenvalue {#x}52, and eigenfunctions {¢y}52 ;.

Eik = i'}f{Xi(t) — X(t)}or(t)dt
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Convergence rates

General Assumptions

J a>1,8>15~v>0.5 G >0st

E[IIX|PP] < oo, E[[|YIP|X] < Gia.s.;  E[&f] < Gikg, Vk > 1,
ik < CLk™ kg — kky1 > koL vk > 1,

|bjx| < CLi k=P Vj k>1,8> % ey

v

Convergence rate of Single truncation

3 a>1,8>15+>0.5 C >0, choose m, such that
my, = o(n'/(22+2)) "then

11b— bl|? = Op(n~ 271/ (a+20))
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Outline

© Proof of convergence rates
@ Divide the problem
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Some important expansions

On {¢; ® @f;k}ﬁzl, expand b and b:
b= biu(¢; ® i)

Jk
ZZ k(¢1®¢k
j=1 k=1

Note: ) @ bk = 6j()u(t), byx = b,

bik = [[ b(s, t)(¢; @ bi), bjk = [ 2 b( (s, £)( ¢J®¢k)

2 k=1
Set 1jf; = iy — =5 and €f; = e —
= nf; =22 bjis + €

p 117 . 1.1 .
= b= I?k(; Z Z bj,/fi,/fi,k—i-; Z eii&ik) = by k+ ( Zei’j&k)
i=1 1 im ,

n ’

Ruixi Fan, Shuo Zhao (Carnegie Mellon UniviPCA-Based estimation for functional linear re CCML, 2017 15 / 37



Rewrite the difference b — b

Break down b — b:

:ZZ — b k) (0} ® ) +Zzbjk{¢J (6 — bk)}
=1 k=1 J=1 k=1

‘1’(2 bj k() © éx))
Jj=1 k>m,
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Rewrite |||b — b|||?

oo Mmp oo Mmp
1B = 8112 S > (e~ b+ [[ (D biadoy @ (B - )P
Jj=1 k=1 Jj=1 k=1
)
IPITT
Jj=1 k>m,
0o my 1 1 n 0 M
DI I 6D SUICHD 9) DT
j=1 k:l i=1 Jj=1 k=1
eigenvalue error coefficient error
oo my
//{zzw (B0 + Y Y B
j=1 k=1 j=1 k>mj
basis error higher-order term
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Outline

© Proof of convergence rates

@ Bound the error terms
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Bound the eigenvalue error

To bound > 72, 37, AQ( S €ijik)? we have

|Ak/rk =1 S KRk — il S mill|K = KI|| = Op(1)

Since ¢;; are independent with mean zero conditionally on
X7 ={X1,..., Xp}, we get

1 . EoN\2|yn 1 . 2 ny &2

E[(E Z €ij€i k)| XT] = 2 Z E[G,'J|X1 ]fi,k
i=1 i=1

With Bessel's inequality :
> Ele \X{’]—E[ZJ L e5IXP] < EQIENPIXT] < Gu, we have

0o m m
n R 1 n 1 -
E[ZZ Zﬁuéi,k)z\xl”] S oD =0 tmp )

k= paial
0o mp
= Z Z Zel,_[ i k)2 = Op(nflmj,”l)
j=1 k= 1 /71
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Decompose the coefficient error

To bound >, SO (bjk — bjk)?, generally we assume that
infr.ix |Rk — k1| > 0, then

Sk — bk =2 i — 51) 2 [ [(K = K) (ke @ 01) + e [ (b — D)
bik — bk =Y bk - HI)I//(R - K)(¢x ® ¢1)

I:l#k
+ 3 b (R —r) = (e —r) T (K = K) (6 ® ¢)
,%:k i k ! k / // k /
+ 3 b —r) (K= K)(dk — dic) @ 1)
,%:k I\Fvk / // k k |

+ bj /((f;k — k)b

= Tjk1+ Tjk2+ Tjk3z+ Tjka

Ruixi Fan, Shuo Zhao (Carnegie Mellon UniviPCA-Based estimation for functional linear re
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bound component T; x4, T k3

It is clear that | T x4 S 77k~ B|dk — dil|.

Since | [ [(K — K {(dx = ¢x) @ di}| < [IIK = KI[[[|dn — ¢xll,
we will get the following:

Tiwal S57MR = KI- 116k = ull S e

CCML, 2017
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Based on the assumption that xx ~ k=<, we can choose k > 1 and C > 1
large enough so that sy /ki/c < 1/2 and Kicp41/kk < 1/2,Yk > ko,
where [.] is a ceiling function. Now, we can partition the sum into three

[k/C] [CK]
parts: > = + 20 ka1 T Y (e
Through suitable estlmatlon we can get the following:

/g 1, ifB>a+1
< llogk, iff=a+l
2_: (K1 = Kk) I 0
I=1 ke P ifB < a+1
o0 —
Z L < kBt
—jcr (o H0)
[g:] 1 B>a+1
[k/Cl+1 ke — w1l © | k@ P logk, B<a+1

= E(Th) Stk
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bound 7}’/(’2

Define the event A,:

An = {‘I’%k - I€/| > |Hk - Ii/|/2,Vk 01 < k < m,,,VI 75 k}
On the event A,
'BVkI
[ Tiw2l SITNK =KD s
|kk — Kl
11k
where \7;(’/ = |% 27:1 fi,kgi,l — 5k§_/|, then we have

(02, 1)V/2)2
Z|/’vk—l€/|2 Ok.1)” ka E{0i})""]

11k 11k
|—B— a/2

—1
k¢
Z |k — fi/|2

I:1k
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bound 7}’/(’2

Using the same splitting trick in the T; 1 part, we can get

[~B—a/2 [k/C] [CK] [~B-a/2
=Y+
,,Z;;k e AV S D > ) T
[k/Cl+1 I[Ck]+1
wa (S —pay
< 3a/2—p3 2c+2
Y pespan 3 LT
I=1 I=[k/C]+1
k2a Z /—,3—&/2
I=[Ck]+1

SJ 1+ k3a/27,3+1 |ng + k3a/27,3+2 + k3o¢f,3+1
g 1+ k3a/275+2

= [ Tjkal S nth2em29te
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Summarize over T 1.4, (bound coefficient error)
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Bound the basis error

Using Parseval's identity

//{Z > bk ® (i — o)}y = Z/{Z b k(Bic — 61))2
J=L k=1 j=1 k=1
N ’"HZZ bf,k“ﬁgk — okl)?
j=1 k=1
< S K23 — bl
k=1
= OP(nilmn)
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bound the high-order term

And the square of L2-norm of the high-order term is:

Z Z b_[k ¢J®¢k :Z Z b2k_ ;2ﬁ+1)

j=1 k>mj j=1 k>mj

(Orthogonality of the basis set)
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Put all four terms together

oo Mmp n 0O mp

o 1.1 A :
Ne=blIP<> > = D eiilin)® + D0 (bik — bix)?
Jj=lk=1 "k =1 j=1 k=1
eigenvalue error=0,(n—1m5*1))  coefficient error=0p(n~1)
0o mp 00
fy 2 2
1DV SETCEICE NI S DD S
J=1 k=1 j=1 k>m,
~ —
basis error=0p(n~tmj) higher-order term:OP(m,Terl)

= Op(n i my )
Take my, ~ n*/(@+26) \we have

~ 58—
16— bl|[2 = Op(n~a727)
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Outline

© Proof of convergence rates

@ Minimax rate
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Minimax rate

Cameron-Martin space

Let Py denote the distribution of [, b(-, t)x(t)dt +&(-), and Py denote
the distribution of €. Then the Cameron-Martin Space are defined as the

following:
h?
H:{hzg hjqﬁj:g )\—J'<oo}
J J

with the < h, g >p= Zj f\—?, h= Zj hj¢j, g = ngquj

Ruixi Fan, Shuo Zhao (Carnegie Mellon UniviPCA-Based estimation for functional linear re CCML, 2017



Joint distribution of (X, Y)

Then the probability density can be formulated by Cameron-Martin
formula:

dPy, « (D bjkxu)” kXk)? yJZk [ kXK
ap, ) = epi= Z 2); Z !

pox(y) =

where y = 3. y;¢;.
If we denote by Q the distribution of X, then the joint distribution of
(X, Y) is given by py(y)dPo(y)dQ(x)
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Estimation of distribution

Then let v, = [nl/(a”ﬁ)], and

2Un

b =" kPO, (d1® i)

vn+1

where 6 € {0,1}"7, thus the probability density function is the following:

(Zil;nyn-i-l k_ﬁgk—vnxn))2 n Y1 Zi,i,un—f—l k_ﬁek:unxk}
2)\1 )\1

Pro x(y) = exp{—

If we define py.(v) = pyo »(y), then the estimated distribution is
Po.x(v)dPo(y)dQ(x) for each 6. )
Let (X1, Y1), ..., (Xp, Ya) be i.i.d from Py, then the estimator of b? is:

B" = bjx(dj © ¢x)

j7k
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Get the lower bound of |||b” — b7|||?

v0,0" € {0,1}"", let p(0,0") = >\ |0k — 0| (Hamming distance), then

- 2v, —25 —n
PoflllB” — 11?2 B ey > P07, 6) > o)
According to Assouad's Lemma, we have

max Eg{p(6",0)} > %e‘””‘l
Then apply Paley-Zygmund inequality, we have

b" 2Vn 1 - on Vn _
Po{llIB" — b°II* = (216e V@Y > py{p(6,0) > Se /()
1

> —1/2)\
= 16°
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Get lower bound of |||b" — b||?

Therefore
Tn 02 > Mo R o 1/2N) 1/(2n)
P n - 1 - 1
max Py{[B” — ]| 2 e ) > e
Notice that v, 29+t ~ n=(28-1)/(a+28) then apply Chebyshev inequality,

we have the lower bound like that in the lecture note:

_ 281
inf sup Ey][B" — b7][2 2 n~ 5520
b" 0

Ruixi Fan, Shuo Zhao (Carnegie Mellon UniviPCA-Based estimation for functional linear re
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@ Single Truncation estimator:

mp

bs.t) =Y (Y &Yl
k=1

@ Covergence rate of ordinary least-square linear regression:
15— b3 < 0p(X)"1y/p/n.

@ Convergence rate of PCA-based functional linear regression:
1B — Bl S Op(n™ 725).
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Inference of Sparse
Gaussian Graphical Models:
Algorithms and Theory

Ifigenela Apostolopoulou




Applications of Gaussian
Graphical Models (GGM)

Popular tool for learning network structure

over a large number of continuous variables
Neuroscience

Computational Biology
Natural Language Processing
Computational Finance
Energy Forecasting




Mathematical Formulation
Given Xq,X,,..,Xy~N(u, X),X;€RP, estimate
the covariance matrix Q = 31

The solution of this problems leads to
Inference of the undirected graphical
model since for W = (W4, ..., W) ~

N(uZ):
Wi 1 VV]”(Wk,k :/:j,k == l) — ‘Ql] = (



Proposed Approaches

Graphical Lasso :

maxlog(det(£2)) — tr(QS) — pll 2l

, Where § the sample covariance matrix

In the high-dimensional case: p > n
min||2]||, subjectto |SQ —I|, < 1

Estimators offer convergence rates Op (s\/ logp/n)

If the true precision matrix is s —sparse (at most s
non zero entries per row)



Conditional Gaussian Graphical
Models

Ignore correlations between input variables

X1,X5,..., Xy, X;€RP the Input variables,
Y, Y, ...,Yy Y;eRY the output variables
learn 2,,,2,,, such that

p(YIx) ~ N(—2530%,x, 2y

This iIs a more detailed formulation of the

multiple regression:
y=Bx+¢€




Proposed Approaches
Solution of the optimization problem:

min  —log(det(Qyy )+ tr(Syy Ly +2 CST Oy + 000 0 S y) + M Dy 142y

Qyy =0,y =0 A

Second-order coordinate descent methods



Subspace Clustering
Alan Mishler & Deepika Bablani



Problem: Clustering is challenging in high dimensions

e Concentration of distance
e Clusters may exist in different lower-dimensional spaces

Solution: Look for clusters in lower dimensional subspaces

Bottom-up algorithms
Top-down algorithms
Model-based methods
Sparse subspace clustering




Bottom-up algorithms (SUBCLU) X, eR%i=1,....n

Builds on density based clustering algorithm DBSCAN.
Can find clusters in axis parallel subspaces.

Utilizes downward closure property: if cluster is found in subspace S, then
each subspace T of S also contains a cluster. However, a cluster C in
subspace C € DB not necessarily a cluster in T since clusters are required to
be maximal, and more objects might be contained in the cluster T that
contains C. However, a density connected setin S is also a
density-connected set in T.



Top-down algorithms XieR%i=1,...,n
(PROCLUS, ORCLUS)

PROCLUS (“PROJected CLUStering”)

o Goal:
o Partition the data into clusters C1, C2, ..., CKk, plus a set of outliers
o Partition the features into sets of dimensions D1, D2, ..., Dk

corresponding to each cluster
e Method: select k medoids, iteratively assign data points to clusters and
reduce dimensionality of each cluster

ORCLUS (“abitrarily ORiented projected CLUSter generation”)

e Extension of PROCLUS, looks for non-axis parallel subspaces.



Model-based methods (EPGMMs) Xx;eRr%i=1,...,n

Treat each data point as a linear combination of normally-distributed latent factors,
plus normal noise. If X is in cluster g, then:

XZ' = /Lg -+ AgUfig -+ €;
Ag :d X ( matrix of factor weights
Uiy ~ N(0,1,)

e; ~ N(0,X)

Estimate parameters using Alternating Expectation Conditional Maximization
(AECM) algorithm



Sparse subspace clustering

Goal: Represent each data point as a sparse
combination of other data points.

Assume data come from a union of linear
subspaces. The best sparse representation
of each data point should only involve data
points in the same subspace.

Advantages: no need to specify number of
clusters or dimensions of subspaces in
advance.




Conclusions

e Many different approaches
e Since there’s no universal definition of cluster or a

subspace, there’'s no “best” algorithm
e Theoretical performance guarantees exist only for sparse

subspace clustering



Comparison of Dantizig Selector and Lasso

Xiaoyi Gu, Yufei Yi

May 2, 2017

Xiaoyi Gu, Yufei Yi
Comparison of Dantizig Selector and Lasso



Formulation

Under y € R", X € R™P with n < p, and z ~ N(0,521) noise,
want to estimate B € RP from

y:X50+Z7 (1)

@MW*XM@+MWM- (2)

Dantizig Selector

min 18]l subject to [ X*(y = XB)le < Ao (3)

Xiaoyi Gu, Yufei Yi
Comparison of Dantizig Selector and Lasso



Three Major Assumptions on X

UUP(Uniform Uncertainty Principle)

3 S < p such that V|T| < S, 36 such that for all c € RIT!:
(X = d)llell7, < IIXTellf, < (L +9)cl7,

IDC(Incoherent Design Condition)

For By being S,-sparse with lim S, = oo. de, > 0 such that:
n—o0o

n o : 2
liminf,_ oo %m > 18
MIC(Mutual Incoherent Condition)

p(S) = max{|(X;, Xj)| : i€ T,je T |T| <S}. X satisfies MIC if
p(S)S < 1/K for some K > 0.

Xiaoyi Gu, Yufei Yi

Comparison of Dantizig Selector and Lasso



Comparison under the Restricted Eigenvalue Condition

REC(S, S’, Go) Restricted Eigenvalue Condition
1 Xclle,

min min —_—
T:|T|<S cllerelle, <Collerurlle, vV/N|leT]ey

/{(5, 5’, Co) = > 0,

where R corresponds to the S’ coordinates of |c| outside T.

Theorem [Bickel, Ritov, Tsybakov]

Suppose By is S-sparse and all diagonal elements of 1/n(X*X) is 1,
@ Under RE(S,S’,1) and X\, = o+/log p/n,

2
£ a2 /575120 18P
184 = Bolle, < CS(1++/S/S") k3 (S, 5',1)

@ Under RE(S,S',3) and A = o+/n - Tog p,

A 2o
_ 2 < !’ ’ 2i
1= Bolliy < €'S(L+3VS/SV a3

Xiaoyi Gu, Yufei Yi
Comparison of Dantizig Selector and Lasso



Statistical Analysis of Random Forests

=== Ritesh Noothigattu, Ben Parr s




Breiman (2001)

tree T Y
e Formally defines a random forest ﬂ)\

e Main results

©)

©)

No overfitting as more trees are added

Error depends on:

Individual tree strength
Correlation between trees

Decision Forest

A

4 = A\

s
=
Y=
~

Pr(v)

PE* < p(1—3s%)/s*




Biau (2012), Denil et al (2014)

e Biau (2012)

o Consistency on a previously proposed variant
o Convergence rate depends only on number of strong features

e Denil etal (2014)

o A new theoretically tractable variant
o Proves consistency

E[r,(X) —r(X)]* - 0asn — oo



Mix-membership Clustering

Boyan Duan, Xiaoyi Yang

Traditional Methods:

-- Graph Representation




Traditional Methods:
-- Extend Traditional K-means (NEO K-Means)

1. Traditional K-means Assignment matrix Y;;
Constrain: trace(UTU) = n, Row sum of Y is 1 vector.

2. NEO K-means Assignment matrix
Constrain: trace(UTU) = (1 +Row sumof U < fin.

3. Replace Y in the objective function of K-means into U.

. k n ll}rWKWllj
miny Z Z uijw;i||¢(x;) — m;j||= = miny Z u;jw;Ki; — = T )
| ] ]

j=li= J=1

where m; = BT o ¢ prace(UTU) = (1+a)n, T, 1{(UL); = 0} < pn

¢ is the non-linear mapping, W is the diagonal weight matrix and K is the kernal matrix.




Clustering based on motif network

Motif network

e/"

AN




Clustering based on motif network

Motif network

X

s




Clustering based on motif network

Motif network




Clustering based on motif network

Motif network

Objective:

min zk: cut(S;,55)
B ‘=1 min(vol(S;), vol(S;))

s.t. Z#{n0des€$}<(

degree of overlapping

Mathematical guarantee:
Spectral graph methodology for weighted graph



Thank you!



Efficient PAC Reinforcement
| earning in Contextual
Decision Processes

Karan Goel
Deepak Dilipkumar



Problem Statement

 PAC Reinforcement Learning: Learn a near-optimal
policy with high probability in sample efficient way

* Reinforcement Learning v/s Supervised Learning:
Samples not iid



Contextual Decision Process

* Arecent general framework to model the world in
Krishnamurthy et al. (2016)

e Subsumes Markov Decision Processes, Partially Observable
Markov Decision Processes

Bellman Rank of a CDP

 New measure by Jiang et al. (2016) that characterizes
the complexity of a CDP

* Most practical problems actually have low Bellman
rank



Main Paper

e Jiang et al. (2016): Can learn policy for CDP with
low Bellman Rank with high sample efficiency

* Algorithm that outputs a near optimal policy with
high probability given CDP with low Bellman Rank



Thanks!



Online Non-stationary Time Series
Regression with Autoregressive Models

Lisheng Gao, Rui Peng



Motivation

* Problem Definition
- Time Series: sequence of observations indexed in order (normally chronological)

e =f(t)+u t=1,...n
- Stationarity: finite variation, constant first moment and second moment across time
- Online Optimization: iterative parameter tuning, incomplete knowledge of the future

* Why Important?
- Natural temporal ordering
- Extremely wide applications (signal processing, weather forecasting, mathematical finance...)

* Connection with this course



Preliminaries

* Autoregressive Models:

- ARMA (Autoregressive moving average)
ARMA(p,q): Xi=p+ zp: BiXi—i + Zq: Oi€i—i + €
- ARIMA (Autoregressive intt:elgrated m;\l/ing average)
ARIMA(p,d,q): (1— Zp: BiBH(1-B)' X, =p+(1+ Zp: 0,B")e,
i=1

i=1

- SARIMA

SARIMA(p,d,q) x (P,D,Q),: B(B)®(B*)AYAYX, = §(B)O(B*)e,




Theories — ARMA online gradient descent ™

* Loss — fila,B) =1, (Xt,Xt(C!,B)) =l (Xt, (Z o Xy + Zﬁzfta))
i=1 i=1

T T
¢ Regl’et — Ry = th(XtaXt) — Iéliélzlt (XtuXt(auB))
t=1 ’ t=1

Algorithm 1: ARMA-OGD(k.q)

Input: ARMA order k, g; learning rate 7; an initial (m + &) x (m + k) matrix Ag.
iR 1
Setm =gq-log, . 73 -
Choose ' € K arbitrarily.
fort =11 —1do
Predict X,(7) = S "~ X, ..

=1
Observe X; and suffer loss I (*).
Let Ve = VI (+")
. A t
Set ’"|r'f+l — H,‘:[ (":f’ — ?l;vf).
end




Theories — generalized online gradient descent ®

M
e Loss — IM(y) =l (z,C(T(2))) = Iy (l‘tC (Z ’)’éT(iEti)))

| | 7(ze) | ¢(zt) |
ARMA Ty Ty
ARIMA Ady, T+ 3y Atz
SARIMA | A9APz, | 7 + S A'APz, + S Al

Algorithm 2: TSP-OGD Framework

Input: Model parameters I, [,,,; Horizon T'; Learning rate n; Data {x; }; Transformation 7; Inverse
Transformation (.

Setm =log, (26T LMpazVim)™" + la.
Choose 7! € K arbitrarily.
fort=1toT — 1do

Transform z; to get 7(z) 7(%¢) = /7, 77 (x¢—;) Predict X () = C(r(F)).
Observe X; and receive loss [] i {“ ).

Set 11 H,Q(,f - 19 (5 ))
end




Theory — theoretical bound

Theorem 3.2 Letn = (%T. For any data sequence {x;}]_, that satisfies the assumptions, Algo-

rithm El generates a sequence {~"'} in which

T T
> 1) - min, ; Elfi(a,f)] =0 (DG\/T) (18)

t=1
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Learning Sequential Data:
Hidden Markov Models and
Beyond

Sq i Chen
10702 Project Presentation
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Motivation

» For many application such as speech recognition, bioinformatics musical
score following and stock prediction, the time series nature of the data is
intrinsic, so the usual i.i.d. assumption is no longer appropriate

HMM is a prototypical methods for modeling times series

However, it faces several important restrictions:

1. The number of hidden states is finite

2. If we have large number of possible states, then standard HMM may require
learning too many parameters.

3. Maximum likelihood estimation procedures do not consider the complexity
of the model, making it hard to avoid over or underfitting



Motivation

So we consider the following extensions of HMM:
Factorial HMM

Switiching State Space Models

Infinite Hidden Markov Model

vV v v Vv

» To effectively discuss iHMM, need to consider Hierarchical Dirichlet Process

» This brings the problem of inference algorithms:
» Variational Learning for Switching State Space Models
» Beam Sampling for Infinite Hidden Markov Models




Connection with class

» An in-depth study of some particular instances (HMM and its extensions) of
dynamic Bayesian network and graphical model

» Hierarchical Dirichlet process (HDP) can be used for clustering

» By placing HMM in the general graphical model framework, the extensions and
inference algorithms become natural
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HMM

(i) Y; is generated by a process whose state S; is hidden from the observer.
(i1) S; has the Markov property: E[f(S;) | F] = E[f(S;) | S]

(iii) S; is discrete: S; can take K values {1,...,K}

The model:

P(S1.....S87.Y1,....Yr) = P(S)P(Y1|S)TL_,P(S,|S;:_1)P(Y:|S:) (1)

which means to specify the joint distribution, we only need to specify the initial distribution P(S),
the K x K time invariant transition matrix P(.S;|S;_1) and the K x L time invariant emission matrix
P(Y;|S;), assuming Y; only takes L discrete values. We can further augment the HMM by assuming
we have additional input variables [, and that the state transition probability is input dependent
P(S;|S;_1.U,)|Ghahramani [2001].




Factorial HMM

We represent the state variables by a collection of discrete state varaibles: S; = Siljj SEM]._, each

Sim} can take K™ values. For simplicity, let K™ = K, ¥m. So the state space has K™ possible

values. Letting each state variable evolve according to its own dynamcis. we specify the following
model:

P(SiSi-1) = L, (S|, 4
50 there are only M K = K transition matrices to estimate. The observation Y; depends on all state

varaibles SP] N SEM}. One particular choice is letting Y; be a Gaussian random vector whose mean
15 a linear function of the state varaibles.

P(Y:|S:) = |R|” UE{EW} o7 EKP{ - HLJTR_ (Y — )} (3)

with
M . _
u =3 WwWhs? (6)
where W™ is a I » K matrix and [ is the ID » I covariance matrix. From (3) we see that there

are KM possible mean vectors, so this is a Gaussian mixture model with K M components, each of
which having covariance matrix R.



Factorial HMM

Qe ® ® @

Figure 5: A Bavesian network representing the conditional independence relations in a factorial HMM with
M = 3 underlying Markov chains. (We only show here a portion of the Bayvesian network around time slice

)



Switching State Space Models

We now intorduce the extension that combine continuous and discrete state spaces. Let Y7.7 be the

sequence of observations, X :El]]l, X ':M] be M real valued state vectors, S; be one discrete state
varaibles. The model is specified as:

P(Spr X0 XD vip) = P(S)IT_,P(S,|S, )Y [P(X™) T, P(X ™)X ™))
KH?:IP{}E'XEI '.n-"tth:M]:SE]

Conditioned on a switch state S; = m, the observable 1s a multivaraite Gaussian with output equation
given by the state space model m. lLe.,

PV XY, X" 8, = m) = (27)"P/2|R-1/2
1
xexp{—5(¥: - CX™) TR (Y - oM X ™))

where R is the covariance matrix of Y3, /™) is the output matrix for state space model m, as in (3).
In this model, the switch variable is itself a discrete Markov chain with initial probability P(S;) and

transition matrix P(S;|S;_1). It "gates” the output of M state space models. And each real valued
state vectors X E”;;} follows a different state space model as in (2).




DP,HDP

In order to effectively discuss Infinite Markov Model, we first introduce Dirichlet Process and
Hierarchical Dirichlet Process.

The Dirichlet process is a stochastic process used in Bayesian nonparametric models of data. Let H
be a distribution over © and « be a positive real number. G is Dirichlet Process with base distribution
H and concentration parameter v, G ~ DP(ce, H), if

(G(Ay),....G(A,)) ~ Dirichlet(aH (A1), ...,aH (A})) (7)

for every finite measurable partition A, ..., A, of ©. The base distribution H 1s the mean of the DP:
for any measurable set (VA  ©)E[G(A)] = H(A). On the other hand, the concentration parameter
v can be understood as an inverse variance: V[G(A)| = H(A)(1 — H(A))/(a + 1). a is also called
the strength parameter, since when we use the DP as a nonparametric prior over distributions in a
Bayesian nonparametric model. it can be interpreted as the strength of the prior.

A hierarchical Dirichlet process (HDP) 1s a set of Dirichlet processes (DPs) coupled through a shared
random base measure which 1s itself drawn from a DP[lIeh et al.| 2006]. In other words, each

G ~ DP(a: Gg) with shared base measure G and the shared base measure Gy is itself given a DP
prior: G ~ DP(~,H), with H as the global base measure.




1HMM

>

The Infinite Hidden Markov Model (iHMM), is a non-parametric Bayesian extension of
Hidden Markov Models with a infinite number of hidden states.

While in principle this will require the state transition matrix have infinite number of
parameters to estimate, the theory of Dirichlet Processes (DPs) enables us to implicitly
integrate the parameters out, leaving only a few hyperparameters defining the prior

HMM involves not a single mixture model, but rather a set of mixture models—one for
each value of the current state.

The current state S; indexes a specific row of the transition matrix, with the
probabilities in this row serving as the mixing proportions for the choice of the next
state ;.1

Thus, to consider a nonparametric variant of the HMM that allows a countable number o
states, we must consider a set of DPs, one for each value of the current state. Moreov
these DPs must be linked, because we want the same set of next states to be reac
from each of the current states



1HMM

In particular, we model each row of the transition matrix and emission matrix of HMM as a DP. By
identifying each G in the HDP described above with both the transition probabilities ;. ;. from
state k to £’ and the emission distributions parametrized by ¢(k'), i.e. ¥;|5; ~ F(ds, ), a Infinite
Hidden Markov Model (HDP-HMM) 1s:

B~ GEM(T}‘ Trk"ﬂlf G~ DP{H: ﬁ]ﬁ Op ~ H (8)

gt|8i_1 ~ Multinomial(ms, ), Y;|S; ~ F(ds,) (0)



1HMM

Figure 6. A Graphical Representation of an HDP-HMM.




Beam Sampling: why?

» iHMM as a non-parametric Bayesian extension of the HMM.

In general, non-parametric Bayesian models are models of infinite capacity, a
finite portion of which is used to model a finite amount of data. The usual
idea of searching/averaging over the space of finite models is replaced with
Bayesian inference over the size of submodel used to explain the data.

» exact Bayesian inference for the iHMM is intractable. The usual
forwardbackward algorithm cannot be applied since the number of states are
infinite.



Beam Sampling: idea

» Beam sampling combines the idea of slice sampling and dynamic
programming.

» The idea of beam sampling is to introduce auxiliary variables u such that
conditioned on u the number of trajectories with positive probability is finite.

» We then apply dynamic programming to compute the conditional probabilities
of these trajectories and thus sample whole trajectories efficiently.

» Note that the marginal distribution of other variables is not changed by the
introduced auxiliary variable U.



Thank you!
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Key idea: natural gradient descent (NGD)

Gradient descent: 01 = 0, — i,V f(01)



Key idea: natural gradient descent (NGD)

Gradient descent: 01 = 0, — i,V f(01)

Newton method: 0511 = 0, — [VQf(G;C)} ! V f(0)



Key idea: natural gradient descent (NGD)

Gradient descent: 0,11 = 0 — .V f(0)
Newton method: 011 = 0 — ay [V f(6)] - V f(6x)

Natural gradient: 01 = 0 — au, [F(0%)]”" VF(0r)
if f(0) =—logp(x;0)

F(0x) = E [Vologp(z;0)Velog p(z;0)"



Key idea: natural gradient descent (NGD)

Gradient descent: 0,11 = 0 — .V f(0)
Newton method: 011 = 0 — ay [V f(6)] - V f(6x)

Natural gradient: 01 = 0 — au, [F(0%)]”" VF(0r)
if f(0) =—logp(x;0)

F(0x) = E [Vologp(z;0)Velog p(z;0)"

like Newton method for optimization of probability densities



How to approximate NGD?

Natural gradient: 0,41 = 05, — ai [F(0)] " V£ (605)



How to approximate NGD?

Natural gradient: 0,41 = 05, — ai [F(0)] " V£ (605)

Explicitly approximating
and inverting F (0;,)



How to approximate NGD?

Natural gradient: 0,41 = 05, — ai [F(0)] " V£ (605)

Explicitly approximating
and inverting F(0;,)

e Cholesky factorization
[Groose et al, 2015]



How to approximate NGD?

Natural gradient: 0,41 = 05, — ai [F(0)] " V£ (605)

Explicitly approximating
and inverting F(0;,)

Cholesky factorization
[Groose et al, 2015]

Kronecker factored
approximation
[Martens et al, 2015]



How to approximate NGD?

Natural gradient: 0,41 = 05, — ai [F(0)] " V£ (605)

| |

Explicitly approximating Change features or parameters
and inverting F(8y,) sothat F(6) = I

e Cholesky factorization
[Groose et al, 2015]

* Kronecker factored
approximation
[Martens et al, 2015]



How to approximate NGD?

Natural gradient: 0,41 = 05, — ai [F(0)] " V£ (605)

| |

Explicitly approximating Change features or parameters
and inverting F(8y,) sothat F(6) = I

e Cholesky factorization * Normalization of input
[Groose et al, 2015] [LeCun et al, 1991]

* Kronecker factored
approximation
[Martens et al, 2015]



How to approximate NGD?

Natural gradient: 0,41 = 05, — ai [F(0)] " V£ (605)

| |

Explicitly approximating Change features or parameters
and inverting F(8y,) sothat F(6) = I
e Cholesky factorization * Normalization of input
[Groose et al, 2015] [LeCun et al, 1991]
» Kronecker factored e Batch normalization
approximation [loffe et al, 2015]

[Martens et al, 2015]



How to approximate NGD?

Natural gradient: 0,41 = 05, — ai [F(0)] " V£ (605)

| |

Explicitly approximating Change features or parameters
and inverting F(8y,) sothat F(6) = I
e Cholesky factorization * Normalization of input
[Groose et al, 2015] [LeCun et al, 1991]
» Kronecker factored e Batch normalization
approximation [loffe et al, 2015]

[Martens et al, 2015] e Weight normalization

L [Salimans et al, 2015]



How to approximate NGD?

Natural gradient: 0,41 = 05, — ai [F(0)] " V£ (605)

| |

Explicitly approximating Change features or parameters
and inverting F(8y,) sothat F(6) = I
e Cholesky factorization * Normalization of input
[Groose et al, 2015] [LeCun et al, 1991]
» Kronecker factored e Batch normalization
approximation [loffe et al, 2015]

[Martens et al, 2015] * Weight normalization
L [Salimans et al, 2015]

 Normalization propagation
[Arpit et al, 2016]



How to approximate NGD?

Natural gradient: 0,41 = 05, — ai [F(0)] " V£ (605)

| | |

Explicitly approximating Change features or parameters Other
and inverting F(8y,) sothat F(6) = I connections
Cholesky factorization * Normalization of input e AdaGrad as
[Groose et al, 2015] [LeCun et al, 1991] approximation to NGD
Kronecker factored e Batch normalization [Wager et al, 2013]

approximation [loffe et al, 2015]

[Martens et al, 2015] e Weight normalization

[Salimans et al, 2015]

 Normalization propagation
[Arpit et al, 2016]



How to approximate NGD?

Natura

v

Explicitly approximating

and inverting F(0;,)

Cholesky factorization
[Groose et al, 2015]

Kronecker factored
approximation
[Martens et al, 2015]

|

Change features or parameters
sothat F(6) = I

Normalization of input
[LeCun et al, 1991]

Batch normalization
[loffe et al, 2015]

Weight normalization
[Salimans et al, 2015]

Normalization propagation
[Arpit et al, 2016]

gradient: 01 = 0 — ay [F(0))] " Vf(0)

|

Other
connections

AdaGrad as
approximation to NGD
[Wager et al, 2013]

Dropout as L,
regularization in the
Fisher space
[Wager et al, 2013]



How to approximate NGD?

Natural gradient: 0,41 = 05, — ai [F(0)] " V£ (605)

Explicitly approximating
and inverting F(0;,)

Cholesky factorization
[Groose et al, 2015]

Kronecker factored
approximation
[Martens et al, 2015]

|

Change features or parameters
sothat F(6) = I

* Normalization of input
[LeCun et al, 1991]

e Batch normalization
[loffe et al, 2015]

* Weight normalization
[Salimans et al, 2015]

 Normalization propagation
[Arpit et al, 2016]

|

Other
connections

AdaGrad as
approximation to NGD
[Wager et al, 2013]

Dropout as L,
regularization in the
Fisher space
[Wager et al, 2013]



Variable Selection in High Dimensional Feature
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Problem setting and SIS

» Problem: y = X3 + €, where y,e € R", X € R"™*P, 3 € RP

» Aim: select o(n) variables from ultra-high dimensional feature
space (p = O(e™), for ¢ > 0).

» Two steps: 1. use SIS to reduce the dimensions to d = ©(n);
2. use SCAD method to further reduce the dimensions.

» SIS is based on correlation learning: w = XTy.

» M, ={1<i<p:|wiis among the first [yn] largest of all},
where v € (0, 1), [yn] means the integer part of yn.

» Main property: Under regularity condition with sparsity
assumption, SIS is accurate with high probability:

PM,CM,)=1- Ofexp{— Cn*~2%/108(M]

where M, is the true model, C >0, and € (0, 3) is a
parameter.



SCAD

Problem: ||y — X8 [3 /2+ X7, px(8))-
The SCAD penalty is defined as

L if0< |8 <\
2_9o4 2
pA(181) ={ —BERABEA i A < 8] < ax;
(a+1))\?)2 if [B] > a),

for some a > 2.

With SCAD penalty, the estimator has three properties:
sparsity, unbiasedness, and continuity.

The estimator is root-n consistent (Op(n~%/2)) if \; — 0 for
all j.

The estimator has oracle properties. And SIS-SCAD also has
oracle properties
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Challenges

some tuning parameter has unknown
components

o|| X" el|oo

/n

A~

data dimension d is scaled with data
sample size n

Solutions

Tuning insensitive or tuning free
approaches:

TIGER, Square-Root Lass, B-TREX

Extended information criteria




CONSISTENCY AND
CONVERGENCE RATES OF
GAUSSIAN RBF KERNEL SVMS



GAUSSIAN RBF KERNEL SVMS

e Training Data T = ((z;,9;)),z; € Rd,yi c{-1,1},i=1,...,n,i.1.d.

L —||lz — ||"

Voo P 2

 Gaussian RBF Kernel £, (x,x/) 1= ), o>0

 SVM as an optimization problem

fra = arg ]{n?gikllfllw—Z(l yi f (2:))+



— CONSISTENCY

Definition 1 A classifier f is consistent if Rp(fr) converges to R} in proba-
bility, i.e. for every e > 0,

lim P”I"(Rp(fT) — R} > 6) =0

n—oo

Definition 2 A classifier is universally consistent if it 1s consistent for any
distribution P on (X,Y).



CONSISTENCY

-

"Theorem 1 Let X c R? be compact and k be a universal kernel on X with N'((X,dy),e) € O(¢™%)
for some o > 0. Suppose that we have a positive sequence (An) with A\, = 0 and A\, € O(n™P) for
some 0 < [ < é Then for all Borel probability measures P on X xY and all € >0 we have

7}1—{20 PI‘({T € (X X Y)n Z Rp(fT,An) <Rp+ 8}) =1

Comments

* Gaussian RBF kernel is a universal kernel — linear combinations of this kernel can approximate any
continuous function on the input space.

*  When using Gaussian RBF kernel, we can choose a = d.

e Gaussian RBF kernel SVMs are universally consistent with appropriate choice of the parameter A.

* But there does not exist a universal convergence rate for all probability.

N - 9
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PROBABILITY ASSUMPTIONS

Téybakov noise Let 0 < g < oo and P be a probability measure on (X,Y). We say that P has
“T'sybokov noise exponent q if there exists a constant C' > 0 such that for all sufficiently small t > 0
we have

~

Px(2n(z) -1|<t) < Ct?

where n(z) = P(y = 1|x).

Geometric noise Let X is a compact subset of R%, and P be a probability measure on (X,Y).
We say that P has geometric noise exponent « if there exists a constant C > 0 such that for all
suffictently small t >0 we have

[ en(@) - 1le”

where T(x) is a function that measures the distance of x to the decision boundary.

T(x

t) Px(daﬁ) < Ct%d

Comments -/
* They both describe noise near the decision boundary.

* They can be related by the envelope order of the probability.

\/ - o
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CONVERGENCE RATE 1

Tﬁeorem 2 Let X be the closed unit ball of R, and P be a distribution on X xY with Tsybakov
noise exponent q € [0,00] and geometric noise exponent a € (0,00). Define,

o q+2
5._{2a+1’( ) ZfCY<
S 2a(q+1
() 3474 otherszse

and \, = n-(etD/eB 5 .= pBlad Thep
Ve >0, 3C' >0 such that Vx> 1 and n>1 SV My with Gaussian RBF kernel k., satisfies,

Pr(T e (X xY)":Rp(frx,)<Rp+Cx*n ) >1-¢®
If a = oo the inequality holds if o, = o > 23/d.

Comment o/

1
* Under conditions<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>