Prediction Error of Estimators for High Dimensional

Linear Regression

Adarsh Prasad*, Arun Sai Suggala

CMU

adarshp@andrew.cmu.edu, asuggala@andrew.cmu.edu

May 2, 2017

Adarsh Prasad*, Arun Sai Suggala (CMU) Prediction Error Bounds May 2, 2017 1/21



Overview
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Motivation!

. @ Social Networks
o Imaging

0}

. Billions of Nodes
o Gene (M'CroarraY) @ Linear Regression
Experiments) | ;
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5 <Source: Wikipedia
e ) Modelllng Investment risk, Spending,
E5=Costly Experiments Demand given market conditions.

!Slide courtesy: Pradeep Ravikumar
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Sparse Linear Regression?

se

0*llo = {7 € {1,...,p} : 6] # O}| is small
Estimate a sparse linear model:

min ||y — X613

s.t. [|0]jo < k.

fp constrained linear regression!

2Slide courtesy: Pradeep Ravikumar
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Sparse Linear Regression: Evaluation Metric

@ In-sample Prediction error.

£(6) = - 1X(0 — 67)2
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Sparse Linear Regression: Evaluation Metric

@ In-sample Prediction error.

£(6) = - 1X(0 — 67)2

o Estimator 6 has fast rate (modulo log factors), if:

@) =o0(2)

n

o Estimator 6 has slow rate (modulo log factors), if:

0-0(3)
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Section 2

Methods.
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Subset Selection.

~ . 1
Osubset € argmin o ly — Xﬁll% s.t. ||Bllo < s, (1)
BeRp &N
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Subset Selection.

~ . 1
Osubset € argmin o ly — Xﬁll% s.t. ||Bllo < s, (1)
BeRp &N

@ Raskutti et al. [7] showed that with absolutely no assumptions on X,
Osubset gets fast rates:

_ slog(p/s)
<L TN
g(HSubset) ~ n

@ Also, the minimax rate[7], i.e. with constant probability:

~ I
inf sup £(0) 2 >108lp/35) og(p/s)
0 16+ llo<s n

)
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N 1
fLasso € argmin o ly — XBl3 + X181 , (2)
BeRp &N
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N 1
fLasso € argmin o ly — XBl3 + X181 , (2)
BeRp &N

Slow Rates.

@ Assuming only column
normalization on X,

IXil, < v/n,Vj € [p]

o E(BLasso) < /2|6,

e Follows from zerot-order
optimality and concentration
of Gaussian maxima.
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N 1
fLasso € argmin o ly — XBl3 + X181 , (2)
BeRp &N

Slow Rates. Fast Rates
@ Assuming only column o Additionally, assume
normalization on X, Restricted Eigenvalue (RE)
. or Restricted Strong
IXilo = v/, V) € [p] Convexity (RSC) on X
~ Control correlation between
0 £(6 < \/ler g °
(Basso) 5 n 107 the columns of the design
e Follows from zerot"-order matrix.
optimality and concentration ° 5(§LASSO) < slogp
~ n

of Gaussian maxima.
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LASSO: Questions

@ Can one relax the RE condition and still get the fast rates for LASSO?

@ Are there any design matrices for which LASSO cannot achieve fast
rates?
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LASSO: Answers

o Correlated columns actually help the prediction error. [4].

Measure of Correlation

@ For any subset T C [p]: V7 is column span of Xr.

@ Let 1+ be the orthogonal projector onto V7.

@ Let p1 be the maximal distance between the normalized columns of
X and the set V1 i.e.

pr = max|(Zo — )]

where Z, is the n X n identity matrix.
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LASSO: Oracle Inequality.

Theorem (Oracle Inequality [4])

Let T C [p] be the set of indices and let 6 > 0, v > 1 be constants. Then,

if the tuning parameter \ is not smaller than vopt+/2log(p/d)/n, then
Lasso (2) satisfies

£ (urss0) + 20— [dunsso], < o {f:w) 20t D2y,

o?(IT| +2 |0g(1/5))7 (3)

with probability at least 1 — 2.

Comments.

@ Instantiate with g = 6*

e T,:pr, = n~" for a positive constant r > 0, i.e. All covariates are
very close to this set.
Adarsh Prasad*, Arun Sai Suggala (CMU)
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LASSO: Fast Rates.

Corollary (Fast Rate)

For T, such that pt, = n~" for a positive constant r > 0. Then, if the

tuning parameter satisfies A > co+/log(p)/n?'+1 for a sufficiently large
constant ¢ > 0, the Lasso (2) satisfies:

~ lo T,
E(OLasso) < max < () 19*1; | |> ;

2r+1

with high probability.

Comments.

-

o If ps+ = n72, i.e. All covariates are within a constant Euclidean
distance of the linear space spanned by the relevant covariate.

@ Lasso achieves the fast rate s/n upto logarithmic factors, provided

A= O(Y%R)
n
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LASSO: Slow Rate.

Lemma (Slow Rate [4])

Let n > 2 be an integer and let m be the largest integer less than v/2n,
then let the design matrix X be defined as:

T T
nx2m W lm lm
XeR =1\/3 L —Tm
0(n—m—1)><m 0(n—m—1)><m

Let the true regression vector be 8* € R®™ such that 65 = 607,,, =1 and 0
otherwise. Also, let the noise term € be i.i.d. Rademacher random
variables. Then, for any A\ > 0, the prediction error of 0 psso satisfies:

1 >>1
2v/2n/) — 2

P (5(5LA550) >

with high probability.

v
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LASSO: Summary.

e Fast Rates: Under Orthogonality(RE) and Very high correlation.

@ Slow Rates: Under constant correlation.
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Iterative Hard Thresholding (IHT)

Subset Selection Formulation

~ 1
Bsubser € argmin o |y — XBJ3  st. [|Blo <5, (4)
BERP n

o IHT performs a projected gradient descent on the £y constrained
objective (4). It is an iterative algorithm. In iteration t of the
algorithm, the current estimate 6 of  is updated as:

6t — HT,(8 = IXT(X0 = y)),

where HT(.) is the projection operator onto the space of s sparse
vectors and 7 is the step size.
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Iterative Hard Thresholding (IHT)

Subset Selection Formulation

~ 1
Bsubser € argmin o |y — XBJ3  st. [|Blo <5, (4)
BERP n

o IHT performs a projected gradient descent on the £y constrained
objective (4). It is an iterative algorithm. In iteration t of the
algorithm, the current estimate 6 of  is updated as:

6t — HT,(8 = IXT(X0 = y)),

where HT(.) is the projection operator onto the space of s sparse
vectors and 7 is the step size.

@ Blumensath and Davies [1] showed that this iterative process
converges for appropriately chosen step size. We denote the point of
convergence of IHT by @yT.
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Iterative Hard Thresholding (IHT)

Theorem (IHT Fast Rates: [6])

Lets suppose the design matrix X has normalized columns and has RSS

and RSC parameters given by Lyz = L and aoz = « respectively. Let IHT
be invoked with sparsity s > 32 (é)2 s and step length n = 2_1L where s is
the sparsity of the true vector 6*. Then 5,HT, the point of convergence of

IHT satisfies: 2
~ L\“o(s+5)lo
E(QIHT) <4 <a> %

with probability at least 1 — 1/p€ for some constant ¢ > 0.
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Iterative Hard Thresholding (IHT):Proof Sketch

Proof Sketch: First Step.

The proof involves two main steps.

@ In the first step we show that IHT converges to a local minimum of :
1 2 ~
argmin — |y = X85 st. Bllo <5, (5)
BeRp &N

which is also a fixed point of the hard thresholding operator HTg(.).

HTs(Oint) = O
Vef (Oinr) =0,
1|V g FOnT) oo < min (BT )il,
i€S
where supp(fiut) = S.
O

v
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Iterative Hard Thresholding (IHT):Proof Sketch

Proof Sketch: Second Step.

@ Using properties of the fixed point, one can show:

f(Bir) < £(607)
@ Then using RSC,:
* n * * n a n *
f(9 ) < f(olHT) aF <Vf(9 ),9 — 0IHT> — EHQIHT —0 H%

@ Substituting f(§|H-|-) < f(#*), and using cauchy-schwartz:

2v/s+5§
(6%

1B — %12 < IVE(O)] oo

Ol

v
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IHT: Remarks

Observe that IHT in the above theorem is run with a relaxed projection
step. In each iteration, the projection is performed onto a § sparse set
which is larger than s, the sparsity of 8*. There are results which analyze
IHT when the projection is performed onto a s sparse set [2, 3]. However,
they require the design matrix X to satisfy RIP conditions.
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IHT: Remarks

Observe that IHT in the above theorem is run with a relaxed projection
step. In each iteration, the projection is performed onto a § sparse set
which is larger than s, the sparsity of 8*. There are results which analyze
IHT when the projection is performed onto a s sparse set [2, 3]. However,
they require the design matrix X to satisfy RIP conditions.

Remark 2

It is unclear if IHT can achieve slow rates similar to LASSO, just under
column normalization condition.
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Conclusion

Table: Summary of known results.

Column Normed. (RE/RSC) High Correlation

LASSO Slow Rate Fast Rate Fast Rate
IHT ? Fast Rate ?
Greedy Methods 7 Fast Rate® 7

3Elenberg et al. [5] have shown how RSC implies a weak-form of submodularity for
subset-selection problems, which in turn means constant-approximation performance for

FSR, OMP for more general losses.
Adarsh Prasad*, Arun Sai Suggala (CMU) Prediction Error Bounds May 2, 2017 20 /21



References

1
[2
3]
[4]
5]
6]
7

Thomas Blumensath and Mike E Davies. lterative thresholding for sparse approximations. Journal of Fourier Analysis and
Applications, 14(5-6):629-654, 2008.

Thomas Blumensath and Mike E Davies. lterative hard thresholding for compressed sensing. Applied and computational
harmonic analysis, 27(3):265-274, 2009.

Coralia Cartis and Andrew Thompson. A new and improved quantitative recovery analysis for iterative hard thresholding
algorithms in compressed sensing. IEEE Transactions on Information Theory, 61(4):2019-2042, 2015.

Arnak S Dalalyan, Mohamed Hebiri, Johannes Lederer, et al. On the prediction performance of the lasso. Bernoulli, 23(1):
552-581, 2017.

Ethan R Elenberg, Rajiv Khanna, Alexandros G Dimakis, and Sahand Negahban. Restricted strong convexity implies weak
submodularity. arXiv preprint arXiv:1612.00804, 2016.

Prateek Jain, Ambuj Tewari, and Purushottam Kar. On iterative hard thresholding methods for high-dimensional
m-estimation. In Advances in Neural Information Processing Systems, pages 685—693, 2014.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Minimax rates of estimation for high-dimensional linear regression over
lg-balls. IEEE transactions on information theory, 57(10):6976-6994, 2011.

Adarsh Prasad*, Arun Sai Suggala (CM Prediction Error Bol May 2, 2017 21/



A Gentle Introduction to Kernel PCA in a

Landscape of Dimensionality Reduction
Techniques

Nic Dalmasso

Carnegie Mellon University

Pittsburgh, May 1, 2017

Nic Dalmasso (Carnegie Mellon University) 702 Reading Project - Spring 2017



Setup and Goal

We have X, ..., X,, € R"iid, with X; ~ Px Vi.

Our goal is dimensionality reduction. We achieve that by finding a lower
dimensional space V,; of dimension d to project the data onto with a
projection II such that the reconstruction error R(V') is minimized:

Vi = arg min R(V) = arg min E X — Iy (X)|3 (1)

Through the minimization of its empirical version:

n

N 1
Vg = arg ‘1;%1\172 R, (V) = arg ‘I/Ié% ﬁ Z (Xi — Iy (X;))° (2)

=
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Principal Component Analysis - PCA

PCA achieves that by using the d eigenvectors associated to the largest d
eigenvalues of the covariance matrix C' (through its empirical version C,,).

c/C,
R" ——p )/,

Major drawback: it only captures linear structures of the data.
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Kernel PCA

Kernel PCA projects the data into a higher dimensional space J first and

then uses PCA on an object called Kernel Integral Operator K - through
its empirical version K1 .

‘F

b \KI/AKl,n

R™ Vg

Major pros: it captures non-linear structures in the data.
Major cons: J can even be co-dimensional. Not clear how to deal with ®
in general.
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Theoretical Definitions for KPCA

@ We do not need to worry about ®. We can work on J by using a
Mercer kernel K, such that K (z,y) = (®(z), ®(y)). In this case, F is
a RKHS.

@ We define K as the kernel integral operator on a function f € L?:

(K1 f)(t /f k(z,t)dP(z) (3)

© We define Ky = E [K; ® K]
© The empirical version of both are easily obtainable:
(X, X;)
(Kin)ij = TJ y (Kon)ij = -
K1, is usually known as Gram Matrix.
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Main Result on Reconstruction Error for KPCA

Under reasonable assumptions:

A1 Yz € R" k(x,-) is measurable with respect to IP;

A2 3M > 0 such that k(z,z) < M a.s. [P];

A3 3L > 0 such that sup,, ,cpn (k*(x, 2) + k*(y, y) — 2k*(z,y)) < L*.

Theorem (Global Upper Bound for Kernel PCA)

Let A1,A2, A3 hold. Given € > 0, the following holds with probability at
least1 — 3e~¢:

A~

[Ra(V2) ~ ROV 5 1/ St() ®)
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Can we Improve?

Yes, if we put extra assumption of the eigenvalues of K.

@ Fixed d.
With extra assumptions with the d** gap on the eigenvalues of K
(Aa,K7 — Ad+1,K,) the upper bound is same or tighter:

e n~z when eigenvalues of K; decay polinomially;
e n~! when eigenvalues of K decay exponentially.

Q Fixed n.

It is much harder to improve that bound for an increasing d - possible
only with strong assumptions.
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ISOMAP

ISOMAP is a dimensionality reduction techniques which builds a
graph-based distance between neighbour points in order for the projection
to preserve distances.

g, N, o
s t}?&%
, %

Equivalent to KPCA using a Gram Matrix built from that graph-based
distance.
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LLE - Locally Linear Embedding

Locally linear embedding performs local linear regression and aims to
project local areas preserving angles.

e
. /o3 2o
< 'ir”‘J‘ o
et l‘,-_’.

., ";;;

west””
I D
* .
T
. O
R'ee
s, “q'V

o-.\‘u::
Y T

Equivalent to KPCA using a Gram Matrix built from the matrix of the
coefficients of the local linear regressions.

Nic Dalmasso (Carnegie Mellon University)

702 Reading Project - Spring 2017
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K-Means: Theory vs Practice

Theory:

K-Means is NP-Hard.

Lloyd’s algorithm has
exponential worst-case
time complexity.

There are algorithms with
bounded approximation
ratios.

Practice:

Everyone Is using K-means.

Lloyd’s algorithm converges
very fast in practice.

Solutions with constant
approximation ratio can be
far away from optimal.



CDNM Thesis

(“Clustering is Difficult when it does Not Matter” ----  Shai Ben-
David )

e Worst-Case complexity takes many non-clusterable instances into
consideration.
* Intuitively, K-means is suitable for data with nearly ball-shaped and
balanced clusters.
* Requires non-worst case performance measurement.

Clusterable Data Non-Clusterable Data (for K-means)



Stochastic Ball Model

* Suppose data is uniformly distributed on K unit balls in RY.
* The centers ci, 2, ..., cx satisfy that ||c; — ¢l > A.

 For an K-means heuristic, can it recover these K unit balls?
e “Easy” for A >4, Impossible for A <2.

B »g i e
50 '-‘~ f‘ s dah
w0 @
‘f:@, o SN

A <2 A>4




Stochastic Ball Model

Theorem [ABCKVW’14] Even when A is very large, there exist an
example which
e Lloyd’s Algorithm
* K-means ++
e K-means # (K-means ++ with overseeding)
all fail with high probability.

Semi-Definite Programming relaxation gives
recovery guarantee under Stochastic Ball Model!



Semi-Definite Programming (SDP)

LP : minimize c-zx SDP : minimize C e X
s.t. a;-r="b;, 1=1,...,m s.t. A;e X =b; ,i=1,...,m,
II?E%?_. Xtoa

e SDP is LP in matrix form with additional semi-definite constraint.
e SDP can be solved in polynomial time.



SDP Relaxation for K-Means

The k-means objective can be formulated as:

k
>3 llei = 1y 2wl = 5TOX)

t=14ieCy JEC:

{I/Ct: if 4, 7 belong to C

0, else

Note that the constraint above is combinatorial.
Convex relaxations on these constraints leads to a SDP problem:

minimize Tr(DX)
subjectto X >0, X >0,X1=1Tr(X) =%



Recovery Guarantee for Stochastic Ball
Model

Theorem 1 For stochastic ball model, when A > 2\/§ (14+1/ \/E), the SDP relaxation recovers the
true clustering.

Theorem 2 For stochastic ball model, when A > 2 + k2 / d, the SDP relaxation recovers the true
clustering.

Theorem 3 For stochastic ball model, when A < 4, the LP relaxation can fail to recover the true
clustering of the points.



Recovery Guarantee for Sub-Gaussian Mixtures

Theorem 4 For high dimensional (d >> log n) isotropic subgaussian mixtures, when ||j1; — pu||* >
d|032- — | + Q(y/ loﬁd)for all 1 < j < 1 < k, we have the optimal solution of SDP X satisfying

| X — Xoll = op(1), where X is the underlying clustering matrix.

Theorem 5 For subgaussian mixtures, when o = O(k) and k = O(d), A? = Q(e'k*ac? ) and

n = Q(d + log(1/4)), we have the optimal solution of SDP X satisfying | X — X% = O(e) w.p.
1—04.



Exploring theories on training deep
feed-forward neural networks

Presenter: Ermao Cai, Ruizhou Ding



CarnegieMellon

Problem

. ) N
m Target: multilayer neural networks trained on data set {X ™, Y(’”)}n=1

> Output: 0 = qo (Wio (Wi ..o X))...)

» g: normalization factor
1 W, W, Wi

» o activation function e
» ;. weights of the i-th layer %/\

m Loss function: 2 QA ﬁ'ﬂ\ ’(/
»L(W) = %ZNzl(O(") —y™)

output layer

input layer

X

m Goal: characterize the loss surface L(IW)
» Difficult: high-dimension, non-convex



CarnegieMellon

Many saddle points

m Statement 1: for L (W), the ratio of the number of saddle points to local
minima increases exponentially with the dimensionality N [Rasmussen and
Williams, 2005]

') Saddle
points

Unigue
minimum W —»



CarnegieMellon

No bad local minima

m Statement 2: under mild over-parameterization, the training error is zero at
every differentiable local minimum, for almost every dataset and dropout-
like noise realization.
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MOTIVATION

Problem Random forests ...

High-dimensional data work with small subsets
of features at a time.

Strong and weak predictors | find strong predictors.

Unsure of functional form | model as a partitioned

subspace.

Need accurate results have strong empirical
success.

Want nice theoretical To be continued ...

properties



HOW TO GROW A TREE

Idea: Aggregate many classification/regression trees.

Grow individual trees by CART method (Breiman [1984]):

* Bootstrapped training set

* Random subset of features for splitting

* Choose split that minimizes “impurity” of new nodes
* Grow until one unique observation per terminal

node

Split rule Split rule
satisfied not satisfied



CLASSIFICATION TREE THEORY

h(X, ©): Tree classifier

mg(X,Y) = 2Pg(h(X,©) =Y) —1
mg(X,Y) = 1 X, 1(h(X, ) = Y) = 1)
s: Exymg(X,Y), strength of trees

p: Average correlation between trees

Theorem (Breiman [2001])
PX,Y(rﬁ\g(X> Y) < O) EE? PX,Y(mg(Xa Y) < O)
Theorem (Breiman [2001])

Assume s, p > 0. Then Pxy(mg(X,Y) < 0) < p(1— s?)/s%



REGRESSION TREE THEORY

Biau (2012) analyzed a simplification of regression RFs.

ko: Number of terminal nodes
S : Set of strong predictors

Variance of individual tree is O(kn/n). (pevroye, Gysrfi, Lugosi [1996))

Theorem (Biau [2012])

Variance of forest bounded above by O (W)

Theorem (Biau [2012])

For optimal k,, L, risk of estimator is O (nISIE:ﬁOJS) )
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Improving K-means++
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e Review K-means and k-
means++ algorithms

Lloyd(1982)

¢ Introduce two extensions
of K-means++ that

improve it from different
aspects

Arthur Vassilvitskii(2007)

Ailon et al. (2009) Bahmani et al. (2012)




e Solves NP hard problem

e Simple

* Performance depends on
initialization

Lloyd(1982)

Arthur Vassilvitskii(2007)

Ailon et al. (2009) Bahmani et al. (2012)




* Provides strategic random
initialization
* O(log k) approximation Lloyd(1982)

e Requires k passes
through the data
* Needs large storage
e Sequential algorithm |
e Slow when k large

Arthur Vassilvitskii(2007)

Ailon et al. (2009) Bahmani et al. (2012)




e Single-pass streaming
algorithm

Lloyd(1982)

* O(log k) approximation

. O(Vnk log k log n)
storage requirement

Arthur Vassilvitskii(2007)

Ailon et al. (2009)

Bahmani et al. (2012)




Lloyd(1982)

e Easy parallel
implementation Arthur Vassilvitskii(2007)

e O(logn) runtime

* O(log k) approximation

Ailon et al. (2009)

Bahmani et al. (2012)




K-means# algorithm

Data Stream —




K-means# algorithm

Data Stream —
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K-means# algorithm

Data Stream —
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K-means# algorithm

Data Stream —
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K-means# algorithm

Data Stream —
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cluster centers l l l
C,

(4




K-means# algorithm

Data Stream —
Sy S, Sm l
cluster centers l l l
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Final cluster centers C




K-means| algorithm
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K-means| algorithm

} ' } ' Independent Selections ' . ' }




K-means| algorithm
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K-means| algorithm

Final cluster centers C é
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MCMC In Undirected
Graphical Models

. Graphical models explain correlation between

covariates e, e, .. z.) =  [] el

- MCMC generates samples according to the true

distribution:: Z¢ ) — E[p()

- Metropolis—Hastings is a typical MCMC algorithm

- Can be used In higher dimensions

. Don’t have to estimate the partition function Z



Convergence and Rates of
Convergence ot Metropolis—Hastings
Algorithm

- Proposal distribution Q, and accept new sample
y’ with probability =i (1, 220

P(y)Q'ly)

- With proper Q, converge to true distribution P
quadratically in total variation distance

- Burnin time: roughly(L/E) where L IS
distance between @ and P, the “distance”
traveled by Q at each step.



. But--- what about graph theory?

. Samples rejected: slow down rate of

convergence

L1y L2, ...

. Glbbgrsampllng |n|t|aI|ze P(z ‘m j#%ample
J -

each on the distribution

. Markov property: Y &il&i 15 # 1) = P(zi| N (2:))

- Parallel Gibbs sampling: faster MCMC, utilize
conditional independence between variables



Discussion

- MCMC Is a type of algorithm suitable for parameter

iInference In graphical models.

. Metropolis—Hastings algorithm is theoretically
guaranteed to converge to true distribution under
suitable conditions.

- Utilizing conditional independence relationship

between variables allows for parallel MCMC
algorithms

. Different perspectives: variational methods. View

parameter learning as an optimization problem.



Bayesian Networks
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BACKGROUND

A Bayesian network represents conditional independence for a
set of random variables with a DAG

ONNO
\@/

The joint density factors over the DAG:

p(x) = H f(xv,xpa(v))

veV



JUNCTION TREE OF CLIQUES

We transform the original graph into a junction tree of cliques

Definition: A tree is a junction tree if for any nodes C1, Cs
their intersection C; N Cs is contained in each node on the path
between them.



POTENTIALS ON THE JUNCTION TREE

We represent the joint density in terms of potential defined on
each node and edge of the junction tree:

[T ¢c(zc)

(z) = cec

T 9s(xs)

sSes
This representation is updated by flows, which modify the
potentials

> ¢*So = Z ¢C1

C1\So

P
> ¢*Cz = ¢C’2 <¢;;)O>




MARGINAL DISTRIBUTIONS

Important result:

After passing appropriate flows, the final representation of
the joint density gives the marginal distribution on each
clique set of variables.

To incorporate prior information, update the initial potentials
accordingly and pass flows again.



Thank you!



Density Ridge Estimate
Benjamin LeRoy

Ridge
p(T(eo))
p((t*))
p &0
pa(t) P
X arclength s*
Y(s) Y(s¥) (0)

TI(t) (%) Tr(eo)




Theorem 5 Let R* = RN (R & §). Assuming we have nice
structure for p, p,with h =< /1,

Haus(R, R*) = Op(vn)

where R is true ridge, Ris ridge for pn, v, is related to maximum distance
between the evaluation of the gradient, Hessian or Hessian derivative from
the two Ridge’s density.




Cures for curse of dimensionality in high-
dimensional nonparametric regression




* High-dimensional nonparametric regression with
n samples and p regressors suffers from the

curse of dimensionality:
4

e.g. R2 —~ n *tp (Gyorfiet al. 2012)

— Structural assumption: Sparse additive model

e Cures —

__ Dimensionality reduction: high-dimensional
feature screening



* Recently researchers proposed several
nonparametric, model-free feature screening

methods for high-dimensional data
(e.g. Fanetal 2011; Zhuetal. 2011; Li et al. 2012)

« Comminges & Dalalyan (2012) showed minimax
rate of nonparametric support recovery cannot

be smaller than d - log (7)/n
where d = card(true support)



« Sparsity assumption
S: f depends on at most d predictors

« Sparse additivity assumption

SA: f = YX_, f. where f, depends on at most d
predictors

 Key Thm. Yang & Tokdar (2015) provide tight
minimax rates under SA




« Many widely used regression methods (Lasso,
Dantzig selector, etc.) relyon S

* Under S, minimax remains smallest as long as

d = o(logn) = o(loglogp)

!

Extreme Sparsity!!



* Under SA, minimax remains smallest as long as

{ d=o ((logp)g), 0 not far from 1 }

* |deally, when combined proper feature screening,

S e

) Can have much larger number of predictors!




* | show with slight modification,

-~

+
feature screening methods from L/ et al. (2012)

-

~

sparse additive model from Raskutti et al. (2012)

/

can achieve previous result with P - 1






Targeted Maximum

Likelihood Estimation
What is it and why?



Semi-parametric Causal Inference

4 N
Assumptions are bad

Inference is good
- /

Will running keep you alive longer?

Will chocolate keep you alive longer?



How to target your MLE

Initial estimate

e Pickaparameter | 0T True P
e Find its influence function O\ rue@
e Superlearn it —
o

Move it around TMLE estimateb/

. - Set of models with
pfl:i — pfi ! (G(Pn |pﬁ ! )) constant score function

k— 00

Yrvpe = lim U(PF) L e




Is it worth it?

e TMLE has a lot of good qualities: consistency, asymptotic linearity, asymptotic
efficiency in a wide range of settings

If you have a lot of nuisance functions, it may get better rates than a plug-in
Robust to positivity assumption violations

Respects the model’s constraints
Generally not very different
Issues with coverage




Thank you!




Review: Minimax theory with
computational constraints.

Minshi Peng and Shengming Luo

Department of Statistics
CMU

May 2, 2017
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Classical minimax risk

Classical minimax risk is defined by:

R, = inf sup E[w(d(d,0(P)))], (1)
e peP

However, there's no constraints on the choice of
estimators, including those with prohibitive
computational costs.

ADA 1/4



An example: Sparse linear regression

Classical minimax results:

o2k|
W SR E[ IX(8 — 077 > Zkloe(d)
9 HEBO( ) n

The matching upper bound could be derived by the
following ¢y based estimator: ([NP-hard])

0, = i — X082 2
o argeergl?k)\!y 1B (2)

ADA 2/4



Computational efficient minimax rate

However, Lasso estimator f, ([Poly-time]) gives an
upper bound:

P 1 o2klog(d)
sup ELLIX(0 - 00 < 755 o), g

where 7(X) < 1 is the RE constant.

Computational efficient minimax lower bound:

C o%k'log(d)

inf sup E[=[X(0 —09)|]*] >
pf sup. X0 =01 > =

ADA 3/4



Key technique

There's no general framework for deriving such a
computational efficient minimax rate. What people
usually do at present:

@ Relate original problem to a problem known to
be NP-hard. (e.g. planted clique, 3-set cover
problem).

@ Use contradiction: if an efficient method
existed for the original problem, it would lead
to an efficient solution to the NP-hard problem.

ADA 4/4



Analysis of Spectral Clustering

Guokun Lai & Jingzhou Liu

May 2, 2017



Spectral Clustering Algorithm

(1) Construct a similarity graph from the original similarities
between data points, and denote this weighted adjacency
matrix as W.

(2) Compute the unnormalized Laplacian L = D — W (normalized
Laplacian L = D~1(D — W)).

(3) Compute the first k eigenvectors uy, ..., ux of L, composing
them into U € R™k,

(4) Then for every vertex i we have a k-dimension vector u; € R,
i.e. the i-th row of matrix U.

(5) Run k-means algorithm on uy, .., u, to get the clustering for
the vertices in the graph.



Relationship to the Graph Cut

The Spectral Clustering Algorithm with unnormalized Laplacian
minimizes Ratio Cut approximately.

k —
L. CUt(A,',A,')
minimize _ 1
A1, Ak ; |Ai] (1)
The Spectral Clustering Algorithm with normalized Laplacian
minimizes Normalized Cut approximately.

k

L. CUt(A,',Z,')
U 2 o) @

Where vol(A;j) = >_;c 4, dj, and d; is the degree of the jth node.



Relationship to the Random Walk

Define the Markov transition matrix as M = D™1W. It has
eigenvalue ); and eigenvector v;. The random walk process
converges to the unique equilibrium distribution 7ws. Then we have

> AF) = )2 = [Ip(z tx) = Pz ) Eamy ()

J

The spectral method want to capture the major pattern of the
random walk on whole graph.



Success Cases

pa b ke

Swantam 5 chaten




Failure Cases - Graph Cut

Normalized cut o = 0.05

Original Data

3 3

2 2

1 1

Y — YR SE—
-1 -1

-2 -2

2 4 6 2 4 5]
(b)

(&)



Failure Cases - Random Walk

-5

Original Data

-10 -5 0

NJW clustering, o= 1

.}
o
ot
- * *

oON B O®

-10 -5 0




PROJECT PRESENTATION

KERNEL MEAN EMBEDDINGS
AND ITS APPLICATIONS

NAJI SHAJARISALES



MOTIVATION

1. Independence of Random Variables:

Is one text is related to the other in another language?

provincial and municipal governments in
relation to the issue of child care, but the
reality is that there have been no cuts to
child care funding from the federal gov-
ernment to the provinces. In fact, we

have increased federal investments for

paux subissent de fortes pressions en
ce qui concerne les services de garde,
mais le gouvernement n’a pas réduit le
financement qu’il verse aux provinces
pour les services de garde. Au con-

traire, nous avons augmenté le finance-

2. Difference Between Distributions:
Are LFPs near spike burst similar to LFPs with spike burst?

P

LFP near spike burst

0.3

0.21

[

‘\?

g | M\ , H
f::: ;\%3{? i,l"m
E_m 1 \V’M"ﬁ N’\\' V

|
o
w

©
~
o

Q 0.3
0.2r

LFP without spike burst
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U
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MOTIVATION

Given samples from distributions, find the anomalous distribution

. \
A

.....
\ @ 4

General Objectives in Finding Methods:

* Domain adaptive methods

e Computationally fast methods
e Consistent methods

e High convergence speed



TWO-5AMPLE TEST?

Example 1:

Looking for a distance d between P and Q s.t.

P#Q < d(P,Q)#0 (x)

\,ﬁ(ﬁﬁra‘ prob. mEtriQ’ Q,dive rge an’\

wasserstein Hellinger

KL

DH(Pv(v))

= sup |Ex.pg(X) — Ey.og(Y)|
gEH

Dy (P, Q)

=/ alz) f (p('I.)) da
x  \4lz)

Pearson chi®

e Slow convergence rate
dependent on P and Q

e Sophisticated bias correction
and partitioning



KERNEL MEAN EMBEDDING

The Kernel Mean Embedding (KME) of a probability distribution P over Z associated with

a measurable, bounded, and positive-definite kernel & is

1, (P) = /Z k(z, )dP(2) € H,;.

Example 1: Maximum Mean Discrepancy (MMD)

d(P,Q) = //K:cydP )dP(y //nyd@ )dQ(y //K:UydP )dQ(y)

Observe X X1 X } ~ P jip(v): mean embedding of P
= yo - AR .

Holv): mean embedding of Q
—Qbserve Y = ~ Q

(\

fip(v): mean embedding of P

\l

witness(v) = jir(v) — f1a(v)

— ‘ ~—_

2
jip(v): mean embedding of @ EStlmatOr = (n i 1 ;K XzaX )""
i<j
2
=Ty 2 K Y5) = ZK X;,Y;)
* ®o P S v Z<J ”1
T — d(P,Q) = Op(—



KERNEL MEAN EMBEDDING

 Domain adaptive methods
 Computationally fast methods
e Consistent methods

e High convergence speed

NO FREE LUNCH
Minimax Risk: R (fo:H)= inggm)(cD;fu;'H]

Theorem 1. For the one-sample problem under known Holder reqularity, there is a constant ¢ >0
depending only on (s,d, L) such that

RU(HUL)) >1/2, if e <cem25/(s+d), (16)

Theorem 4. For the two-sample problem under known Holder reqularity, there is a constant ¢ >0
depending only on (s,d, L) such that

R (HAUL)) > 1/2, if e < c(m an)~2/(4s+d), (29)



DISTRIBUTIONAL LEARNING
CAUSAL DISCOVERY

Consider the two generative models:

causal model anticausal model
x~ P y~ P
e~ () €~ @
J~F f~F
y <+ flz,€) z  f(y,€)

+1 -

Algorithm:

Input

ii) measurable and bounded kernel function k, and

iii) number of random features m.

Testing
1) featurize test sample Sy as g, ,,(Sp) as in training, and ( 7 |I)

if) return fr (gt 1 (S0))-



DISTRIBUTIONAL LEARNING
CAUSAL DISCOVERY

Training?

1. Minimize R.(f)= E [o(—f())],

(z,l)~P



DISTRIBUTIONAL LEARNING
CAUSAL DISCOVERY

Training?

1. Minimize B = E [o(~f(=0)]. ) 4

(z,l)~P

2. Minimize  Ro(f) = S e(-1k).



DIS

R

1. Minimize

2. Minimize

3. Minimize

SU

Ry(f)= E [o(-f(2))],

ésO(f) : % Z@(—f(zz‘)li)-

IONAL LEARNING
CAUSAL DISCOV

Training?

(z,0)~P

-RY

x
x

Ro(f) = = 3" 01, fue(Ps,)))



DIS

R

1. Minimize

2. Minimize

3. Minimize

SU

Ry(f)= E [o(-f(2))],

ésO(f) : % Z@(—f(zz‘)li)-

IONAL LEARNING
CAUSAL DISCOV

Training?

(z,0)~P

-RY

x
x

Ro(f) = = 3" 01, fue(Ps,)))



DISTRIBUTIONAL LEARNING
CAUSAL DISCOVERY

Assumptions:
i) 3 Mother distribution M on {cause-effect measures P on Z} x {—1,1},
i) { (5, 1)} ~ M"™; with [; indicating X; — Y; or X; < Y] for P;,

iii) training data of the form S; = {(Xj ;, Y;,j)};-%:l ~ P

v) class F}. of functionals mapping H;. to R with Lipschitz constants uniformly bounded by L 7,

)
)
iv) measurable and bounded kernel k with sup,cz k(z, 2) < 1,
)
Vi)

minimization of surrogate risk Ry (f) := Ep o lo(—F(pp(P)))] in Fy,
vii) o: R — RT is Ly-Lipschitz s.t. ¢(z) > 1,50 and ¢(z) < B for all z.

Theorem:
With probability not less than 1 — 0 over all sources of randomness

Ry(fn)— R 5. < 4L¢Rn(]_—k)+23\/log(2/5)+4LZL;Z”: \/EZNPZ.[k(z,z)] ) \/10g(2n/5)

2n — N, 2N,




CONCLUSION

e Domain adaptive methods

« Computationally fast methods

e Consistent methods

e High convergence speed

e Useful for distributional learning

e Curse of dimensionality and not minimax efficient X



Transfer Learning for Sustainability, International
Development and Public Policy

Lynn Kaack

May 2, 2017
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Example: Transfer learning for sustainability
Predicting poverty: Xie et al. (2015), Jean et al. (2016)

Lynn Kaack Transfer Learning

May 2, 2017



Example: Transfer learning for sustainability

Xie et al. 2015, Jean et al. 2016

Lynn Kaack Transfer Learning

May 2, 2017



Example of empirical validation

Approach

Compare to models without
transfer learning

Results from Xie et al. 2015

Lynn Kaack

Survey ImgNet Lights _[:::'i;f: Transfer
Accuracy | 0.754  0.686  0.526  0.683 0.716
J Fl Score | 0.552  0.398 0.448  0.400 0.489
Precision | 0.450  0.340 0.298  0.338 0.394
Recall 0.722 0492 0914 0.506 0.658
AUC 0.776  0.690 0.719  0.700 0.761

Table 1: Cross validation test performance for predicting
aggregate-level poverty measures. Survey is trained on sur-
vey data collected in the field. All other models are based
on satellite imagery. Our transfer learning approach outper-
forms all non-survey classifiers significantly in every mea-
sure except recall, and approaches the survey model.

Transfer Learning

May 2, 2017 4/6




Transfer learning setting

@ Source domain Dg, learning task 7¢ — target domain Dr, task 77
@ Dg # Dr,0or Ts # Tt

Domain adaptation: A case of transductive transfer learning: 7s = 7Tr,
equal feature spaces Xs = X', but different marginal distributions

P(Xs) # P(Xr)

Lynn Kaack Transfer Learning May 2, 2017 5/6



Target error bound for domain adaptation

Ben-David et al. (2010)
With probability at least 1 — ¢

@ H A H-divergence,
Us, Ur are unlabeled samples)

dlog (2m’) + log (2/9)

m/

1.
er(h) < es(h) + SduanUs,Ur) + A + 4\/

Lynn Kaack Transfer Learning May 2, 2017 6/6



Target error bound for domain adaptation

Ben-David et al. (2010)
With probability at least 1 — ¢

@ H A H-divergence,
Us, Ur are unlabeled samples)

dlog (2m’) + log (2/9)

m/

1 -
er(h) < eg(h)+ édHAH(Z/{S,UT) + A 4\/

@ error of ideal hypothesis A\ = eg(hx) + er(h*)

Lynn Kaack Transfer Learning May 2, 2017 6/6



Target error bound for domain adaptation

Ben-David et al. (2010)
With probability at least 1 — ¢

@ H A H-divergence,
Us, Ur are unlabeled samples)

dlog (2m’) + log (2/9)

m/

@ error of ideal hypothesis A = eg(h*) + er(hx*) \
@ # hypothesis space of VC dimension d; m’ size of s, Ur each

1 -
er(h) < eg(h)+ édHAH(Z/{S,UT) + A 4\/

Lynn Kaack Transfer Learning May 2, 2017 6/6



Sparse mixed logit model for discrete choice data
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Introduction

Each option will look like this:

Suppose these 3 vehicles below were the only vehicles available for m
purchase, which would you choose? d
Attribute” Option 1 Option 2 Option 3
brid Plug-In Hybrid & ‘ brid
Vehicle Type o ! iﬂ Sy iﬂ & iﬂ
300 mile range on 1 tank 300 mile range on 1 tank 300 mile range on 1 tank

(first 40 miles electric)

Brand O German American American
Purchase Price © $32,000 $15,000 $50,000
Fast Charging Capability © - Available -
Operating Cost (Equivalent 6 cents per mile 19 cents per mile 12 cents per mile
Gasoline Fuel Efficiency) ¢ (60 MPG equivalent) (20 MPG equivalent) (30 MPG equivalent)

0 to 60 mph Acceleration 7 seconds (Medium-Fast) 8.5 seconds (Medium-Slow) 8.5 seconds (Medium-Slow)
Time* 0 - - -
o (6] o

*To view an attribute description, click on: ©
**The average acceleration for cars in the U.S. is 0 to 60 mph in 7.4 seconds

Figure: Choice experiment example from Halveston et al (2015) -

2/10



Random utility theory

eB"(zn %in)
2jea & nin)
» Individual n will prefer alternative i with U; = V; + ¢; if
Ui > U; V) [9]
» Error ¢; typically with a Type-l extreme value distribution [8].

» P(choice = i) = P, =

» Deterministic utility Vj, = Vis(z, xin) depends on
characteristics of the individual z, and attributes of each
alternative x;j,.

3/10



Mixed logit model

» Mixed logit models consider /3; as random variables (usually
Bi~N(p, X)) [6] [10].

» With many random parameters, variance-covariance matrix ¥
will be dense, obscuring interpretation.

» Model estimated via stochastic programming with simulated
maximum likelihood estimator (SLL) [14]:

miniﬁmize — SLL(ﬁ) = — Zrl)lzl jinA Inilog(f Pni/ﬁ : f(ﬁ)dﬁ)

Where Eg(Poi) = [ Poi/B- f(B)dB ~ % TR 1*
A

ﬁr jn

R is the number of draws from f(f).

4/10



Sparse group mixed logit model

» Some literature on mixed models with sparsity penalties [7] [3]
[12] [4] [5] [11]

» A sparse group mixed logit model will correspond to [13]:
miniﬁmize — SLL(A) + Py(0) =
—SLL(9) + oA P 105 + (1= a)Ag Sy VP (19l

» Here m is the number of groups of variables in the data.

» Weights ~ for diagonal terms of variance-covariance matrix X,
oii must be forced to 0.

» One group for off-diagonal terms of variance-covariance matrix
S, o with i # j.

5/10



Simulation bias and model bias

Two main sources of bias:

» Lasso regression will bias coefficients towards zero. Fact from
proxy,(0;) = Sx¢(6;) = sign(0;) - max{|0;| — At,0}.
» Additionally, simulation bias is [1] [2]:

If, VR(LL(9) — SLL(9)) 5 N(0, g SR, 0, 220
SLL() — LL(6) \/Z, L S0 e = 0(k)

» No papers found on risk rates for sparse mixed models.

6/10
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Evidence Lower Bound (ELBO)

The evidence lower bound (ELBO) is defined as
L = Eqllog p(z,x)] — Eq[log g4 (2[x)] (1)

Theorem
Maximizing ELBO is equivalent to minimizing the KL distance

between the variational distribution q4(z|x) and the true posterior
distribution py(z|x).

Proof.

L = Eq[log ps(z,x)] — Eq[log g4(z|x)]
= Eq[log po(x)] + Eq[log po(z|x)] — Eq[log gs(z[x)]  (2)

= log py(x) — KL(qe(z[x)||ps(z]x))
L]



Efficient Optimization: Auto-encoding Variational Bayes

» Naive Monte Carlo estimation has high variance.

» Reparametrization trick: reparameterize the random variable
Z ~ qy(z|x) with a differentiable transformation Z = g,(€, x)
using a noise variable €.

» Efficient optimization by SGD.

L

Eqllog py(xl2)] = | (1o py(x|2") 3)

=1
where  z() = ga(x, e) and ) ~ p(e) (4)



Rich Posterior: Normalizing Flows, Mixture of Distributions

» Normalizing flows: Transforming a random variable zy with
distribution gg through a chain of K transformations:

ZK:fKO---szofl(Zo) (5)

Theorem

Suppose we adopt a family of transformations of the form
f(z) = z+ ugh(w/ z + by). The flow-based ELBO is

K
Eao(z0) N 90(20)] = Egy () Z In |1+ u;(rqvbk(zk—l)‘ ~Eqy(z) [In p(x, 2K)]
k=1
(6)

» Mixture of Distributions: Approximating posterior using a
mixture of distributions with bootstrapping.



Analysis of auto-regressive VAEs through Bits-Back Coding

VAE can be seen as encoding data in a two-part code p(z) and
p(x|z).

Lemma

The average code length encoded by VI is

CBitsBack(x) = Ex~data,z~q(z|x) [lOg q(z\x) — log p(z) - /ng(X|Z)].
Theorem

The two-part code from VAE suffers at least a length of

KL(q(z[x)||p(z[x))]
Corollary

Asymptotically, any distribution p(x) can be modeled perfectly
without using z in auto-regressive models.



Sensitivity of Variational Bayes to Prior

Suppose the prior z is dependent on € modeled by p(z|e).

Theorem

The robustness of E ;)¢ x)[g(2)] with respect to perturbation can
be characterized by

OB p(ze x)[8(2)] 1 1
%k < maX(E7 ﬁ)Ep(Z‘E,X)”g(Z) - EP(Z|E»X) [g(Z)”]

(7)
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Correlation and Independence

p = 0.01, p-value=0.942 p = —0.05, p-value=0.517

ER ° °
« ) )
oo
° )
° 0 ©
° °
°
o | °
2 o o
B ° % ° °
° 0 ® o o °8
° &° S e ® 000
oo 2 o ° g o © o )
o @ ° og %° © °
LR L o © o, °
cf@% o o0 Crew —or oo
= N o @ 09 o°8 @ 5 o
o og ° o
°
o o° o ° o
o ) °
o ° o o o
B ° o ]
o o
° o
o ° o o o 0@
! o
° ° o o
S
®
°q o
84 °
°
o
o
T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
x x

Mesner Kernel Independen




Characteristic Kernels

@ P, set of probability measures on a space X with RKHS 77

o p:P—=H, P [, k(x, )dP(x)

@ k is characteristic if y is |nJect|ve

@ Intuitively, 5 is rich enough to represent higher order moments of P
@ Recall: X, Y independent iff ox y = ¢pxdy

Mesner Kernel Independence SML17 3/8



Cross Covariance Operator

o (X,Y,Z2) e X xY x Z, RKHSs sy, 73, #%; kernels kx, ky, kz
@ The cross-covariance operator, > yx : #x — 3 defined by

(& Zvx) 4, = E[f(X)g(Y)] - E[f(X)]E[g(Y)]

forall f € Hx,g € 75
@ The conditional cross-covariance operator is defined as

Yvx|z = Zyx — LvzE 7z zx

Mesner Kernel Independence SML17 4/8



Independence

@ If kxky is characteristic then

ZYX:0<:>XJ_LY

Q@ Let X = (X, Z) and kg = kxkz
If ks ky if characteristic then

Zyx|Z:0<=>XJ_|_ YlZ

Proof Outline:
Since E[f(X)g(Y)] — E[f(X)]E[g(Y)] =0 for f € ¥, g € 73
We can show that ¢x y = ¢x ¢y if we can make f, g look characteristic

Mesner Kernel Independence SML17 5/8



Hilbert-Schmidt Operator Norm

Let (xi);e/ > (¥));c, be orthonormal bases for #% and J73, respectively

2 N2
HZYX”HS - ZZ <ZYXX:;}/:>=;fy

icl jeJ

2
) HZYXHHS =0«& Zyx =0
@ Test Statistic is based on an estimate of this value

Mesner Kernel Independence SML17 6/8



Mercer Kernel Tests for Independence

p-value = 1.46 x 10718 p-value = 1.178 x 1018
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Many supervised tasks involve predicting
structured outputs.

“voiced” I “voiceless” /Ttme\ S I(y
‘ Voi 0 t T’ Noun phrase verb phrase B u i I d i n g
o1Cce Uunset 11me: '
length of time between / \ /\ Window
50 msec Opening the mouth and the Article adjective noun Verb noun phrase
onset of vocal fold Il Door
vibrations Article adjective noun Ca r
N Pavement .
The large cat eats  the small rat Roa d Ve g eta t IoN

Voice onset time: sequential Syntactic parsing: tree Image segmentation: graph



Structured prediction formulation

Data {(x1,¥1),...,(Xn,yN)} €EX X Y
Feature map ¢ : X x ) — R¢

Prediction yi, (x) = argmaxyey<wa O(x,y))

Loss L(y,y% (x))

Risk RE(W) = E(x.y)mp[L(y, ¥ (X))]

Minimize risk w* = argmin,,, L(x,y)~p L(Y, Y (x))]




Review of three structured prediction algorithms:
(1) structured SVM, (2) structured perceptron, (3)
Markov random fields.

N

1 2, C -
Structured SVM ]&1? B) HWH + N Z §i > Structured hinge loss
" i=1

s.t. (W,00,(y)) >1—-&, & >0, Vy € V\y;, Vi

Structured perceptron Wt+1 — Wt -+ nt(qﬁ)(xt, y:,t (Xt)) — Qb(xta Sf;f))

Markov random fields Potential function ¥ (x,y;,vy;) = eXp{Z}Ll wi [r(X, Vi, Y5) } > Structured log loss
Maximizing log-likelihoods w* = argmax,, > eisC e(w, £(x,9:,95))



Key results
1. Risk bound on structured SVM

Solve dual problem with cutting plane method, lower-bound on improvement
6O > min{ && e SAZRQ} A; = maxy L(y;,y), Ri = maxy |[d¢;(y)]|-

2. Convergence of structured perceptron
The expected update direction approaches the negative direction of Vw E|L(y, y% (x))]

in the limit as the update weight €' goes to zero

VwE[L(y,y% (x))] = lim 2E[(x,57) — ¢(x, y4 (x))]

—0

3. Risk bound on Markov random field

Generalization bound in terms of y-margin per-label loss L (w, x):
For any 0 > 0, there exists a constant K such that for any v > 0 and m > 1
samples, the per-label loss is bounded by

Inm+Inl+Ing+Ink]+In 3

E[L(w,x)] < E[L"(w,x)] + \J g [Redge’y w|3¢?

with probability at least 1—4, maximum edge degree in the graph ¢ = max; |[{(4,7) €
£}, number of classes in a label k, number of labels 1.



Key results

4. Convergence of structured SVM with subgradient method

Linear convergence of constant stepsize sequence: Stepsize sequence

{av}, v = a < &, for a particular region of radius R around the minimum,

Yw, g € Oc(w), ||g|| < C, the algorithm converges at a linear rate to a region of
the minimum w* = argmin, yy, c¢(w) bounded by |[w, — w*|| < §.

5. Proof of convergence of conditional random fields inference algorithms

6. Proof of bounds for approximate Markov random fields inference algorithms

7. Comparison of probit, orbit and ramp losses, proof of their
consistency, convergence rate and error bounds



Fast Feature Hashing in
Linear/Non-linear Models

Yong Zhuang (yongzhua)



Notations

* Assume that we have a training data x4, x5, ..., x,, € R! where L is the
dimension of features and n is the number of instances.

e [ can be millions, billions, or even more.

* If the feature dimension is too large, then we may not be able to train
our model efficiently or even store the model into the memory.



Problem

m < [




Possible Approaches

Rl
\
(
Xi
* Hashing functions
e Murmur hash
m < [ . Fry
R™ *
. ?




What | have done?

Rl
\
r
Xi
* Hashing functions
e Murmur hash
m <KL | . Frv
g™ *

( e Canto\r Function

Xi I




Experiments

model size time #dot #axpy #epochs #acc #logloss
criteo direct none none none none none none none
criteo dict none none none none none none none
criteo L_cantor 17777212 38336.6 1114399972 602461996 28 79,0824  0.448441
criteo murmur 17777212 554239 1114399972 602461654 28 79.0783 0.44843
criteo fnv 17777212 56458.5 1114399972 602423787 28 79.0818 0.44844
criteo disk none none none none none none none
avazu-app direct none none none none none none none
avazu-app dict 5201110 9293.9 303412464 164562773 24 87.1241 0.33112
avazu-app |_cantor 17777205 1826.6 316054650 165425480 25 87.1212 0.33107
avazu-app  murmur 17777205 2453.1 303412464 164599487 24 87.1182 0.33152
avazu-app fnv 17777205 2698.6 278128092 154413155 22 87.1201 0.33124
avazu-app disk 4247842 1171.2 455118696 250027488 36 87.0854 0.33142
avazu-site direct none none none none none none none
avazu-site dict 7143563 16205.9 659899604 338412347 28 80.6077 0.43672
avazu-site |__cantor 17777171 2410.7 565628232 312355462 24 80.6114  0.43663]
avazu-site =~ murmur 17777177 3914.0 565628232 312333409 24 80.6043 0.43674
avazu-site fnv 17777177 4144.0 612763918 335252201 26 80.6087 0.43683
avazu-site disk 6194921 3302.0 966281563 584921794 41 80.5648 0.43787




Statistical Properties of Cantor Function

* p:NXN — N
* p(x1,x3) = %(xl + x,)(x; + x5, +1) + x, where x;,x, € N.

e |t is an biased estimator.

* However, both of bias and variance decrease to 0 as m decreases.



Thanks
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Prediction v. Causal Prediction

Prediction v. causal prediction

e Traditional prediction asks, what is P(Y|X = x)?
x))?

e Causal prediction asks, what is P(Y|do(X
o What happens to Y when X is manipulated



Causality & Machine Learning

Causality and machine learning

@ Machine learning literature tends to focus on prediction tasks



Causality & Machine Learning

Causality and machine learning

@ Machine learning literature tends to focus on prediction tasks

@ Growing literature incorporates various forms of machine
learning into causal inference



Causality & Machine Learning

Causality and machine learning

@ Machine learning literature tends to focus on prediction tasks

@ Growing literature incorporates various forms of machine
learning into causal inference

e Graphical models for causal discovery and inference



Causality & Machine Learning

Causality and machine learning

@ Machine learning literature tends to focus on prediction tasks
@ Growing literature incorporates various forms of machine
learning into causal inference
e Graphical models for causal discovery and inference
o ML-based propensity scores to compare similar treatment and
control groups



Causality & Machine Learning

Causality and machine learning

@ Machine learning literature tends to focus on prediction tasks

@ Growing literature incorporates various forms of machine
learning into causal inference

e Graphical models for causal discovery and inference

o ML-based propensity scores to compare similar treatment and
control groups

e ML for model specification under selection on observables

e Learning unobserved features from other features



Causality & Machine Learning

Causality and machine learning

@ Machine learning literature tends to focus on prediction tasks

@ Growing literature incorporates various forms of machine
learning into causal inference

e Graphical models for causal discovery and inference

o ML-based propensity scores to compare similar treatment and
control groups

ML for model specification under selection on observables
Learning unobserved features from other features
Heterogeneous treatment effects
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Heterogeneous Treatment Effects
°

Causal estimands of interest

@ For each covariate profile x, the conditional average treatment
effect (CATE) is defined as:

Teate(x) = E[Y(1) — Y(0)|X = x]

@ More flexible marginal conditional average treatment effect
(MCATE) defined as

Tvcare(x) = / E[Y (1) Y(0)[(X!, X2, ..X5 = x5, . X¥)|dFy s xs_ys

@ New class which evaluates treatment effect by comparing
potential outcomes’ distribution functions: Distributional
Average Treatment Effect (DATE):

7paTE(S) = Div(Fy(1)s; Fy(0)|s)
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Heterogeneous Treatment Effects
®0

ML methods for heterogeneous treatment effects

@ Recent & forthcoming literature provide data-driven methods
for investigation & potential discovery of sub-populations:
o Sparse regression models (LASSO, ridge regression, elastic net)
@ Restrictive assumptions & limitations of (linear) regression
o Tree-based methods - recursively partitioning data into
homogeneous sub-populations
o Greedy partitioning; unstable; discontinuous approximations
o Ensemble methods (BART, random forests) improve upon
single tree model
o Treatment Effect Subset Scan (TESS) by Mcfowland et al
o Frame identification as pattern detection problem; maximize a
nonparametric scan statistic over all sub-populations, while
being parsimonious in which effects to estimate



Heterogeneous Treatment Effects
oe

Detailed theoretical results in paper.

Thank you.



A survey of Variational AutoEncoders
(VAEs) and the variants

Yuanyuan Feng & Hongyu Zhu



Motivation

e Generative models in deep neural network -- GANs and VAEs.

e VAEs can be interpreted from both neural network formulation
(encoder/decoder) and graphical model (inference) perspectives --
mathematically interesting.

e [Efficiently approximate intractable (posterior) distribution -- MaX|m|ze Iower
bound objectlves k"

z ~ py(z)

Po (Xbm Z)



Related work | -- VAE & Conditional VAE

e VAE: Kingma & Welling (2013) -- The intractable posterior inference can be
made especially efficient from a recognition model using a reparametrization
trick.

log pg(xi) > L(x4;0,9) = Eg, (a)x;) [log po(x:]2)] — KL (g4(2|x;)|[pe(2)) -
e CVAE: Kingma, Rezende & Mahamed (2014) -- Semi-supervised learning

with deep generative models and performs conditional generation on MNIST
dataset.

logpg(y[x) > L(x,¥;0,0) = Eq, (2)x,y) logpe(y|x,2)] — KL (g4(2[x,y)||ps(z]x)) .



Related work Il -- Denoising VAE & Adversarial Autoencoders

e DVAE: Im, et. al (2015) -- Denoising VAEs are trained with noise injected in their
stochastic hidden layer. A modified training criterion which corresponds to a
tractable lower bound is proposed when the input data is corrupted.

o (X, z)}

9s(2[X) |

e AAE: Makhzani, et. al (2015) -- uses GAN to perform variational inference by
matching the aggregated posterior of the hidden layer with an arbitrary prior
distribution.

atalx) = | atelx,mpa(m)dn = a(z) = | [ atalxnpatipa(n)dndx.

de
logpﬁ?(x) > ﬁa’,'ua,e :f Eq¢(z|x) |:10g
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Least Squares Estimator

Multiple linear regression model and the ordinary square estimator for f3:

Y = XB+e B=(XTx)xTy

!J"
.
——

(a)

(b)

Figure 1: Comparison of two linear regression done by least square estimation

OLS works well only under strict
conditions and assumptions.

What if:
e wrong observations in the
dataset occur?
e assumptions are incorrect

(E[Xiei] # 0)

Misleading and totally damaged!

Carnegie Mellon



Robust Estimator Measure

Two measures for the robustness of estimators (T):

Influence function: the dependence of the estimator on the value of one of the
points in the sample.

gps (T lEd gos sy TR Tl a5 5oy B ) — DB peners TE05iTi5 Tisnoes « v %))

Breakdown points: the proportion of incorrect observations an estimator can
handle before giving an incorrect result.

e (1T,D) := min {E; bias(m,T, D) is infinite}
n

Carnegie Mellon



Robust Estimator - M-estimator

M - estimator: automatically normal distributed

A . . 7i(8) .
B(M) = argmingerr Z P ( 5 ) T3 (5) = Yi — Z SUz'j@j o: scale variable
7

T=l

Huber minimax (b=1)

Huber minimax M-estimator

i if t<b
v(t) = {bsgn(t) it t>b

0.5 1.0

psi(t)

0.0

-1.0 -0.5

where b is a constant. 4 2 : . '
¢.g. for the robust function in M - estimator

M - estimator has bounded influence function according to Y, but the breakdown
point is still super low, which is 0%.

R @ Carnegie Mellon



Generalized m-estimator

Generalized M-estimators are introduced 1in order to bound the influence function
of outlying X by means of some weight function w.

T

A (B
BEM) — argminge pp Z -u;(Xi-)—p(ﬂ(' )

-

i=1
Computationally efficient by iterated reweighted least square method:

The first elementary estimate BLOLS) of 80,

Count the residuals r;(8) =Y;i - Yi=Y,—X"8 i=1...n.

))

Count the estimate 6 of o.

(e.g. MAD: & = 1.4826 median ( r; — median(rj)

J

Count the weights w;.

(e.g. Andrew’s % function: w; = 1/’(7'))

i
o

Update the estimate B by performing a weighted least squares with the
weights w;
Calculate W) = (XTWX)IXTWY

Finally, repeat from the second step until converge

R @ Carnegie Mellon




Other Robust Estimator

e (G-M-estimator has bounded influence function of outlying X, but no
improvements to the breakdown points.

e Other robust estimators with better breakdown points results :

o  MMe-estimators: high-breakdown and high-efficiency estimators, where
the initial estimate is obtained with an S-estimator, and it is then improved
with an M-estimator.

o Least median of squares (LMS): 50% breakdown point estimator,

BLMS)

= argminBERP (medz (T?(ﬁ)))

Carnegie Mellon
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Introduction

Smoothing splines bring some flexibility to regression compared to
linear and polynomial regression
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Introduction

Smoothing splines bring some flexibility to regression compared to
linear and polynomial regression

Conventionally the roughness is penalized uniformly

Further flexibility can be incorporated by letting the penalty vary
by roughness of the fitted curve



Recent works

[1] Wang, X., Du, P. & Shen, J. (2013), émoothing splines with
varying smoothing parameter; Biometrika 100, 4.

[2] Liu, Z. & Guo, W. (2010), Data driven adaptive spline
smoothing; Statistica Sinica 20, 114363.

[3] Pintore, A., Spekman, P. & Holmes, C. C. (2006), épatially
adaptive smoothing splines; Biometrika 93, 112-25



Set up

Yi = fb(l’,’) + O'(t,')e,', i=1,2,...,n

t; are design points on [0,1]
¢j are i.i.d D(0,1)

o(.) is variance function

fo is true regression function



Problem

Minimize

1 — 1
IS 026y — F(8))2 + A / (F0™) (£))2dx
"= 0



Modified problem for adaptive penalty

n 1
W) = >0 2w}~ )R+ [ alofFm o)k
i3 B
A>0
p:[0,1] — (0,00)
(1) absolutely continuous for i upto m — 1
f(m) € 1,[0,1]



Necessary and sufficient condition

wnlt) = 2300

n



Necessary and sufficient condition

wp(t) = EZ I(t < t;)
// f t fO _2 dw,,( )



Necessary and sufficient condition

n(t) = 7 S0 1 < 1)

/:/(f, t) = otffv‘z(S)f(S)dwn(S),
I(f.t) = [y 1(f,s)ds, (2 < k < m)



Necessary and sufficient condition

wnlt) = =0 It < 1)

I(5,) = [3 0 2(5)(5)den(s),
I(f.t) = [y 1(f,s)ds, (2 < k < m)
h(ti) = yi



Necessary and sufficient condition

wn(t) = =220 I(t < ;)

/V,(f, t) = Ot o=2(s)f(s)dwn(s),

I(f.t) = [y 1(f,s)ds, (2 < k < m)
h(ti) = yi

Theorem 1. Necessary and sufficient conditions for £ € W§" to
minimize v are that

1
n

(=)™ Ap()F™(2) + (£, 1) = Tn(h, t), ae

and X
I(F,1) = T(h, 1), (k =1,...,m)



Corollary

Corollary 1. n2™/(4m+1) {f(+) — fo(t)} converges to
NI(-1)™ L r(E){p(t) ™ (£) 3™, Lor(£)'=2/@m) p(£) =/ )]

in distribution.



Corollary

Corollary 1. n2™/(4m+1) {f(+) — fo(t)} converges to
NI(-1)™ L r(E){p(t) ™ (£) 3™, Lor(£)'=2/@m) p(£) =/ )]

in distribution.

\opt — n—2m/(4m+1)
Minimize integrated MSE— p(t)



Justification of method with simulation

(b)

(d)




Thank You
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We focus on policy gradient (PG) methods, a popular class of
reinforcement learning algorithms that have been at the heart of
significant advances in Al and robotics.

A policy 7 describes how an agent will act when in some state s. The
goal is to find an optimal policy that maximizes the expected cumulative

reward,
> )

where the expectation is taken over trajectories 7 := (sp, a9, S1, a1, - - .)-

n(m) = Erur

e PG methods directly optimize 7(my) by estimating its gradient w.r.t.
the policy parameters 6.

@ They are appealing because they reduce RL to stochastic gradient
descent.

Lisa Lee (CMU) Approximate PG methods May 2, 2017 2/13



Main challenges of PG methods:

@ Difficulty of obtaining stable and steady improvement despite the
nonstationarity of the incoming data

© High sample complexity

Lisa Lee (CMU) Approximate PG methods May 2, 2017 3/13



Monotonic improvement guarantees

Natural gradient method (Kakade, 2001)

Kakade (2001) provided a natural gradient method for policy iteration
that has guaranteed performance improvement.

@ Moves toward choosing a greedy optimal action rather than just a
good action.

@ Represents the steepest descent direction based on the underlying
structure of the parameter space.

Other works (Kakade 2002, Schulman 2015) build off of this paper.
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Monotonic improvement guarantees
Optimizing a lower bound on 7 (Schulman et al., 2015))

Thm (Schulman et al., 2015)

For stochastic policies 7, T,

(7)) = Lx(%) — CDRL" (7, 7) (1)

where C := (14;%3) and € := maxs 5 |Ax(s, a)| is the max expected
advantage.

Thus, we are guaranteed to improve the true objective 1 by optimizing the
lower bound

max | Lry,,,(0) = CORE* (0,0, 70)| (2)

Trust Region Policy Optimization (schuiman et a1, 2015) is an approximate
algorithm for optimizing Eq. (2).
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High sample complexity problem

Bias vs. variance tradeoff

Bias vs. variance tradeoff of the policy gradient estimator § ~ Vyn(mp):

0+ 0+eg

@ High variance necessitates using more samples.

@ High bias can cause the algorithm to fail to converge, or to converge
to a poor solution that is not even a local optimum.
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High sample complexity problem

Variance reduction techniques

Overview:

@ Unbiased estimators (wiliams, 1992, Sutton et al., 1999; Baxter & Bartlett, 2000) €Xhibit
variance that scales unfavorably with the time horizon.

@ Actor-critic methods (another class of PG methods) use a value
function rather than the empirical returns, obtaining a & with lower
variance but more bias.

@ Using an exponentially weighted estimator of the advantage function
(Schulman et al. 2016) has shown to significantly reduce variance while
maintaining a tolerable level of bias.

.l e
g=1D.2 AlVslogm(a] | s7)
=0

n=1t
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Thank you
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Define the following distance between two policies 7, 7:

Dii (m, #1) := max D, [7(- | s) || #(- | 5)]
where Dki, [p || q] :==>_; pilog % is the Kullback-Leibler divergence for
discrete probability distributions p, g.
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We use the following standard definitions of the state-action value
function Q;, the value function V;, and the advantage function A:

Qr(st,a) = Es, 10001, [Z ’Ylf(5t+l)] (3)
=0

Vﬂ'(st) = Eat,5t+1,... [Z ’}/lr(SH-l)] (4)
1=0
ATI'(S7 a) = Q7r(57 a) - Vﬂ'(s) (5)

where a; ~ m(a; | st) and sep1 ~ P(St41 | St, at).
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A useful identity for 7

The following useful identity expresses the expected return of another
policy 7 in terms of the advantage over 7, accumlated over timesteps:

Lem

Given two policies T, T,

n(7) = n(r) + Ernz

Z’Y (S, ar ] (6)
(m)+ ) pals) Zw(a|s) (s, a) (7)

where pr(s) = > 7oV P(st = s | &) is the (unnormalized) discounted
visitation frequencies.
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A local approximation to n

However, in the approximate setting, there will be some states s for which
the expected advantage is negative, i.e., . 7(a | s)Ax(s,a) <0, due to
estimation and approximation error. We introduce the following local
approximation to n(7):

Le(7) = n(m) + Y pa(s) D #(a| s)7*Ax(s, a) (8)

a

which uses the visitation frequency p, rather than pz, ignoring changes in
state visitation density due to changes in the policy.
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o Difficult to choose a stepsize that works for the entire course of the
optimization, especially because the statistics of the states and
rewards changes

@ Often, the policy prematurely converges to a nearly-deterministic
policy with a suboptimal behavior.

We survey results on strong theoretical performance guarantees for reliable
monotonic improvement.
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Introduction

This project aims to review some of the previous and current
work that may give insights into how spectral graph theory
works when applied in semi-supervised learning, particularly,
graph Laplacian.

Bulllet points
@ performance of graph laplacian

@ the performance when hyperparameters of the similarity
graph,

@ transformation of graph laplacian and noise model need to
be regularized which constrain the performance.




Graph Based Method

Graph representation of the data.

List of doing
@ Graph Construction
@ Injecting labels on a subset of vertices
@ Infer labels on unlabeled vertices on the graph




Graph Based Method

Problem Setup

While we have G = (V, E) which are vertices and edges,the
observations as {x;}{_;,the edges denoted as W, which W;
connected the points x; and x;. ) denote the label. And the
vertices V can be partitioned as two sets as a label set Ve
and an unlabel set Ve - The goal is to predict the label Y,
for the unlabel vertices. And for the weighted matrix, we have
assumptionsas

@ W;>0,Vijand W; = Wvi,j
@ no edge means W =0
@ no self loops, which means W;; =0,v1 </ <n
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