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Motivation1

Imaging

Gene (Microarray)
Experiments)

Costly Experiments

Social Networks

Billions of Nodes

Linear Regression

Source: Wikipedia
Modelling Investment risk, Spending,
Demand given market conditions.

1Slide courtesy: Pradeep Ravikumar
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Sparse Linear Regression2

2Slide courtesy: Pradeep Ravikumar
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Sparse Linear Regression: Evaluation Metric

In-sample Prediction error.

E(θ) =
1

n
||X (θ − θ∗)||22

Estimator θ̂ has fast rate (modulo log factors), if:

E(θ̂) = O
( s
n

)
Estimator θ̂ has slow rate (modulo log factors), if:

E(θ̂) = O

(
s√
n

)
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Section 2

Methods.
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Subset Selection.

Formulation

θ̂Subset ∈ argmin
β∈Rp

1

2n
||y − Xβ||22 s.t. ‖β‖0 ≤ s, (1)

Raskutti et al. [7] showed that with absolutely no assumptions on X ,
θ̂Subset gets fast rates:

E(θ̂Subset) .
s log(p/s)

n

Also, the minimax rate[7], i.e. with constant probability:

inf
θ̂

sup
‖θ∗‖0≤s

E(θ̂) &
s log(p/s)

n
,
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LASSO

Formulation

θ̂LASSO ∈ argmin
β∈Rp

1

2n
||y − Xβ||22 + λ ||β||1 , (2)

Slow Rates.

Assuming only column
normalization on X ,

||Xj ||2 ≤
√
n,∀j ∈ [p]

E(θ̂LASSO) .
√

log p
n ||θ

∗||1
Follows from zeroth-order
optimality and concentration
of Gaussian maxima.

Fast Rates.

Additionally, assume
Restricted Eigenvalue (RE)
or Restricted Strong
Convexity (RSC) on X

Control correlation between
the columns of the design
matrix.

E(θ̂LASSO) . s log p
n
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LASSO: Questions

Can one relax the RE condition and still get the fast rates for LASSO?

Are there any design matrices for which LASSO cannot achieve fast
rates?
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LASSO: Answers

Correlated columns actually help the prediction error. [4].

Measure of Correlation

For any subset T ⊂ [p]: VT is column span of XT .

Let ΠT be the orthogonal projector onto VT .

Let ρT be the maximal distance between the normalized columns of
X and the set VT i.e.

ρT = n−
1
2 max
j∈[p]

∣∣∣∣(In − ΠT ) x j
∣∣∣∣
2
,

where In is the n × n identity matrix.
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LASSO: Oracle Inequality.

Theorem (Oracle Inequality [4])

Let T ⊂ [p] be the set of indices and let δ > 0, γ ≥ 1 be constants. Then,
if the tuning parameter λ is not smaller than γσρT

√
2 log(p/δ)/n, then

Lasso (2) satisfies

E
(
θ̂LASSO

)
+

2(γ − 1)λ

γ

∣∣∣∣∣∣θ̂LASSO∣∣∣∣∣∣
1
≤ inf

β∈Rp

{
E(β) +

2(γ + 1)λ

γ
||β||1

}
+

2σ2 (|T |+ 2 log(1/δ))

n
, (3)

with probability at least 1− 2δ.

Comments.

Instantiate with β = θ∗

Tn : ρTn - n−r for a positive constant r > 0, i.e. All covariates are
very close to this set.
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LASSO: Fast Rates.

Corollary (Fast Rate)

For Tn such that ρTn - n−r for a positive constant r > 0. Then, if the
tuning parameter satisfies λ ≥ cσ

√
log(p)/n2r+1 for a sufficiently large

constant c > 0, the Lasso (2) satisfies:

E(θ̂LASSO) - max

(√
log(p)

n2r+1
||θ∗||1 ,

|Tn|
n

)
,

with high probability.

Comments.

If ρS∗ - n−
1
2 , i.e. All covariates are within a constant Euclidean

distance of the linear space spanned by the relevant covariate.

Lasso achieves the fast rate s/n upto logarithmic factors, provided

λ = O(
√
log p
n )

Adarsh Prasad*, Arun Sai Suggala (CMU) Prediction Error Bounds May 2, 2017 12 / 21



LASSO: Slow Rate.

Lemma (Slow Rate [4])

Let n ≥ 2 be an integer and let m be the largest integer less than
√

2n,
then let the design matrix X be defined as:

X ∈ Rn×2m =

√
n

2

 1Tm 1Tm
Im −Im

0(n−m−1)×m 0(n−m−1)×m

 .
Let the true regression vector be θ∗ ∈ R2m such that θ∗1 = θ∗m+1 = 1 and 0
otherwise. Also, let the noise term ε be i.i.d. Rademacher random
variables. Then, for any λ > 0, the prediction error of θ̂LASSO satisfies:

P

(
E(θ̂LASSO) ≥ 1

2
√

2n

)
≥ 1

2

with high probability.
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LASSO: Summary.

Fast Rates: Under Orthogonality(RE) and Very high correlation.

Slow Rates: Under constant correlation.
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Iterative Hard Thresholding (IHT)

Subset Selection Formulation

θ̂Subset ∈ argmin
β∈Rp

1

2n
||y − Xβ||22 s.t. ‖β‖0 ≤ s, (4)

IHT performs a projected gradient descent on the `0 constrained
objective (4). It is an iterative algorithm. In iteration t of the
algorithm, the current estimate θ of θ is updated as:

θ+ ← HTs(β − η

n
XT (Xθ − y)),

where HTs(.) is the projection operator onto the space of s sparse
vectors and η is the step size.

Blumensath and Davies [1] showed that this iterative process
converges for appropriately chosen step size. We denote the point of
convergence of IHT by θ̂IHT.
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Iterative Hard Thresholding (IHT)

Theorem (IHT Fast Rates: [6])

Lets suppose the design matrix X has normalized columns and has RSS
and RSC parameters given by L2s̃ = L and α2s̃ = α respectively. Let IHT

be invoked with sparsity s̃ ≥ 32
(
L
α

)2
s and step length η = 1

2L , where s is

the sparsity of the true vector θ∗. Then θ̂IHT, the point of convergence of
IHT satisfies:

E(θ̂IHT) ≤ 4

(
L

α

)2 σ2(s + s̃) log p

n

with probability at least 1− 1/pc for some constant c > 0.
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Iterative Hard Thresholding (IHT):Proof Sketch

Proof Sketch: First Step.

The proof involves two main steps.

In the first step we show that IHT converges to a local minimum of :

argmin
β∈Rp

1

2n
||y − Xβ||22 s.t. ‖β‖0 ≤ s̃, (5)

which is also a fixed point of the hard thresholding operator HTs̃(.).

HTs̃(θ̂IHT) = θ̂IHT.

∇S̃ f (θ̂IHT) = 0,

η‖∇S̃c f (θ̂IHT)‖∞ ≤ min
i∈S̃
|(θ̂IHT)i |,

where supp(θ̂IHT) = S̃ .
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Iterative Hard Thresholding (IHT):Proof Sketch

Proof Sketch: Second Step.

Using properties of the fixed point, one can show:

f (θ̂IHT) ≤ f (θ∗)

Then using RSC,:

f (θ∗) ≤ f (θ̂IHT) +
〈
∇f (θ∗), θ∗ − θ̂IHT

〉
− α

2
‖θ̂IHT − θ∗‖22.

Substituting f (θ̂IHT) ≤ f (θ∗), and using cauchy-schwartz:

‖θ̂IHT − θ∗‖2 ≤
2
√
s + s̃

α
‖∇f (θ∗)‖∞
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IHT: Remarks

Remark 1

Observe that IHT in the above theorem is run with a relaxed projection
step. In each iteration, the projection is performed onto a s̃ sparse set
which is larger than s, the sparsity of θ∗. There are results which analyze
IHT when the projection is performed onto a s sparse set [2, 3]. However,
they require the design matrix X to satisfy RIP conditions.

Remark 2

It is unclear if IHT can achieve slow rates similar to LASSO, just under
column normalization condition.
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Conclusion

Table: Summary of known results.

Column Normed. (RE/RSC) High Correlation

LASSO Slow Rate Fast Rate Fast Rate
IHT ? Fast Rate ?
Greedy Methods ? Fast Rate3 ?

3Elenberg et al. [5] have shown how RSC implies a weak-form of submodularity for
subset-selection problems, which in turn means constant-approximation performance for
FSR, OMP for more general losses.
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Setup and Goal

We have X1, ..., Xn ∈ Rn iid, with Xi ∼ PX ∀i.

Our goal is dimensionality reduction. We achieve that by finding a lower
dimensional space Vd of dimension d to project the data onto with a
projection Π such that the reconstruction error R(V ) is minimized:

Vd = arg min
V ∈Vd

R(V ) = arg min
V ∈Vd

E ‖X −ΠV (X)‖22 (1)

Through the minimization of its empirical version:

V̂d = arg min
V ∈Vd

Rn(V ) = arg min
V ∈Vd

1

n

n∑
i=1

(Xi −ΠV (Xi))
2 (2)
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Principal Component Analysis - PCA

PCA achieves that by using the d eigenvectors associated to the largest d
eigenvalues of the covariance matrix C (through its empirical version Cn).

Major drawback: it only captures linear structures of the data.
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Kernel PCA

Kernel PCA projects the data into a higher dimensional space F first and
then uses PCA on an object called Kernel Integral Operator K1 - through
its empirical version K1,n.

Major pros: it captures non-linear structures in the data.
Major cons: F can even be∞-dimensional. Not clear how to deal with Φ
in general.
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Theoretical Definitions for KPCA

1 We do not need to worry about Φ. We can work on F by using a
Mercer kernel K, such that K(x, y) = 〈Φ(x),Φ(y)〉. In this case, F is
a RKHS.

2 We define K1 as the kernel integral operator on a function f ∈ L2:

(K1f)(t) =

∫
f(x)k(x, t)dP(x) (3)

3 We define K2 = E [K1 ⊗K∗1 ]

4 The empirical version of both are easily obtainable:

(K1,n)i,j =
k(Xi, Xj)

n
, (K2,n)i,j =

k2(Xi, Xj)

n
(4)

K1,n is usually known as Gram Matrix.
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Main Result on Reconstruction Error for KPCA

Under reasonable assumptions:

A1 ∀x ∈ Rn k(x, ·) is measurable with respect to P;

A2 ∃M > 0 such that k(x, x) ≤M a.s. [P];

A3 ∃L > 0 such that supx,y∈Rn(k2(x, x) + k2(y, y)− 2k2(x, y)) ≤ L2.

Theorem (Global Upper Bound for Kernel PCA)
Let A1,A2, A3 hold. Given ε > 0, the following holds with probability at
least 1− 3e−ε:

|Rn(V̂d)−R(Vd)| .
√
d

n
tr(K2,n) (5)
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Can we Improve?

Yes, if we put extra assumption of the eigenvalues of K1.

1 Fixed d.
With extra assumptions with the dth gap on the eigenvalues of K1

(λd,K1 − λd+1,K1) the upper bound is same or tighter:
n−

1
2 when eigenvalues of K1 decay polinomially;

n−1 when eigenvalues of K1 decay exponentially.
2 Fixed n.

It is much harder to improve that bound for an increasing d - possible
only with strong assumptions.
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ISOMAP

ISOMAP is a dimensionality reduction techniques which builds a
graph-based distance between neighbour points in order for the projection
to preserve distances.

Equivalent to KPCA using a Gram Matrix built from that graph-based
distance.
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LLE - Locally Linear Embedding

Locally linear embedding performs local linear regression and aims to
project local areas preserving angles.

Equivalent to KPCA using a Gram Matrix built from the matrix of the
coefficients of the local linear regressions.
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K-Means: Theory vs Practice

Theory: Practice:

K-Means is NP-Hard. Everyone is using K-means.

Lloyd’s algorithm has 
exponential worst-case 
time complexity.

Lloyd’s algorithm converges 
very fast in practice.

There are algorithms with 
bounded approximation 
ratios.

Solutions with constant 
approximation ratio can be 
far away from optimal.



CDNM Thesis
(“Clustering is Difficult when it does Not Matter”     ---- Shai Ben-
David )
• Worst-Case complexity takes many non-clusterable instances into 

consideration.
• Intuitively, K-means is suitable for data with nearly ball-shaped and 

balanced clusters.
• Requires non-worst case performance measurement.

Clusterable Data Non-Clusterable Data (for K-means) 



Stochastic Ball Model

• Suppose data is uniformly distributed on  K unit balls in Rd. 
• The centers                          satisfy that
• For an K-means heuristic, can it recover these K unit balls?
• “Easy” for           , impossible for         .



Stochastic Ball Model
Theorem [ABCKVW’14] Even when Δ is very large, there exist an 

example which 
• Lloyd’s Algorithm
• K-means ++
• K-means # (K-means ++ with overseeding)
all fail with high probability.

Semi-Definite Programming relaxation gives 
recovery guarantee under Stochastic Ball Model!



Semi-Definite Programming (SDP)

• SDP is LP in matrix form with additional semi-definite constraint.
• SDP can be solved in polynomial time.



SDP Relaxation for K-Means

The k-means objective can be formulated as:

Note that the constraint above is combinatorial. 
Convex relaxations on these constraints leads to a SDP problem:



Recovery Guarantee for Stochastic Ball 
Model



Recovery Guarantee for Sub-Gaussian Mixtures



Exploring theories on training deep 
feed-forward neural networks

Presenter: Ermao Cai, Ruizhou Ding



2

Problem

Target: multilayer neural networks trained on data set 𝑋𝑋 𝑛𝑛 ,𝑌𝑌 𝑛𝑛
𝑛𝑛=1
𝑁𝑁

Output: 𝑂𝑂 = 𝑞𝑞𝑞𝑞 𝑊𝑊𝐻𝐻
𝑇𝑇𝑞𝑞 𝑊𝑊𝐻𝐻−1

𝑇𝑇 …𝑞𝑞 𝑊𝑊1
𝑇𝑇𝑋𝑋 …

𝑞𝑞: normalization factor
𝑞𝑞: activation function
𝑊𝑊𝑖𝑖: weights of the 𝑖𝑖-th layer

Loss function: 
𝐿𝐿 𝑊𝑊 = 1

𝑁𝑁
∑𝑛𝑛=1𝑁𝑁 𝑂𝑂 𝑛𝑛 − 𝑌𝑌 𝑛𝑛 2

Goal: characterize the loss surface 𝐿𝐿 𝑊𝑊
Difficult: high-dimension, non-convex

𝑋𝑋 𝑂𝑂

𝑊𝑊1 𝑊𝑊2 𝑊𝑊3
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Many saddle points

Statement 1: for 𝐿𝐿 𝑊𝑊 , the ratio of the number of saddle points to local 
minima increases exponentially with the dimensionality N [Rasmussen and 
Williams, 2005] 
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No bad local minima

Statement 2: under mild over-parameterization, the training error is zero at 
every differentiable local minimum, for almost every dataset and dropout-
like noise realization. 
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motivation

Problem Random forests . . .

High-dimensional data work with small subsets
of features at a time.

Strong and weak predictors find strong predictors.

Unsure of functional form model as a partitioned
subspace.

Need accurate results have strong empirical
success.

Want nice theoretical To be continued . . .

properties
1



how to grow a tree

Idea: Aggregate many classification/regression trees.

Grow individual trees by CART method (Breiman [1984]):

• Bootstrapped training set
• Random subset of features for splitting
• Choose split that minimizes “impurity” of new nodes
• Grow until one unique observation per terminal
node

2

Split rule
satisfied

Split rule
not satisfied



classification tree theory

h(X,Θ): Tree classifier
mg(X, Y) = 2PΘ(h(X,Θ) = Y)− 1
m̂g(X, Y) = 1

K
∑K

k=1(2I(h(X,Θk) = Y)− 1)
s: EX,Ymg(X, Y), strength of trees
ρ̄: Average correlation between trees

Theorem (Breiman [2001])

PX,Y(m̂g(X, Y) < 0) a.s.→ PX,Y(mg(X, Y) < 0).

Theorem (Breiman [2001])

Assume s, ρ̄ > 0. Then PX,Y(mg(X, Y) < 0) ≤ ρ̄(1− s2)/s2.

3



regression tree theory

Biau (2012) analyzed a simplification of regression RFs.

kn: Number of terminal nodes
S : Set of strong predictors

Variance of individual tree is O(kn/n). (Devroye, Györfi, Lugosi [1996])

Theorem (Biau [2012])

Variance of forest bounded above by O
(

kn
n(log kn)|S|/2M

)
.

Theorem (Biau [2012])

For optimal kn, L2 risk of estimator is O
(
n

−0.75
|S| log 2+0.75

)
.
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Thank you!
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Improving k-means++
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k-means 
Lloyd(1982)

k-means++
Arthur Vassilvitskii(2007)

k-means#
Ailon et al. (2009)

k-meansǁ
Bahmani et al. (2012)

• Review k-means and k-
means++ algorithms

• Introduce two extensions 
of k-means++ that 
improve it from different 
aspects



k-means 
Lloyd(1982)

k-means++
Arthur Vassilvitskii(2007)

k-means#
Ailon et al. (2009)

k-meansǁ
Bahmani et al. (2012)

• Solves NP hard problem
• Simple
• Performance depends on 

initialization



k-means 
Lloyd(1982)

k-means++
Arthur Vassilvitskii(2007)

k-means#
Ailon et al. (2009)

k-meansǁ
Bahmani et al. (2012)

• Provides strategic random 
initialization

• 𝑂𝑂(log 𝑘𝑘) approximation

• Requires 𝑘𝑘 passes 
through the data
• Needs large storage

• Sequential algorithm
• Slow when 𝑘𝑘 large



k-means 
Lloyd(1982)

k-means++
Arthur Vassilvitskii(2007)

k-means#
Ailon et al. (2009)

k-meansǁ
Bahmani et al. (2012)

• Single-pass streaming 
algorithm

• 𝑂𝑂 log 𝑘𝑘 approximation
• 𝑂𝑂 𝑛𝑛𝑘𝑘 log 𝑘𝑘 log𝑛𝑛

storage requirement



k-means 
Lloyd(1982)

k-means++
Arthur Vassilvitskii(2007)

k-means#
Ailon et al. (2009)

k-meansǁ
Bahmani et al. (2012)

• Easy parallel 
implementation

• 𝑂𝑂 log𝑛𝑛 runtime
• 𝑂𝑂 log 𝑘𝑘 approximation



k-means# algorithm
Data Stream



k-means# algorithm
Data Stream

𝑆𝑆1



k-means# algorithm
Data Stream

𝑆𝑆1

𝐶𝐶1

cluster centers



k-means# algorithm
Data Stream

𝑆𝑆1

𝐶𝐶1

𝑆𝑆2
cluster centers



k-means# algorithm
Data Stream

𝑆𝑆1

𝐶𝐶1

𝑆𝑆2
cluster centers

𝐶𝐶2



k-means# algorithm
Data Stream

𝑆𝑆1

𝐶𝐶1

𝑆𝑆2
cluster centers

𝐶𝐶2

⋯

⋯

𝑆𝑆𝑚𝑚

𝐶𝐶𝑚𝑚



k-means# algorithm
Data Stream

𝑆𝑆1

𝐶𝐶1

𝑆𝑆2
cluster centers

𝐶𝐶2

⋯

⋯

𝑆𝑆𝑚𝑚

𝐶𝐶𝑚𝑚

Final cluster centers 𝐶𝐶



k-meansǁ algorithm
Data



k-meansǁ algorithm

Independent Selections



k-meansǁ algorithm

Independent Selections



k-meansǁ algorithm

Independent Selections



k-meansǁ algorithm

Final cluster centers 𝐶𝐶



Thank you!



From Metropolis-Hastings 
and Beyond:

Parameter Inference in Undirected 
Graphical Models

Boxiang “Shawn” Lyu
Carnegie Mellon University



MCMC in Undirected 
Graphical Models

• Graphical models explain correlation between 
covariates:

• MCMC generates samples according to the true 
distribution: 

• Metropolis-Hastings is a typical MCMC algorithm

• Can be used in higher dimensions

• Don’t have to estimate the partition function Z



Convergence and Rates of 
Convergence of Metropolis-Hastings 

Algorithm

• Proposal distribution Q, and accept new sample 
y’ with probability

• With proper Q, converge to true distribution P 
quadratically in total variation distance

• “Burn in” time: roughly            where L is 
distance between Q and P,    the “distance” 
traveled by Q at each step. 



• But… what about graph theory?

• Samples rejected: slow down rate of 
convergence

• Gibbs sampling: initialize                 . Sample 
each on the distribution 

• Markov property:

• Parallel Gibbs sampling: faster MCMC, utilize 
conditional independence between variables



Discussion
• MCMC is a type of algorithm suitable for parameter 

inference in graphical models.

• Metropolis-Hastings algorithm is theoretically 
guaranteed to converge to true distribution under 
suitable conditions.

• Utilizing conditional independence relationship 
between variables allows for parallel MCMC 
algorithms

• Different perspectives: variational methods. View 
parameter learning as an optimization problem. 



Bayesian Networks
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BACKGROUND

A Bayesian network represents conditional independence for a
set of random variables with a DAG

X Y

Z

The joint density factors over the DAG:

p(x) =
∏
v∈V

f(xv|xpa(v))

2 / 6



JUNCTION TREE OF CLIQUES

We transform the original graph into a junction tree of cliques

1 2

3

1

2

4

5

2

6

Definition: A tree is a junction tree if for any nodes C1, C2

their intersection C1 ∩ C2 is contained in each node on the path
between them.

3 / 6



POTENTIALS ON THE JUNCTION TREE

We represent the joint density in terms of potential defined on
each node and edge of the junction tree:

p(x) =

∏
C∈C

φC(xC)∏
S∈S

φS(xS)

This representation is updated by flows, which modify the
potentials

I φ∗S0 =
∑

C1\S0

φC1

I φ∗C2 = φC2

(
φ∗S0
φS0

)

4 / 6



MARGINAL DISTRIBUTIONS

Important result:

After passing appropriate flows, the final representation of
the joint density gives the marginal distribution on each
clique set of variables.

To incorporate prior information, update the initial potentials
accordingly and pass flows again.

5 / 6



Thank you!
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Density Ridge Estimate
Benjamin LeRoy
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Main Theorem

Theorem 5 Let R̂∗ = R̂ ∩ (R ⊕ δ). Assuming we have nice
structure for p, p̂,with h �

√
ψn,

Haus(R, R̂∗) = Op(ψn)

where R is true ridge, R̂ is ridge for p̂n, ψn is related to maximum distance
between the evaluation of the gradient, Hessian or Hessian derivative from
the two Ridge’s density.



Kwangho Kim  

Department of Statististics 

Cures for curse of dimensionality in high-

dimensional nonparametric regression  



Curse of dimensionality 

Structural assumption: Sparse additive model 

Dimensionality reduction: high-dimensional 

feature screening 



1) High-dimensional feature screening 



2) Sparse additive models 



Sparsity vs. Sparse additivity 

Extreme Sparsity!! 



Sparsity vs. Sparse additivity 



Implementation 



 



Targeted Maximum 
Likelihood Estimation

What is it and why?



Semi-parametric Causal Inference

Assumptions are bad

Inference is good

Will running keep you alive longer?

Will chocolate keep you alive longer?



How to target your MLE
● Pick a parameter
● Find its influence function
● Super learn it
● Move it around

True P

Initial estimate

Set of models with 
constant score function

Model space

TMLE estimate



Is it worth it?
● TMLE has a lot of good qualities: consistency, asymptotic linearity, asymptotic 

efficiency in a wide range of settings
● If you have a lot of nuisance functions, it may get better rates than a plug-in 
● Robust to positivity assumption violations
● Respects the model’s constraints
● Generally not very different
● Issues with coverage



Thank you!



Review: Minimax theory with
computational constraints.

Minshi Peng and Shengming Luo
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Classical minimax risk

Classical minimax risk is defined by:

Rn = inf
θ̂∈Θ

sup
P∈P

E
[
w(d(θ̂, θ(P)))

]
, (1)

However, there’s no constraints on the choice of
estimators, including those with prohibitive
computational costs.

ADA 1 / 4



An example: Sparse linear regression

Classical minimax results:

Theorem

inf
θ̂

sup
θ∈B0(k)

E[
1

n
‖X (θ̂ − θ∗)‖2] ≥ σ2k log(d)

n
.

The matching upper bound could be derived by the
following `0 based estimator: ([NP-hard])

θ̂`0 := arg min
θ∈B0(k)

‖y − Xθ‖2
2. (2)

ADA 2 / 4



Computational efficient minimax rate

However, Lasso estimator θ̂`1 ([Poly-time]) gives an
upper bound:

sup
θ∈B0(k)

E[
1

n
‖X (θ̂ − θ∗)‖2] ≤ 1

γ2(X )

σ2k log(d)

n
, (3)

where γ(X ) ≤ 1 is the RE constant.

Computational efficient minimax lower bound:

Theorem

inf
θpoly

sup
θ∈B0(k)

E[
1

n
‖X (θ̂ − θ∗)‖2] ≥ C

γ2(X )

σ2k1−δ log(d)

n

ADA 3 / 4



Key technique

There’s no general framework for deriving such a
computational efficient minimax rate. What people
usually do at present:

Relate original problem to a problem known to
be NP-hard. (e.g. planted clique, 3-set cover
problem).

Use contradiction: if an efficient method
existed for the original problem, it would lead
to an efficient solution to the NP-hard problem.

ADA 4 / 4



Analysis of Spectral Clustering
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Spectral Clustering Algorithm

(1) Construct a similarity graph from the original similarities
between data points, and denote this weighted adjacency
matrix as W .

(2) Compute the unnormalized Laplacian L = D −W (normalized
Laplacian L = D−1(D −W )).

(3) Compute the first k eigenvectors u1, ..., uk of L, composing
them into U ∈ Rn×k .

(4) Then for every vertex i we have a k-dimension vector ui ∈ Rk ,
i.e. the i-th row of matrix U.

(5) Run k-means algorithm on u1, .., un to get the clustering for
the vertices in the graph.

2 / 7



Relationship to the Graph Cut

The Spectral Clustering Algorithm with unnormalized Laplacian
minimizes Ratio Cut approximately.

minimize
A1,··· ,Ak

k∑
i=1

cut(Ai ,Ai )

|Ai |
(1)

The Spectral Clustering Algorithm with normalized Laplacian
minimizes Normalized Cut approximately.

minimize
A1,··· ,Ak

k∑
i=1

cut(Ai ,Ai )

vol(Ai )
(2)

Where vol(Ai ) =
∑

j∈Ai
dj , and dj is the degree of the jth node.

3 / 7



Relationship to the Random Walk

Define the Markov transition matrix as M = D−1W . It has
eigenvalue λi and eigenvector vi . The random walk process
converges to the unique equilibrium distribution πs . Then we have

∑
j

λ2tj (vj(x)− vj(y))2 = ||p(z , t|x)− p(z , t|y)||2L2(1/πs) (3)

The spectral method want to capture the major pattern of the
random walk on whole graph.

4 / 7



Success Cases
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Failure Cases - Graph Cut
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Failure Cases - Random Walk
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K E R N E L  M E A N  E M B E D D I N G S  
A N D  I T S  A P P L I C AT I O N S

P R O J E C T  P R E S E N TAT I O N

N A J I  S H A J A R I S A L E S



MOTIVATION
1. Independence of Random Variables:

2. Difference Between Distributions:

First motivating question

• How do you detect dependence. . .

• . . .in a discrete domain? [Read and Cressie, 1988]

. . . no doubt there is great pressure on

provincial and municipal governments in

relation to the issue of child care, but the

reality is that there have been no cuts to

child care funding from the federal gov-

ernment to the provinces. In fact, we

have increased federal investments for

early childhood development. . .

?⇔

. . . il est évident que les ordres de

gouvernements provinciaux et munici-

paux subissent de fortes pressions en

ce qui concerne les services de garde,

mais le gouvernement n’a pas réduit le

financement qu’il verse aux provinces

pour les services de garde. Au con-

traire, nous avons augmenté le finance-

ment fédéral pour le développement des

jeunes enfants. . .

Second motivating question: differences in brain signals

The problem: Do local field potential (LFP) signals change
when measured near a spike burst?
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Is one text is related to the other in another language?

Are LFPs near spike burst similar to LFPs with spike burst?

P Q



MOTIVATION
3. Distributional Learning:
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One-Class Support Measure Machines for Group Anomaly Detection

Krikamol Muandet
Empirical Inference Department

Max Planck Institute for Intelligent Systems
Spemannstraße 38, 72076 Tübingen

Bernhard Schölkopf
Empirical Inference Department

Max Planck Institute for Intelligent Systems
Spemannstraße 38, 72076 Tübingen

Abstract

We propose one-class support measure ma-
chines (OCSMMs) for group anomaly detec-
tion. Unlike traditional anomaly detection,
OCSMMs aim at recognizing anomalous ag-
gregate behaviors of data points. The OC-
SMMs generalize well-known one-class sup-
port vector machines (OCSVMs) to a space
of probability measures. By formulating the
problem as quantile estimation on distribu-
tions, we can establish interesting connec-
tions to the OCSVMs and variable kernel
density estimators (VKDEs) over the input
space on which the distributions are defined,
bridging the gap between large-margin meth-
ods and kernel density estimators. In partic-
ular, we show that various types of VKDEs
can be considered as solutions to a class of
regularization problems studied in this pa-
per. Experiments on Sloan Digital Sky Sur-
vey dataset and High Energy Particle Physics
dataset demonstrate the benefits of the pro-
posed framework in real-world applications.

1 Introduction

Anomaly detection is one of the most important tools
in all data-driven scientific disciplines. Data that do
not conform to the expected behaviors often bear some
interesting characteristics and can help domain experts
better understand the problem at hand. However, in
the era of data explosion, the anomaly may appear
not only in the data themselves, but also as a result
of their interactions. The main objective of this paper
is to investigate the latter type of anomalies. To be
consistent with the previous works (Póczos et al. 2011,
Xiong et al. 2011a;b), we will refer to this problem as
a group anomaly detection, as opposed to a traditional
point anomaly detection.

Input sp
ace

Distr
ibutio

n sp
ace

Figure 1: An illustration of two types of group anoma-
lies. An anomalous group may be a group of anoma-
lous samples which is easy to detect (unfilled points).
In this paper, we are interested in detecting anomalous
groups of normal samples (filled points) which is more
difficult to detect because of the higher-order statis-
tics. Note that group anomaly we are interested in
can only be observed in the space of distributions.

Like traditional point anomaly detection, the group
anomaly detection refers to a problem of finding pat-
terns in groups of data that do not conform to expected
behaviors (Póczos et al. 2011, Xiong et al. 2011a;b).
That is, an ultimate goal is to detect interesting ag-
gregate behaviors of data points among several groups.
In principle, anomalous groups may consist of individ-
ually anomalous points, which are relatively easy to
detect. On the other hand, anomalous groups of rela-
tively normal points, whose behavior as a group is un-
usual, is much more difficult to detect. In this work,
we are interested in the latter type of group anomalies.
Figure 1 illustrates this scenario.

Group anomaly detection may shed light in a wide
range of applications. For example, a Sloan Digi-
tal Sky Survey (SDSS) has produced a tremendous
amount of astronomical data. It is therefore very cru-
cial to detect rare objects such as stars, galaxies, or
quasars that might lead to a scientific discovery. In
addition to individual celestial objects, investigating
groups of them may help astronomers understand the
universe on larger scales. For instance, the anomalous

Given samples from distributions, find the anomalous distribution

General Objectives in Finding Methods:

• Domain adaptive methods
• Computationally fast methods 
• Consistent methods
• High convergence speed



TWO-SAMPLE TEST?
Example 1:
Looking for a distance d between P and Q s.t.  

• Slow convergence rate  
dependent on P and Q 

• Sophisticated bias correction  
and partitioning

P 6= Q () d(P,Q) 6= 0 (⇤)



KERNEL MEAN EMBEDDING

Towards a Learning Theory of Cause-E↵ect Inference
David Lopez-Paz1,2, Krikamol Muandet1, Bernhard Schölkopf1, Ilya Tolstikhin1

1Max Planck Institute for Intelligent Systems, 2University of Cambridge

Summary

Consider the two generative models:

causal model

x ⇠ P

✏ ⇠ Q

f ⇠ F
y  f (x, ✏)

anticausal model

y ⇠ P

✏ ⇠ Q

f ⇠ F
x f (y, ✏)

Cause-e↵ect inference is to decide, given samples S = {(xi, yi)}n
i=1, whether:

i) “X causes Y” (X ! Y ), that is, S was drawn from the causal model, or

ii) “Y causes X” (X  Y ), that is, S was drawn from the anticausal model.

Previous approaches rely on either

i) expensive high-dimensional conditional dependence tests (Spirtes et al., 2000),

ii) strong parametric assumptions (Hoyer et al., 2009, Daniusis et al., 2012), or

iii) hand-crafted features (Guyon, 2013).

In this paper, we pose causal inference as the problem of learning to classify probability distributions.
In particular, we assume access to a collection {(Si, li)}n

i=1, where each Si ⇠ Pn(Xi, Yi) and li is a
binary label indicating whether “Xi! Yi” or “Xi Yi”. Given these data, we build a causal
inference rule in two steps:

i) we featurize each Si using the kernel mean embedding associated with some kernel, and

ii) we train a binary classifier on such embeddings to distinguish between causal directions.

Our framework exhibits the following features:

i) theoretical guarantees concerning learning rates and consistency,

ii) theoretically sustained approximations to deal with big-data, and

iii) state-of-the-art performance in a variety of real-world benchmarks.

Prior art

SGS/PC (Spirtes et al., 2000)

Idea: given universe of variables U = {X1, . . . , Xd}, Xi and Xj are causally related (for i 6= j) i↵:

6 9S ✓ (U \ {Xi, Xj}), s.t. Xi 6? Xj|S.

IGCI (Daniusis et al., 2012)

“cause independent from mechanism”

ANM (Hoyer et al., 2009)

“cause independent from noise”

Hand-crafted features approach (Guyon, 2013)

i) featurize each available labeled causal sample Si into m features m(Si), and

ii) train a binary classifier on the data {(m(Si), li)}n
i=1.

Kernel mean embedding of distributions

The Kernel Mean Embedding (KME) of a probability distribution P over Z associated with
a measurable, bounded, and positive-definite kernel k is

µk(P ) :=

Z

Z
k(z, ·)dP (z) 2 Hk.

The Empirical Kernel Mean Embedding (EKME) estimates µk(P ) based on S ⇠ Pn:

µk(PS) :=
1

|S|
X

x2S

k(x, ·) 2 Hk.

Problem! For many kernels k, Hk is an infinite dimensional Hilbert Space. This forces us to
design learning algorithms which require the construction and inversion of n⇥ n kernel matrices.

Solution: approximate Hk with a random finite-dimensional subspaces.

Theorem (Bochner): assume that Z = Rd
and k(x, y) = k(x � y) is a shift-invariant real-

valued kernel. Then Bochner’s theorem states that for any z, z0 2 Z :

k(z, z0) = 2CkEw,b

⇥
cos(hw, zi + b) cos(hw, z0i + b)

⇤
, (1)

where h·, ·i is the Euclidean dot product in Rd
, w ⇠ 1

Ck
pk, b ⇠ U [0, 2⇡], pk : Rd ! R is an

integrable and positive Fourier transform of k, and Ck =
R
Rd pk(w)dw.

Therefore, sample {(wj, bj)}m
j=1 (Rahimi and Recht, 2007) and approximate the EKME using

the Randomized Empirical Kernel Mean Embedding (REKME) :

µk,m(PS) :=
2Ck

|S|
X

z2S

�
cos(hwj, zi + bj)

�m
j=1 2 Rm.

Remarks:

i) if k is characteristic, µk is an injective map, and

ii) kµk(P )� µk(PS)kHk
= OP (n

�1/2).
iii) µk,m is an m-dimensional vector that can be used with any learning algorithm.

iv) Replacing µk(PS) with µk,m(PS) induces a O(m�1/2) error in risk.

v) kµk(P )� µk(PS)kHk
� C

�Hkp
n
where �2Hk

= supkfkHk
1Vz⇠P [f (z)] .

Our algorithm

Input

i) labeled causal samples {(Si, li)}n
i=1; Si = {(xij, yij)}ni

j=1 ⇠ Pni(Xi, Yi), li 2 {�1,+1},
ii) measurable and bounded kernel function k, and

iii) number of random features m.

Training

i) featurize each Si as µk,m(Si) using (REKME),

ii) train any classifier f̂n : Rm! {�1,+1} on the data {(µk,m(Si), li)}n
i=1, and

iii) return f̂n.

Testing

i) featurize test sample S0 as µk,m(S0) as in training, and

ii) return f̂n(µk,m(S0)).

Extensions

i) easy handling of mixed attributes (continuous, discrete, categorical...)

ii) use of third label to take care of the independent “Xi ? Yi” case

iii) joint embedding of confounder candidates Z and (Xi, Yi) for multivariate causal inference

iv) µk can be designed to be more complex (random forest, deep/convolutional neural network...)

Learning rate and consistency

Assumptions:

i) 9 Mother distribution M on {cause-e↵ect measures P on Z}⇥ {�1, 1},
ii) {(Pi, li)}n

i=1 ⇠Mn; with li indicating Xi! Yi or Xi Yi for Pi,

iii) training data of the form Si = {(Xi,j, Yi,j)}ni
j=1 ⇠ Pni

i ,

iv) measurable and bounded kernel k with supz2Z k(z, z)  1,

v) class Fk of functionals mapping Hk to R with Lipschitz constants uniformly bounded by LF ,

vi) minimization of surrogate risk R'(f ) := E(P,l)⇠M
⇥
'
��f

�
µk(P )

�
l
�⇤

in Fk,

vii) ' : R! R+ is L'-Lipschitz s.t. '(z) � z>0 and '
�
z
�  B for all z.

Theorem:
With probability not less than 1� � over all sources of randomness

R'(f̃n)�R⇤',Fk
 4L'Rn(Fk)+2B

r
log(2/�)

2n
+
4L'LF

n

nX

i=1

0

@
s

Ez⇠Pi
[k(z, z)]

ni
+

s
log(2n/�)

2ni

1

A .

Numerical simulations

We term our method the Randomized Causation Coe�cient (RCC).

Each causal sample is featurized as ⌫(S) = (µk,m(PSx
), µk,m(PSy

), µk,m(PSxy
)) using a mixture of

three Gaussian kernels with respective bandwidths (0.1�, 1�, 10�), where � is set according to the
median heuristic. We use m = 1, 000 random features, and a random forest as our binary classifier.

We synthesize our training data {(Si, li)}n
i=1 using a simple generative model detailed in the paper.

State-of-the-art on Tüebingen real-world cause-e↵ect pairs:
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ANM

IGCI

Application to recovery of multivariate causal DAGs by jointly embedding potential confounders:

MPG

AGEACCWEI

HP

CYL

DIS

Causal DAG recovered from data autoMPG.

AGEWECWEB

WEA LEN DIA

HEI

WEI

Causal DAG recovered from data abalone.

RCC ranked third in Chalearn’s cause-e↵ect inference competition (Guyon, 2014)

More details, experiments, and source available in the paper!
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Example 1: Maximum Mean Discrepancy (MMD)

T =
2

n(n� 1)

X

i<j

K(Xi, Xj)+

2

m(m� 1)

X

i<j

K(Yi, Yj)�
2

mn

X

i,j

K(Xi, Yj)

T � d(P,Q) = OP (
1p
N

)

P and Q. If G = {I(�1,t] : t 2 Rd} then d(P,Q) is the Kolmogorov-Smirnov distance. See
Sriperumbudur et al (2010) for more examples.

In general, estimating d(P,Q) is di�cult. But if we take G to be a RKHS defined by a kernel
K, it can be shown that

d(P,Q) =

Z Z
K(x, y)dP (x)dP (y)+

Z Z
K(x, y)dQ(x)dQ(y)�2

Z Z
K(x, y)dP (x)dQ(y).

The plus-in estimator of d(P,Q) is

T =
2

n(n� 1)

X

i<j

K(X
i

, X
j

) +
2

m(m� 1)

X

i<j

K(Y
i

, Y
j

)� 2

nm

X

i,j

K(X
i

, Y
j
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How do we know when to reject H0? One approach is to find the limiting distribution of T
under H0. This turns out to be

T  2
1X

j=1

�
j

(Z2
j

� 1)

where the Z
j

’s are N(0,1) and the �
j

’s are the eigenvalues defined by
Z

L(x, y) 
j

(x)dP (x) = �
j

 
j

(y)

where L(x, y) = K(x, y)�E[K(x,X)]�E[K(X, x)]+E[K(X, Y )]. This distribution is called
a Gaussian chaos. This distribution has infinitely many nuisance parameters which makes
it un-usable. Instead, we use the permutation distribution to choose the critical value.

It can be shown that

T � d(P,Q) = O
P

✓
1p
N

◆

where N = n^m. Thus, it appears that the quality of T does not depend on the dimension!
This is false. What matters here is the power. As we shall see below, the minimax power,
that is the smallest detectable di↵erence, is

✓
1

N

◆ 2�
4�+d

where � is the smoothness. This was proved by Arias-Castro, Pelletier and Saligrama (2016)
based on techniques developed by Ingster (1987). We’ll discuss this more below.

The problem is that the kernel is hiding a lot. To see this, note that T is essentially the
same as Z

(bp
h

(x)� bq
h

(x))2

2

Estimator:
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• High convergence speed ✅
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Let H denote a class of real-valued functions on Rd and let δ be a pseudo-metric on H. For ε > 0,
define the worst-case risk of a test φ as

R(m)ε (φ;f0;H) = E(m)f0
[φ] + sup{E(m)f [1 − φ] ∶ f ∈H; δ(f, f0) ≥ ε}, (12)

The first (resp. second) supremum is the largest probability of type I (resp. II) error. The minimax
risk is

R(m)ε (f0;H) = inf
φ
R(m)ε (φ;f0;H). (13)

In nonparametric settings such as the present one, it is customary to make regularity assump-
tions on the underlying distributions. A typical assumption is that of smoothness (Ingster, 1987,
1993). We follow (Ingster, 1987) and work with Hölder regularity. For s > 0, let ⌊s⌋ denote the
largest integer strictly smaller than s. Let Hd

s(L) denote the class of functions f ∶ [0,1]d ↦ R such
that f has a derivative of order ⌊s⌋ which satisfies

∣f ⌊s⌋(x) − f ⌊s⌋(y)∣ ≤ L∥x − y∥s−⌊s⌋, ∀x, y ∈ [0,1]d. (14)

For convenience,1 we add the assumption that

∥f (s′)∥∞ ≤ L, ∀s′ ∈ {0, . . . , ⌊s⌋}. (15)

For example, the functions in H1(L) are Lipschitz with constant L. A straightforward extension of
(Ingster, 1987) leads to the following lower bound on the minimax rate for the one-sample problem.
Recall that we work with the uniform distribution, where f0 ≡ 1 on [0,1]d, and leave f0 implicit in
(12) and (13).

Theorem 1. For the one-sample problem under known Hölder regularity, there is a constant c > 0
depending only on (s, d,L) such that

R(m)ε (Hd
s(L)) ≥ 1/2, if ε ≤ cm−2s/(4s+d). (16)

The proof is a natural extension of that of Ingster (1987) and is only provided for pedagogical
reasons. This result quantifies the curse of dimensionality presented in Section 1.2. In particular,
we can see again that if d≫ logm, the upper bound on ε does not tend to zero as mn→∞.

Remark 1. We note that we have assumed that the degree of smoothness s is known. We still
assume this is the case in Section 2.2 below and postpone the discussion of unknown smoothness
to Section 4.2.

Poissonization To facilitate the analysis of the tests presented in Section 2.2, we will use a
common simplifying assumption known as Poissonization. This means that, instead of assuming
that the sample size is fixed, we assume that it is random, having a Poisson distribution with known
mean. In detail, we assume that the sample size is m ∼ Poisson(m), so that now m is the average
sample size. In this context, a test is now a Borel measurable function on finite sequences of Rd

with values in [0,1] and its risk is the average risk over the realizations of m. If φ is a test, then
its risk is

R̄(m)ε (φ;f0;H) =∑
ℓ≥0

P(m = ℓ)R(ℓ)ε (φ;f0;H), (17)

with R
(0)
ε (φ;f0;H) = 1 by convention.

The leave the following as an exercise to the reader.

1It can be shown that a density f satisfying (14) satisfies (15) but with L replaced by a larger constant depending
only on (s, d,L). This is not true of just any function satisfying (14) since that condition alone does not imply a
uniform bound on the supnorm.
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3 The two-sample goodness-of-fit problem

We now turn to the two-sample goodness-of-fit setting. Here we have at our disposal two inde-
pendent samples, X1, . . . ,Xm IID with distribution F and Y1, . . . , Yn IID with distribution G. We
assume that F and G have densities f and g with respect to the Lebesgue measure on [0,1]d. The
goal is to test

H0 ∶ f = g versus H1 ∶ δ(f, g) ≥ ε. (25)

for some pseudo-metric δ. As before, we use the L2-metric (11) and assume that f and g are in the
Hölder class parameterized by (s, d,L).
3.1 Risk and minimax lower bound

A test, φ, is now a Borel measurable function of the data — which now consists of m points from
the X-sample and n points from the Y -sample. Let H denote a class of real-valued functions on
Rd and let δ be a pseudo-metric on H. For ε > 0, define the worst-case risk of a test φ as

R(m,n)
ε (φ;H) = sup{E(m,n)

f,f [φ] ∶ f ∈H} + sup{E(m,n)
f,g [1 − φ] ∶ f, g ∈H; δ(f, g) ≥ ε}. (26)

The minimax risk is
R(m,n)

ε (H) = inf
φ
R(m,n)

ε (φ;H), (27)

where the infimum is over all tests φ.
We obtain a minimax lower bound by reducing the two-sample problem to the one-sample

problem. Intuitively, it is clear that the former is at least as hard as the latter, which in essence
corresponds to the case where one of the samples (say, the Y -sample) is infinite, so that the density
(g for the Y -sample) is known in principle.

Lemma 1. For any class H, any pseudo-metric δ, any ε > 0, any density function f0 ∈H, and any
integers m,n ≥ 1,

R(m)ε (f0;H) ≤ R(m,n)
ε (H). (28)

Lemma 1 and Theorem 1, together, lead to the following.

Theorem 4. For the two-sample problem under known Hölder regularity, there is a constant c > 0
depending only on (s, d,L) such that

R(m,n)
ε (Hd

s(L)) ≥ 1/2, if ε ≤ c(m ∧ n)−2s/(4s+d). (29)

Poissonization To facilitate the analysis of the tests presented in Section 3.2, we will assume
that the samples are of equal size (which can always be achieved by discarding some data points)
and that the common sample size is Poisson distributed. As before, we assume that the sample
sizes are both equal to m ∼ Poisson(m), so that now m is the average sample size. In this context,
the risk of a test φ is

R̄(m,m)
ε (φ;H) =∑

ℓ≥0

P(m = ℓ)R(ℓ,ℓ)ε (φ;H), (30)

with R
(0,0)
ε (φ;H) = 1 by convention.

We leave the following as an exercise to the reader.

Proposition 2. The conclusions of Theorem 4 apply under Poissonization.

Minimax Risk:
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Summary

Consider the two generative models:

causal model

x ⇠ P

✏ ⇠ Q

f ⇠ F
y  f (x, ✏)

anticausal model

y ⇠ P

✏ ⇠ Q

f ⇠ F
x f (y, ✏)

Cause-e↵ect inference is to decide, given samples S = {(xi, yi)}n
i=1, whether:

i) “X causes Y” (X ! Y ), that is, S was drawn from the causal model, or

ii) “Y causes X” (X  Y ), that is, S was drawn from the anticausal model.

Previous approaches rely on either

i) expensive high-dimensional conditional dependence tests (Spirtes et al., 2000),

ii) strong parametric assumptions (Hoyer et al., 2009, Daniusis et al., 2012), or

iii) hand-crafted features (Guyon, 2013).

In this paper, we pose causal inference as the problem of learning to classify probability distributions.
In particular, we assume access to a collection {(Si, li)}n

i=1, where each Si ⇠ Pn(Xi, Yi) and li is a
binary label indicating whether “Xi! Yi” or “Xi Yi”. Given these data, we build a causal
inference rule in two steps:

i) we featurize each Si using the kernel mean embedding associated with some kernel, and

ii) we train a binary classifier on such embeddings to distinguish between causal directions.

Our framework exhibits the following features:

i) theoretical guarantees concerning learning rates and consistency,

ii) theoretically sustained approximations to deal with big-data, and

iii) state-of-the-art performance in a variety of real-world benchmarks.

Prior art

SGS/PC (Spirtes et al., 2000)

Idea: given universe of variables U = {X1, . . . , Xd}, Xi and Xj are causally related (for i 6= j) i↵:

6 9S ✓ (U \ {Xi, Xj}), s.t. Xi 6? Xj|S.

IGCI (Daniusis et al., 2012)

“cause independent from mechanism”

ANM (Hoyer et al., 2009)

“cause independent from noise”

Hand-crafted features approach (Guyon, 2013)

i) featurize each available labeled causal sample Si into m features m(Si), and

ii) train a binary classifier on the data {(m(Si), li)}n
i=1.

Kernel mean embedding of distributions

The Kernel Mean Embedding (KME) of a probability distribution P over Z associated with
a measurable, bounded, and positive-definite kernel k is

µk(P ) :=

Z

Z
k(z, ·)dP (z) 2 Hk.

The Empirical Kernel Mean Embedding (EKME) estimates µk(P ) based on S ⇠ Pn:

µk(PS) :=
1

|S|
X

x2S

k(x, ·) 2 Hk.

Problem! For many kernels k, Hk is an infinite dimensional Hilbert Space. This forces us to
design learning algorithms which require the construction and inversion of n⇥ n kernel matrices.

Solution: approximate Hk with a random finite-dimensional subspaces.

Theorem (Bochner): assume that Z = Rd
and k(x, y) = k(x � y) is a shift-invariant real-

valued kernel. Then Bochner’s theorem states that for any z, z0 2 Z :

k(z, z0) = 2CkEw,b

⇥
cos(hw, zi + b) cos(hw, z0i + b)

⇤
, (1)

where h·, ·i is the Euclidean dot product in Rd
, w ⇠ 1

Ck
pk, b ⇠ U [0, 2⇡], pk : Rd ! R is an

integrable and positive Fourier transform of k, and Ck =
R
Rd pk(w)dw.

Therefore, sample {(wj, bj)}m
j=1 (Rahimi and Recht, 2007) and approximate the EKME using

the Randomized Empirical Kernel Mean Embedding (REKME) :

µk,m(PS) :=
2Ck

|S|
X

z2S

�
cos(hwj, zi + bj)

�m
j=1 2 Rm.

Remarks:

i) if k is characteristic, µk is an injective map, and

ii) kµk(P )� µk(PS)kHk
= OP (n

�1/2).
iii) µk,m is an m-dimensional vector that can be used with any learning algorithm.

iv) Replacing µk(PS) with µk,m(PS) induces a O(m�1/2) error in risk.

v) kµk(P )� µk(PS)kHk
� C

�Hkp
n
where �2Hk

= supkfkHk
1Vz⇠P [f (z)] .

Our algorithm

Input

i) labeled causal samples {(Si, li)}n
i=1; Si = {(xij, yij)}ni

j=1 ⇠ Pni(Xi, Yi), li 2 {�1,+1},
ii) measurable and bounded kernel function k, and

iii) number of random features m.

Training

i) featurize each Si as µk,m(Si) using (REKME),

ii) train any classifier f̂n : Rm! {�1,+1} on the data {(µk,m(Si), li)}n
i=1, and

iii) return f̂n.

Testing

i) featurize test sample S0 as µk,m(S0) as in training, and

ii) return f̂n(µk,m(S0)).

Extensions

i) easy handling of mixed attributes (continuous, discrete, categorical...)

ii) use of third label to take care of the independent “Xi ? Yi” case

iii) joint embedding of confounder candidates Z and (Xi, Yi) for multivariate causal inference

iv) µk can be designed to be more complex (random forest, deep/convolutional neural network...)

Learning rate and consistency

Assumptions:

i) 9 Mother distribution M on {cause-e↵ect measures P on Z}⇥ {�1, 1},
ii) {(Pi, li)}n

i=1 ⇠Mn; with li indicating Xi! Yi or Xi Yi for Pi,

iii) training data of the form Si = {(Xi,j, Yi,j)}ni
j=1 ⇠ Pni

i ,

iv) measurable and bounded kernel k with supz2Z k(z, z)  1,

v) class Fk of functionals mapping Hk to R with Lipschitz constants uniformly bounded by LF ,

vi) minimization of surrogate risk R'(f ) := E(P,l)⇠M
⇥
'
��f

�
µk(P )

�
l
�⇤

in Fk,

vii) ' : R! R+ is L'-Lipschitz s.t. '(z) � z>0 and '
�
z
�  B for all z.

Theorem:
With probability not less than 1� � over all sources of randomness

R'(f̃n)�R⇤',Fk
 4L'Rn(Fk)+2B

r
log(2/�)

2n
+
4L'LF

n

nX

i=1

0

@
s

Ez⇠Pi
[k(z, z)]

ni
+

s
log(2n/�)

2ni

1

A .

Numerical simulations

We term our method the Randomized Causation Coe�cient (RCC).

Each causal sample is featurized as ⌫(S) = (µk,m(PSx
), µk,m(PSy

), µk,m(PSxy
)) using a mixture of

three Gaussian kernels with respective bandwidths (0.1�, 1�, 10�), where � is set according to the
median heuristic. We use m = 1, 000 random features, and a random forest as our binary classifier.

We synthesize our training data {(Si, li)}n
i=1 using a simple generative model detailed in the paper.

State-of-the-art on Tüebingen real-world cause-e↵ect pairs:
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RCC ranked third in Chalearn’s cause-e↵ect inference competition (Guyon, 2014)

More details, experiments, and source available in the paper!
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i) featurize each available labeled causal sample Si into m features m(Si), and

ii) train a binary classifier on the data {(m(Si), li)}n
i=1.

Kernel mean embedding of distributions

The Kernel Mean Embedding (KME) of a probability distribution P over Z associated with
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We term our method the Randomized Causation Coe�cient (RCC).

Each causal sample is featurized as ⌫(S) = (µk,m(PSx
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)) using a mixture of

three Gaussian kernels with respective bandwidths (0.1�, 1�, 10�), where � is set according to the
median heuristic. We use m = 1, 000 random features, and a random forest as our binary classifier.

We synthesize our training data {(Si, li)}n
i=1 using a simple generative model detailed in the paper.
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Summary

Consider the two generative models:

causal model

x ⇠ P

✏ ⇠ Q

f ⇠ F
y  f (x, ✏)

anticausal model

y ⇠ P

✏ ⇠ Q

f ⇠ F
x f (y, ✏)

Cause-e↵ect inference is to decide, given samples S = {(xi, yi)}n
i=1, whether:

i) “X causes Y” (X ! Y ), that is, S was drawn from the causal model, or

ii) “Y causes X” (X  Y ), that is, S was drawn from the anticausal model.

Previous approaches rely on either

i) expensive high-dimensional conditional dependence tests (Spirtes et al., 2000),

ii) strong parametric assumptions (Hoyer et al., 2009, Daniusis et al., 2012), or

iii) hand-crafted features (Guyon, 2013).

In this paper, we pose causal inference as the problem of learning to classify probability distributions.
In particular, we assume access to a collection {(Si, li)}n

i=1, where each Si ⇠ Pn(Xi, Yi) and li is a
binary label indicating whether “Xi! Yi” or “Xi Yi”. Given these data, we build a causal
inference rule in two steps:

i) we featurize each Si using the kernel mean embedding associated with some kernel, and

ii) we train a binary classifier on such embeddings to distinguish between causal directions.

Our framework exhibits the following features:

i) theoretical guarantees concerning learning rates and consistency,

ii) theoretically sustained approximations to deal with big-data, and

iii) state-of-the-art performance in a variety of real-world benchmarks.

Prior art

SGS/PC (Spirtes et al., 2000)

Idea: given universe of variables U = {X1, . . . , Xd}, Xi and Xj are causally related (for i 6= j) i↵:

6 9S ✓ (U \ {Xi, Xj}), s.t. Xi 6? Xj|S.

IGCI (Daniusis et al., 2012)

“cause independent from mechanism”

ANM (Hoyer et al., 2009)

“cause independent from noise”

Hand-crafted features approach (Guyon, 2013)

i) featurize each available labeled causal sample Si into m features m(Si), and

ii) train a binary classifier on the data {(m(Si), li)}n
i=1.

Kernel mean embedding of distributions

The Kernel Mean Embedding (KME) of a probability distribution P over Z associated with
a measurable, bounded, and positive-definite kernel k is

µk(P ) :=

Z

Z
k(z, ·)dP (z) 2 Hk.

The Empirical Kernel Mean Embedding (EKME) estimates µk(P ) based on S ⇠ Pn:

µk(PS) :=
1

|S|
X

x2S

k(x, ·) 2 Hk.

Problem! For many kernels k, Hk is an infinite dimensional Hilbert Space. This forces us to
design learning algorithms which require the construction and inversion of n⇥ n kernel matrices.

Solution: approximate Hk with a random finite-dimensional subspaces.

Theorem (Bochner): assume that Z = Rd
and k(x, y) = k(x � y) is a shift-invariant real-

valued kernel. Then Bochner’s theorem states that for any z, z0 2 Z :

k(z, z0) = 2CkEw,b

⇥
cos(hw, zi + b) cos(hw, z0i + b)

⇤
, (1)

where h·, ·i is the Euclidean dot product in Rd
, w ⇠ 1

Ck
pk, b ⇠ U [0, 2⇡], pk : Rd ! R is an

integrable and positive Fourier transform of k, and Ck =
R
Rd pk(w)dw.

Therefore, sample {(wj, bj)}m
j=1 (Rahimi and Recht, 2007) and approximate the EKME using

the Randomized Empirical Kernel Mean Embedding (REKME) :

µk,m(PS) :=
2Ck

|S|
X

z2S

�
cos(hwj, zi + bj)

�m
j=1 2 Rm.

Remarks:

i) if k is characteristic, µk is an injective map, and

ii) kµk(P )� µk(PS)kHk
= OP (n

�1/2).
iii) µk,m is an m-dimensional vector that can be used with any learning algorithm.

iv) Replacing µk(PS) with µk,m(PS) induces a O(m�1/2) error in risk.

v) kµk(P )� µk(PS)kHk
� C

�Hkp
n
where �2Hk

= supkfkHk
1Vz⇠P [f (z)] .

Our algorithm

Input

i) labeled causal samples {(Si, li)}n
i=1; Si = {(xij, yij)}ni

j=1 ⇠ Pni(Xi, Yi), li 2 {�1,+1},
ii) measurable and bounded kernel function k, and

iii) number of random features m.

Training

i) featurize each Si as µk,m(Si) using (REKME),

ii) train any classifier f̂n : Rm! {�1,+1} on the data {(µk,m(Si), li)}n
i=1, and

iii) return f̂n.

Testing

i) featurize test sample S0 as µk,m(S0) as in training, and

ii) return f̂n(µk,m(S0)).

Extensions

i) easy handling of mixed attributes (continuous, discrete, categorical...)

ii) use of third label to take care of the independent “Xi ? Yi” case

iii) joint embedding of confounder candidates Z and (Xi, Yi) for multivariate causal inference

iv) µk can be designed to be more complex (random forest, deep/convolutional neural network...)

Learning rate and consistency

Assumptions:

i) 9 Mother distribution M on {cause-e↵ect measures P on Z}⇥ {�1, 1},
ii) {(Pi, li)}n

i=1 ⇠Mn; with li indicating Xi! Yi or Xi Yi for Pi,

iii) training data of the form Si = {(Xi,j, Yi,j)}ni
j=1 ⇠ Pni

i ,

iv) measurable and bounded kernel k with supz2Z k(z, z)  1,

v) class Fk of functionals mapping Hk to R with Lipschitz constants uniformly bounded by LF ,

vi) minimization of surrogate risk R'(f ) := E(P,l)⇠M
⇥
'
��f

�
µk(P )

�
l
�⇤

in Fk,

vii) ' : R! R+ is L'-Lipschitz s.t. '(z) � z>0 and '
�
z
�  B for all z.

Theorem:
With probability not less than 1� � over all sources of randomness

R'(f̃n)�R⇤',Fk
 4L'Rn(Fk)+2B

r
log(2/�)

2n
+
4L'LF

n

nX

i=1

0

@
s

Ez⇠Pi
[k(z, z)]

ni
+

s
log(2n/�)

2ni

1

A .

Numerical simulations

We term our method the Randomized Causation Coe�cient (RCC).

Each causal sample is featurized as ⌫(S) = (µk,m(PSx
), µk,m(PSy

), µk,m(PSxy
)) using a mixture of

three Gaussian kernels with respective bandwidths (0.1�, 1�, 10�), where � is set according to the
median heuristic. We use m = 1, 000 random features, and a random forest as our binary classifier.

We synthesize our training data {(Si, li)}n
i=1 using a simple generative model detailed in the paper.

State-of-the-art on Tüebingen real-world cause-e↵ect pairs:
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Application to recovery of multivariate causal DAGs by jointly embedding potential confounders:
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Causal DAG recovered from data autoMPG.
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Causal DAG recovered from data abalone.

RCC ranked third in Chalearn’s cause-e↵ect inference competition (Guyon, 2014)

More details, experiments, and source available in the paper!
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upper bounding the excess risk between the empirical risk
minimizer and the best classifier from our hypothesis class,
with respect to the Mother distribution M.

We divide our analysis in three parts. First, §3.1 reviews the
abstract setting of statistical learning theory and surrogate
risk minimization. Second, §3.2 adapts these standard re-
sults to the case of empirical kernel mean embedding clas-
sification. Third, §3.3 considers theoretically sustained ap-
proximations to deal with big data.

3.1. Margin-based Risk Bounds in Learning Theory

Let P be some unknown probability measure defined on
Z ⇥ L, where Z is referred to as the input space, and
L = {�1, 1} is referred to as the output space1. One of the
main goals of statistical learning theory (Vapnik, 1998) is to
find a classifier h : Z ! L that minimizes the expected risk

R(h) = E
(z,l)⇠P

⇥
`
�
h(z), l

�⇤

for a suitable loss function ` : L⇥L ! R+, which penalizes
departures between predictions h(z) and true labels l. For
classification, one common choice of loss function is the 0-1
loss `01(l, l0) = |l�l0|, for which the expected risk measures
the probability of misclassification. Since P is unknown in
natural situations, one usually resorts to the minimization
of the empirical risk 1

n

Pn
i=1 `

�
h(zi), li

�
over some fixed

hypothesis class H, for the training set {(zi, li)}ni=1 ⇠ Pn.
It is well known that this procedure is consistent under
mild assumptions (Boucheron et al., 2005).

Unfortunately, the 0-1 loss function is not convex, which
leads to empirical risk minimization being generally in-
tractable. Instead, we will focus on the minimization of
surrogate risk functions (Bartlett et al., 2006). In partic-
ular, we will consider the set of classifiers of the form
H = {sign �f : f 2 F} where F is some fixed set of real-
valued functions f : Z ! R. Introduce a nonnegative cost
function ' : R ! R+ which is surrogate to the 0-1 loss, that
is, '(✏) � ✏>0. For any f 2 F we define its expected and
empirical '-risks respectively as

R'(f) = E
(z,l)⇠P

⇥
'
��f(z)l

�⇤
, (4)

ˆR'(f) =
1

n

nX

i=1

'
��f(zi)li

�
. (5)

Many natural choices of ' lead to tractable empirical risk
minimization. Common examples of cost functions include
the hinge loss '(✏) = max(0, 1 + ✏) used in SVM, the
exponential loss '(✏) = exp(✏) used in Adaboost, and the
logistic loss '(✏) = log2

�
1+ e✏) used in logistic regression.

1Refer to Section A for considerations on measurability.

The misclassification error of sign � f is always upper
bounded by R'(f). The relationship between functions
minimizing R'(f) and functions minimizing R(sign �f)
has been intensively studied in the literature (Steinwart &
Christmann, 2008, Chapter 3). Given the high uncertainty
associated with causal inferences, we argue that one is inter-
ested in predicting soft probabilities rather than hard labels,
a fact that makes the study of margin-based classifiers well
suited for our problem.

We now focus on the estimation of f⇤ 2 F , the function
minimizing (4). However, since the distribution P is un-
known, we can only hope to estimate ˆfn 2 F , the func-
tion minimizing (5). Therefore, we are interested in high-
probability upper bounds on the excess '-risk

EF ( ˆfn) = R'(
ˆfn)�R'(f

⇤
), (6)

w.r.t. the random training sample {(zi, li)}ni=1 ⇠ Pn. The
excess risk (6) can be upper bounded in the following way:

EF ( ˆfn)  R'(
ˆfn)� ˆR'(

ˆfn) + ˆR'(f
⇤
)�R'(f

⇤
)

 2 sup

f2F
|R'(f)� ˆR'(f)|. (7)

While this upper bound leads to tight results for worst case
analysis, it is well known (Bartlett et al., 2005; Boucheron
et al., 2005; Koltchinskii, 2011) that tighter bounds can be
achieved under additional assumptions on P. However, we
leave these analyses for future research.

The following result — in spirit of Koltchinskii &
Panchenko (1999); Bartlett & Mendelson (2002) — can
be found in Boucheron et al. (2005, Theorem 4.1).
Theorem 2. Consider a class F of functions mapping Z
to R. Let ' : R ! R+ be a L'-Lipschitz function such
that '(✏) � ✏>0. Let B be a uniform upper bound on
'
��f(✏)l

�
. Let {(zi, li)}ni=1 ⇠ P and {�i}ni=1 be i.i.d.

Rademacher random signs. Then, with prob. at least 1� �,

sup

f2F
|R'(f)� ˆR'(f)|

 2L' E
"
sup

f2F

1

n

�����

nX

i=1

�if(zi)

�����

#
+B

r
log(1/�)

2n
,

where the expectation is taken w.r.t. {�i, zi}ni=1.

The expectation in the bound of Thm. 2 is known as the
Rademacher complexity of F , will be denoted by Rn(F),
and has a typical order of O(n�1/2

) (Koltchinskii, 2011).

3.2. From Classic to Distributional Learning Theory

Note that we can not directly apply the empirical risk min-
imization bounds discussed in the previous section to our
learning setup. This is because instead of learning a classi-
fier on the i.i.d. sample {µk(Pi), li}ni=1, we have to learn

Training?
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upper bounding the excess risk between the empirical risk
minimizer and the best classifier from our hypothesis class,
with respect to the Mother distribution M.

We divide our analysis in three parts. First, §3.1 reviews the
abstract setting of statistical learning theory and surrogate
risk minimization. Second, §3.2 adapts these standard re-
sults to the case of empirical kernel mean embedding clas-
sification. Third, §3.3 considers theoretically sustained ap-
proximations to deal with big data.

3.1. Margin-based Risk Bounds in Learning Theory

Let P be some unknown probability measure defined on
Z ⇥ L, where Z is referred to as the input space, and
L = {�1, 1} is referred to as the output space1. One of the
main goals of statistical learning theory (Vapnik, 1998) is to
find a classifier h : Z ! L that minimizes the expected risk

R(h) = E
(z,l)⇠P

⇥
`
�
h(z), l

�⇤

for a suitable loss function ` : L⇥L ! R+, which penalizes
departures between predictions h(z) and true labels l. For
classification, one common choice of loss function is the 0-1
loss `01(l, l0) = |l�l0|, for which the expected risk measures
the probability of misclassification. Since P is unknown in
natural situations, one usually resorts to the minimization
of the empirical risk 1

n

Pn
i=1 `

�
h(zi), li

�
over some fixed

hypothesis class H, for the training set {(zi, li)}ni=1 ⇠ Pn.
It is well known that this procedure is consistent under
mild assumptions (Boucheron et al., 2005).

Unfortunately, the 0-1 loss function is not convex, which
leads to empirical risk minimization being generally in-
tractable. Instead, we will focus on the minimization of
surrogate risk functions (Bartlett et al., 2006). In partic-
ular, we will consider the set of classifiers of the form
H = {sign �f : f 2 F} where F is some fixed set of real-
valued functions f : Z ! R. Introduce a nonnegative cost
function ' : R ! R+ which is surrogate to the 0-1 loss, that
is, '(✏) � ✏>0. For any f 2 F we define its expected and
empirical '-risks respectively as

R'(f) = E
(z,l)⇠P

⇥
'
��f(z)l

�⇤
, (4)

ˆR'(f) =
1

n

nX

i=1

'
��f(zi)li

�
. (5)

Many natural choices of ' lead to tractable empirical risk
minimization. Common examples of cost functions include
the hinge loss '(✏) = max(0, 1 + ✏) used in SVM, the
exponential loss '(✏) = exp(✏) used in Adaboost, and the
logistic loss '(✏) = log2

�
1+ e✏) used in logistic regression.

1Refer to Section A for considerations on measurability.

The misclassification error of sign � f is always upper
bounded by R'(f). The relationship between functions
minimizing R'(f) and functions minimizing R(sign �f)
has been intensively studied in the literature (Steinwart &
Christmann, 2008, Chapter 3). Given the high uncertainty
associated with causal inferences, we argue that one is inter-
ested in predicting soft probabilities rather than hard labels,
a fact that makes the study of margin-based classifiers well
suited for our problem.

We now focus on the estimation of f⇤ 2 F , the function
minimizing (4). However, since the distribution P is un-
known, we can only hope to estimate ˆfn 2 F , the func-
tion minimizing (5). Therefore, we are interested in high-
probability upper bounds on the excess '-risk

EF ( ˆfn) = R'(
ˆfn)�R'(f

⇤
), (6)

w.r.t. the random training sample {(zi, li)}ni=1 ⇠ Pn. The
excess risk (6) can be upper bounded in the following way:

EF ( ˆfn)  R'(
ˆfn)� ˆR'(

ˆfn) + ˆR'(f
⇤
)�R'(f

⇤
)

 2 sup

f2F
|R'(f)� ˆR'(f)|. (7)

While this upper bound leads to tight results for worst case
analysis, it is well known (Bartlett et al., 2005; Boucheron
et al., 2005; Koltchinskii, 2011) that tighter bounds can be
achieved under additional assumptions on P. However, we
leave these analyses for future research.

The following result — in spirit of Koltchinskii &
Panchenko (1999); Bartlett & Mendelson (2002) — can
be found in Boucheron et al. (2005, Theorem 4.1).
Theorem 2. Consider a class F of functions mapping Z
to R. Let ' : R ! R+ be a L'-Lipschitz function such
that '(✏) � ✏>0. Let B be a uniform upper bound on
'
��f(✏)l

�
. Let {(zi, li)}ni=1 ⇠ P and {�i}ni=1 be i.i.d.

Rademacher random signs. Then, with prob. at least 1� �,

sup

f2F
|R'(f)� ˆR'(f)|

 2L' E
"
sup

f2F

1

n

�����

nX

i=1

�if(zi)

�����

#
+B

r
log(1/�)

2n
,

where the expectation is taken w.r.t. {�i, zi}ni=1.

The expectation in the bound of Thm. 2 is known as the
Rademacher complexity of F , will be denoted by Rn(F),
and has a typical order of O(n�1/2

) (Koltchinskii, 2011).

3.2. From Classic to Distributional Learning Theory

Note that we can not directly apply the empirical risk min-
imization bounds discussed in the previous section to our
learning setup. This is because instead of learning a classi-
fier on the i.i.d. sample {µk(Pi), li}ni=1, we have to learn

1. Minimize

2. Minimize

Towards a Learning Theory of Cause-Effect Inference

upper bounding the excess risk between the empirical risk
minimizer and the best classifier from our hypothesis class,
with respect to the Mother distribution M.

We divide our analysis in three parts. First, §3.1 reviews the
abstract setting of statistical learning theory and surrogate
risk minimization. Second, §3.2 adapts these standard re-
sults to the case of empirical kernel mean embedding clas-
sification. Third, §3.3 considers theoretically sustained ap-
proximations to deal with big data.

3.1. Margin-based Risk Bounds in Learning Theory

Let P be some unknown probability measure defined on
Z ⇥ L, where Z is referred to as the input space, and
L = {�1, 1} is referred to as the output space1. One of the
main goals of statistical learning theory (Vapnik, 1998) is to
find a classifier h : Z ! L that minimizes the expected risk

R(h) = E
(z,l)⇠P

⇥
`
�
h(z), l

�⇤

for a suitable loss function ` : L⇥L ! R+, which penalizes
departures between predictions h(z) and true labels l. For
classification, one common choice of loss function is the 0-1
loss `01(l, l0) = |l�l0|, for which the expected risk measures
the probability of misclassification. Since P is unknown in
natural situations, one usually resorts to the minimization
of the empirical risk 1

n

Pn
i=1 `

�
h(zi), li

�
over some fixed

hypothesis class H, for the training set {(zi, li)}ni=1 ⇠ Pn.
It is well known that this procedure is consistent under
mild assumptions (Boucheron et al., 2005).

Unfortunately, the 0-1 loss function is not convex, which
leads to empirical risk minimization being generally in-
tractable. Instead, we will focus on the minimization of
surrogate risk functions (Bartlett et al., 2006). In partic-
ular, we will consider the set of classifiers of the form
H = {sign �f : f 2 F} where F is some fixed set of real-
valued functions f : Z ! R. Introduce a nonnegative cost
function ' : R ! R+ which is surrogate to the 0-1 loss, that
is, '(✏) � ✏>0. For any f 2 F we define its expected and
empirical '-risks respectively as

R'(f) = E
(z,l)⇠P

⇥
'
��f(z)l

�⇤
, (4)

ˆR'(f) =
1

n

nX

i=1

'
��f(zi)li

�
. (5)

Many natural choices of ' lead to tractable empirical risk
minimization. Common examples of cost functions include
the hinge loss '(✏) = max(0, 1 + ✏) used in SVM, the
exponential loss '(✏) = exp(✏) used in Adaboost, and the
logistic loss '(✏) = log2

�
1+ e✏) used in logistic regression.

1Refer to Section A for considerations on measurability.

The misclassification error of sign � f is always upper
bounded by R'(f). The relationship between functions
minimizing R'(f) and functions minimizing R(sign �f)
has been intensively studied in the literature (Steinwart &
Christmann, 2008, Chapter 3). Given the high uncertainty
associated with causal inferences, we argue that one is inter-
ested in predicting soft probabilities rather than hard labels,
a fact that makes the study of margin-based classifiers well
suited for our problem.

We now focus on the estimation of f⇤ 2 F , the function
minimizing (4). However, since the distribution P is un-
known, we can only hope to estimate ˆfn 2 F , the func-
tion minimizing (5). Therefore, we are interested in high-
probability upper bounds on the excess '-risk

EF ( ˆfn) = R'(
ˆfn)�R'(f

⇤
), (6)

w.r.t. the random training sample {(zi, li)}ni=1 ⇠ Pn. The
excess risk (6) can be upper bounded in the following way:

EF ( ˆfn)  R'(
ˆfn)� ˆR'(

ˆfn) + ˆR'(f
⇤
)�R'(f

⇤
)

 2 sup

f2F
|R'(f)� ˆR'(f)|. (7)

While this upper bound leads to tight results for worst case
analysis, it is well known (Bartlett et al., 2005; Boucheron
et al., 2005; Koltchinskii, 2011) that tighter bounds can be
achieved under additional assumptions on P. However, we
leave these analyses for future research.

The following result — in spirit of Koltchinskii &
Panchenko (1999); Bartlett & Mendelson (2002) — can
be found in Boucheron et al. (2005, Theorem 4.1).
Theorem 2. Consider a class F of functions mapping Z
to R. Let ' : R ! R+ be a L'-Lipschitz function such
that '(✏) � ✏>0. Let B be a uniform upper bound on
'
��f(✏)l

�
. Let {(zi, li)}ni=1 ⇠ P and {�i}ni=1 be i.i.d.

Rademacher random signs. Then, with prob. at least 1� �,

sup

f2F
|R'(f)� ˆR'(f)|

 2L' E
"
sup

f2F

1

n

�����

nX

i=1

�if(zi)

�����

#
+B

r
log(1/�)

2n
,

where the expectation is taken w.r.t. {�i, zi}ni=1.

The expectation in the bound of Thm. 2 is known as the
Rademacher complexity of F , will be denoted by Rn(F),
and has a typical order of O(n�1/2

) (Koltchinskii, 2011).

3.2. From Classic to Distributional Learning Theory

Note that we can not directly apply the empirical risk min-
imization bounds discussed in the previous section to our
learning setup. This is because instead of learning a classi-
fier on the i.i.d. sample {µk(Pi), li}ni=1, we have to learn
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upper bounding the excess risk between the empirical risk
minimizer and the best classifier from our hypothesis class,
with respect to the Mother distribution M.

We divide our analysis in three parts. First, §3.1 reviews the
abstract setting of statistical learning theory and surrogate
risk minimization. Second, §3.2 adapts these standard re-
sults to the case of empirical kernel mean embedding clas-
sification. Third, §3.3 considers theoretically sustained ap-
proximations to deal with big data.

3.1. Margin-based Risk Bounds in Learning Theory

Let P be some unknown probability measure defined on
Z ⇥ L, where Z is referred to as the input space, and
L = {�1, 1} is referred to as the output space1. One of the
main goals of statistical learning theory (Vapnik, 1998) is to
find a classifier h : Z ! L that minimizes the expected risk

R(h) = E
(z,l)⇠P

⇥
`
�
h(z), l

�⇤

for a suitable loss function ` : L⇥L ! R+, which penalizes
departures between predictions h(z) and true labels l. For
classification, one common choice of loss function is the 0-1
loss `01(l, l0) = |l�l0|, for which the expected risk measures
the probability of misclassification. Since P is unknown in
natural situations, one usually resorts to the minimization
of the empirical risk 1

n

Pn
i=1 `

�
h(zi), li

�
over some fixed

hypothesis class H, for the training set {(zi, li)}ni=1 ⇠ Pn.
It is well known that this procedure is consistent under
mild assumptions (Boucheron et al., 2005).

Unfortunately, the 0-1 loss function is not convex, which
leads to empirical risk minimization being generally in-
tractable. Instead, we will focus on the minimization of
surrogate risk functions (Bartlett et al., 2006). In partic-
ular, we will consider the set of classifiers of the form
H = {sign �f : f 2 F} where F is some fixed set of real-
valued functions f : Z ! R. Introduce a nonnegative cost
function ' : R ! R+ which is surrogate to the 0-1 loss, that
is, '(✏) � ✏>0. For any f 2 F we define its expected and
empirical '-risks respectively as

R'(f) = E
(z,l)⇠P

⇥
'
��f(z)l

�⇤
, (4)

ˆR'(f) =
1

n

nX
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'
��f(zi)li

�
. (5)

Many natural choices of ' lead to tractable empirical risk
minimization. Common examples of cost functions include
the hinge loss '(✏) = max(0, 1 + ✏) used in SVM, the
exponential loss '(✏) = exp(✏) used in Adaboost, and the
logistic loss '(✏) = log2

�
1+ e✏) used in logistic regression.

1Refer to Section A for considerations on measurability.

The misclassification error of sign � f is always upper
bounded by R'(f). The relationship between functions
minimizing R'(f) and functions minimizing R(sign �f)
has been intensively studied in the literature (Steinwart &
Christmann, 2008, Chapter 3). Given the high uncertainty
associated with causal inferences, we argue that one is inter-
ested in predicting soft probabilities rather than hard labels,
a fact that makes the study of margin-based classifiers well
suited for our problem.

We now focus on the estimation of f⇤ 2 F , the function
minimizing (4). However, since the distribution P is un-
known, we can only hope to estimate ˆfn 2 F , the func-
tion minimizing (5). Therefore, we are interested in high-
probability upper bounds on the excess '-risk

EF ( ˆfn) = R'(
ˆfn)�R'(f

⇤
), (6)

w.r.t. the random training sample {(zi, li)}ni=1 ⇠ Pn. The
excess risk (6) can be upper bounded in the following way:
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While this upper bound leads to tight results for worst case
analysis, it is well known (Bartlett et al., 2005; Boucheron
et al., 2005; Koltchinskii, 2011) that tighter bounds can be
achieved under additional assumptions on P. However, we
leave these analyses for future research.

The following result — in spirit of Koltchinskii &
Panchenko (1999); Bartlett & Mendelson (2002) — can
be found in Boucheron et al. (2005, Theorem 4.1).
Theorem 2. Consider a class F of functions mapping Z
to R. Let ' : R ! R+ be a L'-Lipschitz function such
that '(✏) � ✏>0. Let B be a uniform upper bound on
'
��f(✏)l

�
. Let {(zi, li)}ni=1 ⇠ P and {�i}ni=1 be i.i.d.

Rademacher random signs. Then, with prob. at least 1� �,
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where the expectation is taken w.r.t. {�i, zi}ni=1.

The expectation in the bound of Thm. 2 is known as the
Rademacher complexity of F , will be denoted by Rn(F),
and has a typical order of O(n�1/2

) (Koltchinskii, 2011).

3.2. From Classic to Distributional Learning Theory

Note that we can not directly apply the empirical risk min-
imization bounds discussed in the previous section to our
learning setup. This is because instead of learning a classi-
fier on the i.i.d. sample {µk(Pi), li}ni=1, we have to learn
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achieved under additional assumptions on P. However, we
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where the expectation is taken w.r.t. {�i, zi}ni=1.

The expectation in the bound of Thm. 2 is known as the
Rademacher complexity of F , will be denoted by Rn(F),
and has a typical order of O(n�1/2

) (Koltchinskii, 2011).

3.2. From Classic to Distributional Learning Theory

Note that we can not directly apply the empirical risk min-
imization bounds discussed in the previous section to our
learning setup. This is because instead of learning a classi-
fier on the i.i.d. sample {µk(Pi), li}ni=1, we have to learn
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ular, we will consider the set of classifiers of the form
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associated with causal inferences, we argue that one is inter-
ested in predicting soft probabilities rather than hard labels,
a fact that makes the study of margin-based classifiers well
suited for our problem.

We now focus on the estimation of f⇤ 2 F , the function
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analysis, it is well known (Bartlett et al., 2005; Boucheron
et al., 2005; Koltchinskii, 2011) that tighter bounds can be
achieved under additional assumptions on P. However, we
leave these analyses for future research.

The following result — in spirit of Koltchinskii &
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The expectation in the bound of Thm. 2 is known as the
Rademacher complexity of F , will be denoted by Rn(F),
and has a typical order of O(n�1/2
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Summary

Consider the two generative models:

causal model

x ⇠ P

✏ ⇠ Q

f ⇠ F
y  f (x, ✏)

anticausal model

y ⇠ P

✏ ⇠ Q

f ⇠ F
x f (y, ✏)

Cause-e↵ect inference is to decide, given samples S = {(xi, yi)}n
i=1, whether:

i) “X causes Y” (X ! Y ), that is, S was drawn from the causal model, or

ii) “Y causes X” (X  Y ), that is, S was drawn from the anticausal model.

Previous approaches rely on either

i) expensive high-dimensional conditional dependence tests (Spirtes et al., 2000),

ii) strong parametric assumptions (Hoyer et al., 2009, Daniusis et al., 2012), or

iii) hand-crafted features (Guyon, 2013).

In this paper, we pose causal inference as the problem of learning to classify probability distributions.
In particular, we assume access to a collection {(Si, li)}n

i=1, where each Si ⇠ Pn(Xi, Yi) and li is a
binary label indicating whether “Xi! Yi” or “Xi Yi”. Given these data, we build a causal
inference rule in two steps:

i) we featurize each Si using the kernel mean embedding associated with some kernel, and

ii) we train a binary classifier on such embeddings to distinguish between causal directions.

Our framework exhibits the following features:

i) theoretical guarantees concerning learning rates and consistency,

ii) theoretically sustained approximations to deal with big-data, and

iii) state-of-the-art performance in a variety of real-world benchmarks.

Prior art

SGS/PC (Spirtes et al., 2000)

Idea: given universe of variables U = {X1, . . . , Xd}, Xi and Xj are causally related (for i 6= j) i↵:

6 9S ✓ (U \ {Xi, Xj}), s.t. Xi 6? Xj|S.

IGCI (Daniusis et al., 2012)

“cause independent from mechanism”

ANM (Hoyer et al., 2009)

“cause independent from noise”

Hand-crafted features approach (Guyon, 2013)

i) featurize each available labeled causal sample Si into m features m(Si), and

ii) train a binary classifier on the data {(m(Si), li)}n
i=1.

Kernel mean embedding of distributions

The Kernel Mean Embedding (KME) of a probability distribution P over Z associated with
a measurable, bounded, and positive-definite kernel k is

µk(P ) :=

Z

Z
k(z, ·)dP (z) 2 Hk.

The Empirical Kernel Mean Embedding (EKME) estimates µk(P ) based on S ⇠ Pn:

µk(PS) :=
1

|S|
X

x2S

k(x, ·) 2 Hk.

Problem! For many kernels k, Hk is an infinite dimensional Hilbert Space. This forces us to
design learning algorithms which require the construction and inversion of n⇥ n kernel matrices.

Solution: approximate Hk with a random finite-dimensional subspaces.

Theorem (Bochner): assume that Z = Rd
and k(x, y) = k(x � y) is a shift-invariant real-

valued kernel. Then Bochner’s theorem states that for any z, z0 2 Z :

k(z, z0) = 2CkEw,b

⇥
cos(hw, zi + b) cos(hw, z0i + b)

⇤
, (1)

where h·, ·i is the Euclidean dot product in Rd
, w ⇠ 1

Ck
pk, b ⇠ U [0, 2⇡], pk : Rd ! R is an

integrable and positive Fourier transform of k, and Ck =
R
Rd pk(w)dw.

Therefore, sample {(wj, bj)}m
j=1 (Rahimi and Recht, 2007) and approximate the EKME using

the Randomized Empirical Kernel Mean Embedding (REKME) :

µk,m(PS) :=
2Ck

|S|
X

z2S

�
cos(hwj, zi + bj)

�m
j=1 2 Rm.

Remarks:

i) if k is characteristic, µk is an injective map, and

ii) kµk(P )� µk(PS)kHk
= OP (n

�1/2).
iii) µk,m is an m-dimensional vector that can be used with any learning algorithm.

iv) Replacing µk(PS) with µk,m(PS) induces a O(m�1/2) error in risk.

v) kµk(P )� µk(PS)kHk
� C

�Hkp
n
where �2Hk

= supkfkHk
1Vz⇠P [f (z)] .

Our algorithm

Input

i) labeled causal samples {(Si, li)}n
i=1; Si = {(xij, yij)}ni

j=1 ⇠ Pni(Xi, Yi), li 2 {�1,+1},
ii) measurable and bounded kernel function k, and

iii) number of random features m.

Training

i) featurize each Si as µk,m(Si) using (REKME),

ii) train any classifier f̂n : Rm! {�1,+1} on the data {(µk,m(Si), li)}n
i=1, and

iii) return f̂n.

Testing

i) featurize test sample S0 as µk,m(S0) as in training, and

ii) return f̂n(µk,m(S0)).

Extensions

i) easy handling of mixed attributes (continuous, discrete, categorical...)

ii) use of third label to take care of the independent “Xi ? Yi” case

iii) joint embedding of confounder candidates Z and (Xi, Yi) for multivariate causal inference

iv) µk can be designed to be more complex (random forest, deep/convolutional neural network...)

Learning rate and consistency

Assumptions:

i) 9 Mother distribution M on {cause-e↵ect measures P on Z}⇥ {�1, 1},
ii) {(Pi, li)}n

i=1 ⇠Mn; with li indicating Xi! Yi or Xi Yi for Pi,

iii) training data of the form Si = {(Xi,j, Yi,j)}ni
j=1 ⇠ Pni

i ,

iv) measurable and bounded kernel k with supz2Z k(z, z)  1,

v) class Fk of functionals mapping Hk to R with Lipschitz constants uniformly bounded by LF ,

vi) minimization of surrogate risk R'(f ) := E(P,l)⇠M
⇥
'
��f

�
µk(P )

�
l
�⇤

in Fk,

vii) ' : R! R+ is L'-Lipschitz s.t. '(z) � z>0 and '
�
z
�  B for all z.

Theorem:
With probability not less than 1� � over all sources of randomness

R'(f̃n)�R⇤',Fk
 4L'Rn(Fk)+2B

r
log(2/�)

2n
+
4L'LF

n

nX

i=1

0

@
s

Ez⇠Pi
[k(z, z)]

ni
+

s
log(2n/�)

2ni

1

A .

Numerical simulations

We term our method the Randomized Causation Coe�cient (RCC).

Each causal sample is featurized as ⌫(S) = (µk,m(PSx
), µk,m(PSy

), µk,m(PSxy
)) using a mixture of

three Gaussian kernels with respective bandwidths (0.1�, 1�, 10�), where � is set according to the
median heuristic. We use m = 1, 000 random features, and a random forest as our binary classifier.

We synthesize our training data {(Si, li)}n
i=1 using a simple generative model detailed in the paper.

State-of-the-art on Tüebingen real-world cause-e↵ect pairs:
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Application to recovery of multivariate causal DAGs by jointly embedding potential confounders:

MPG

AGEACCWEI

HP

CYL

DIS

Causal DAG recovered from data autoMPG.

AGEWECWEB

WEA LEN DIA

HEI

WEI

Causal DAG recovered from data abalone.

RCC ranked third in Chalearn’s cause-e↵ect inference competition (Guyon, 2014)

More details, experiments, and source available in the paper!
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CONCLUSION
• Domain adaptive methods ✅
• Computationally fast methods ✅ 
• Consistent methods ✅
• High convergence speed ✅
• Useful for distributional learning ✅
• Curse of dimensionality and not minimax efficient ❌
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Example: Transfer learning for sustainability

Predicting poverty: Xie et al. (2015), Jean et al. (2016)
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Example: Transfer learning for sustainability

Xie et al. 2015, Jean et al. 2016
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Example of empirical validation

Approach
Compare to models without
transfer learning

Results from Xie et al. 2015
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Transfer learning setting

Source domain DS , learning task TS → target domain DT , task TT
DS 6= DT , or TS 6= TT

Domain adaptation: A case of transductive transfer learning: TS = TT ,
equal feature spaces XS = XT , but different marginal distributions
P (XS) 6= P (XT )

Lynn Kaack Transfer Learning May 2, 2017 5 / 6



Target error bound for domain adaptation

Ben-David et al. (2010)
With probability at least 1− δ

H4H-divergence,
US , UT are unlabeled samples

εT (h) ≤ εS(h) +
1

2
d̂H4H(US ,UT ) + λ + 4

√
d log (2m′) + log (2/δ)

m′

error of ideal hypothesis λ = εS(h∗) + εT (h∗)
H hypothesis space of VC dimension d; m′ size of US , UT each
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Introduction

Figure: Choice experiment example from Halveston et al (2015) -
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Random utility theory

I P(choice = i) = Pni = eβ
t (zn,xin)∑

j∈A e
βt (zn,xjn)

I Individual n will prefer alternative i with Ui = Vi + εi if
Ui ≥ Uj ∀j [9]

I Error εi typically with a Type-I extreme value distribution [8].
I Deterministic utility Vin = Vin(zn, xin) depends on

characteristics of the individual zn and attributes of each
alternative xin.
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Mixed logit model

I Mixed logit models consider βi as random variables (usually
βi∼N(µ,Σ)) [6] [10].

I With many random parameters, variance-covariance matrix Σ
will be dense, obscuring interpretation.

I Model estimated via stochastic programming with simulated
maximum likelihood estimator (SLL) [14]:

minimize
β

− SLL(β) = −
∑N

n=1
∑

jinA Ini log(
∫
Pni/β · f (β)dβ)

Where Eβ(Pni ) =
∫
Pni/β · f (β)dβ ≈ 1

R

∑R
r=1

eβ
t
r xin∑

j∈A e
βtr xjn

R is the number of draws from f (β).
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Sparse group mixed logit model

I Some literature on mixed models with sparsity penalties [7] [3]
[12] [4] [5] [11].

I A sparse group mixed logit model will correspond to [13]:

minimize
β

− SLL(θ) + Pλ(θ) =

−SLL(θ) + αλ
∑p

i=1 γj |θj |+ (1− α)λ1
2
∑m

l=1
√
plγ(l)

∥∥θ(l)∥∥
I Here m is the number of groups of variables in the data.
I Weights γ for diagonal terms of variance-covariance matrix Σ,
σii must be forced to 0.

I One group for off-diagonal terms of variance-covariance matrix
Σ, σij with i 6= j .
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Simulation bias and model bias

Two main sources of bias:

I Lasso regression will bias coefficients towards zero. Fact from
proxλt(θj) = Sλt(θj) = sign(θj) ·max{|θj | − λt, 0}.

I Additionally, simulation bias is [1] [2]:

If,
√
R(LL(θ)− SLL(θ))

d→ N(0, 1
N·R

∑R
r=1
∑N

n=1
σ2
i (θ)

RPi (θ)2
)

SLL(θ)− LL(θ) ≤ αδ
N·R

√∑R
r=1
∑N

n=1
σ2
i (θ)

RPi (θ)2
= O( 1√

R
)

I No papers found on risk rates for sparse mixed models.
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Evidence Lower Bound (ELBO)

The evidence lower bound (ELBO) is defined as

L = Eq[log p(z, x)]− Eq[log qφ(z|x)] (1)

Theorem
Maximizing ELBO is equivalent to minimizing the KL distance
between the variational distribution qφ(z|x) and the true posterior
distribution pθ(z|x).

Proof.

L = Eq[log pθ(z, x)]− Eq[log qφ(z|x)]

= Eq[log pθ(x)] + Eq[log pθ(z|x)]− Eq[log qφ(z|x)]

= log pθ(x)− KL(qφ(z|x)||pθ(z|x))

(2)



Efficient Optimization: Auto-encoding Variational Bayes

I Naive Monte Carlo estimation has high variance.

I Reparametrization trick: reparameterize the random variable
ẑ ∼ qφ(z|x) with a differentiable transformation ẑ = gφ(ε, x)
using a noise variable ε.

I Efficient optimization by SGD.

Eq[log pθ(x|z)] =
1

L

L∑
l=1

(log pθ(x|z(l))) (3)

where z(l) = gφ(x, ε(l)) and ε(l) ∼ p(ε) (4)



Rich Posterior: Normalizing Flows, Mixture of Distributions

I Normalizing flows: Transforming a random variable z0 with
distribution q0 through a chain of K transformations:

zK = fK ◦ · · · ◦ f2 ◦ f1(z0) (5)

Theorem
Suppose we adopt a family of transformations of the form
fk(z) = z + ukh(wT

k z + bk). The flow-based ELBO is

Eq0(z0) [ln q0(z0)]−Eq0(z0)

[
K∑

k=1

ln |1 + u>k ψk(zk−1)|

]
−Eq0(z0) [ln p(x, zK )]

(6)

I Mixture of Distributions: Approximating posterior using a
mixture of distributions with bootstrapping.



Analysis of auto-regressive VAEs through Bits-Back Coding

VAE can be seen as encoding data in a two-part code p(z) and
p(x|z).

Lemma
The average code length encoded by VI is
CBitsBack(x) = Ex∼data,z∼q(z|x)[log q(z|x)− log p(z)− logp(x|z)].

Theorem
The two-part code from VAE suffers at least a length of
KL(q(z|x)||p(z|x))].

Corollary

Asymptotically, any distribution p(x) can be modeled perfectly
without using z in auto-regressive models.



Sensitivity of Variational Bayes to Prior

Suppose the prior z is dependent on ε modeled by p(z|ε).

Theorem
The robustness of Ep(z|ε,x)[g(z)] with respect to perturbation can
be characterized by

∂Ep(z|ε,x)[g(z)]

∂ε
|ε ≤ max(

1

ε
,

1

1− ε
)Ep(z|ε,x)[|g(z)− Ep(z|ε,x)[g(z)]|]

(7)
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Correlation and Independence

ρ = 0.01, p-value=0.942
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Characteristic Kernels

P, set of probability measures on a space X with RKHS H

µ : P →H , P 7→
∫
X k(x , ·)dP(x)

k is characteristic if µ is injective

Intuitively, H is rich enough to represent higher order moments of P
Recall: X ,Y independent iff φX ,Y = φXφY

Mesner Kernel Independence SML17 3 / 8



Cross Covariance Operator

(X ,Y ,Z ) ∈ X × Y × Z; RKHSs HX ,HY ,HZ ; kernels kX , kY , kZ

The cross-covariance operator, ΣYX : HX →HY defined by

〈g ,ΣYX f 〉HY
= E[f (X )g(Y )]− E[f (X )]E[g(Y )]

for all f ∈HX , g ∈HY

The conditional cross-covariance operator is defined as

ΣYX |Z = ΣYX − ΣYZΣ−1ZZΣZX

Mesner Kernel Independence SML17 4 / 8



Independence

Theorem
1 If kXkY is characteristic then

ΣYX = 0⇔ X ⊥⊥ Y

2 Let Ẍ = (X ,Z ) and kẌ = kXkZ
If kẌkY if characteristic then

ΣYX |Z = 0⇔ X ⊥⊥ Y |Z

Proof Outline:
Since E[f (X )g(Y )]− E[f (X )]E[g(Y )] = 0 for f ∈HX , g ∈HY
We can show that φX ,Y = φXφY if we can make f , g look characteristic

Mesner Kernel Independence SML17 5 / 8



Hilbert-Schmidt Operator Norm

Let (xi )i∈I , (yj)j∈J be orthonormal bases for HX and HY , respectively

‖ΣYX‖2HS =
∑
i∈I

∑
j∈J
〈ΣYX xi , yi 〉2HY

‖ΣYX‖2HS = 0⇔ ΣYX = 0

Test Statistic is based on an estimate of this value

Mesner Kernel Independence SML17 6 / 8



Mercer Kernel Tests for Independence

p-value = 1.46× 10−18
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Hilbert-Schmidt Independence
Criterion (HSIC)

Side Information:
human annotated attributes, unsupervised word vectors,
and object tree hierarchical structures

Notations: learned output visual embeddings gθ(X) and
side information R

HSIC [1] acts as a non-parametric independence test
between two random variables, gθ(X) and R, by
computing the Hilbert-Schmidt norm of the covariance
operator over the corresponding domains G ×R.

2 / 5



10702
Blitz Talk

Yao-Hung
Hubert Tsai
and Mu-Chu

Lee

Hilbert-
Schmidt
Independence
Criterion
(HSIC)

Proposed
Framework

References

Hilbert-Schmidt Independence
Criterion (HSIC) (cont’d)

Let kg and kr be the kernels on G,R with associated
Reproducing Kernel Hilbert Spaces (RKHSs), a slightly
biased empirical estimation of HSIC can be written as

HSIC(G,R) =
1

(N − 1)2
tr(HKGHKR),

where KGij = kg (xi , xj), KRij = kr (yi , yj), and
Hij = 1{i=j} − 1

(N−1)2 .
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Proposed Framework

Dependency Maximization on the visual embeddings and
side information under statistical guarantee.

We train on images and side information across
‘lots-of-examples’ and ‘few-examples’ categories.

learned	class-affinity	kernel

Class 1

Class 2

Class C+C’

word2vec	

Class 1

Class 2

Class C+C’

glove

Class 1

Class 2

Class C+C’

human	annotated	features
Class 1 Class 2 Class 3 Class C+C’

tree	hierarchy	structure

non-linear	mapping transformation𝑓" # 𝑓$ # 𝑓% # 𝐵 #non-linear	mapping non-linear	mapping

any	framework

Deep Regression	Model
Images output	embeddings

Dependency	
Maximization
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Many supervised tasks involve predicting 
structured outputs.

2

Voice onset time: sequential Syntactic parsing: tree Image segmentation: graph



Structured prediction formulation

3



Review of three structured prediction algorithms: 
(1) structured SVM, (2) structured perceptron, (3) 
Markov random fields.

4

Structured SVM Structured hinge loss

Structured perceptron

Markov random fields Structured log loss



Key results
1. Risk bound on structured SVM

5

2. Convergence of structured perceptron

3. Risk bound on Markov random field



Key results
4. Convergence of structured SVM with subgradient method

6

5. Proof of convergence of conditional random fields inference algorithms

6. Proof of bounds for approximate Markov random fields inference algorithms

7. Comparison of probit, orbit and ramp losses, proof of their 
consistency, convergence rate and error bounds
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Notations

• Assume	  that	  we	  have	  a	  training	  data	  𝑥", 𝑥$, … , 𝑥& 	  ∈ 𝑅* where	  𝑙 is	  the	  
dimension	  of	  features	  and	  𝑛 is	  the	  number	  of	  instances.
• 𝑙 can	  be	  millions,	  billions,	  or	  even	  more.

• If	  the	  feature	  dimension	  is	  too	  large,	  then	  we	  may	  not	  be	  able	  to	  train	  
our	  model	  efficiently	  or	  even	  store	  the	  model	  into	  the	  memory.



Problem

𝑥-

𝑅*

𝑅.

𝑚 ≪ 𝑙 ?

𝑥1-



Possible	  Approaches

𝑥-

𝑅*

𝑅.

𝑚 ≪ 𝑙
• Hashing	  functions
• Murmur	  hash
• Fnv
• …

• ?

𝑥1-



What	  I	  have	  done?

𝑥-

𝑅*

𝑅.

𝑚 ≪ 𝑙
• Hashing	  functions
• Murmur	  hash
• Fnv
• ...

• Cantor	  Function

𝑥1-



Experiments



Statistical	  Properties	  of	  Cantor	  Function

• 𝜙:ℕ×ℕ⟶ ℕ
• 𝜙 𝑥", 𝑥$ = 	   "

$
𝑥" +	  𝑥$ 𝑥" +	  𝑥$ + 1 +	  𝑥$ where	  𝑥", 𝑥$ ∈ ℕ.

• It	  is	  an	  biased	  estimator.
• However,	  	  both	  of	  bias	  and	  variance	  decrease	  to	  0	  as	  𝑚 decreases.



Thanks
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Prediction v. Causal Prediction Causality & Machine Learning Heterogeneous Treatment Effects

Prediction v. causal prediction

Traditional prediction asks, what is P(Y |X = x)?

Causal prediction asks, what is P(Y |do(X = x))?
What happens to Y when X is manipulated
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Prediction v. Causal Prediction Causality & Machine Learning Heterogeneous Treatment Effects

Causality and machine learning

Machine learning literature tends to focus on prediction tasks

Growing literature incorporates various forms of machine
learning into causal inference

Graphical models for causal discovery and inference
ML-based propensity scores to compare similar treatment and
control groups
ML for model specification under selection on observables
Learning unobserved features from other features
Heterogeneous treatment effects



3/6

Prediction v. Causal Prediction Causality & Machine Learning Heterogeneous Treatment Effects

Causality and machine learning

Machine learning literature tends to focus on prediction tasks
Growing literature incorporates various forms of machine
learning into causal inference

Graphical models for causal discovery and inference
ML-based propensity scores to compare similar treatment and
control groups
ML for model specification under selection on observables
Learning unobserved features from other features
Heterogeneous treatment effects



3/6

Prediction v. Causal Prediction Causality & Machine Learning Heterogeneous Treatment Effects

Causality and machine learning

Machine learning literature tends to focus on prediction tasks
Growing literature incorporates various forms of machine
learning into causal inference

Graphical models for causal discovery and inference

ML-based propensity scores to compare similar treatment and
control groups
ML for model specification under selection on observables
Learning unobserved features from other features
Heterogeneous treatment effects



3/6

Prediction v. Causal Prediction Causality & Machine Learning Heterogeneous Treatment Effects

Causality and machine learning

Machine learning literature tends to focus on prediction tasks
Growing literature incorporates various forms of machine
learning into causal inference

Graphical models for causal discovery and inference
ML-based propensity scores to compare similar treatment and
control groups

ML for model specification under selection on observables
Learning unobserved features from other features
Heterogeneous treatment effects



3/6

Prediction v. Causal Prediction Causality & Machine Learning Heterogeneous Treatment Effects

Causality and machine learning

Machine learning literature tends to focus on prediction tasks
Growing literature incorporates various forms of machine
learning into causal inference

Graphical models for causal discovery and inference
ML-based propensity scores to compare similar treatment and
control groups
ML for model specification under selection on observables
Learning unobserved features from other features

Heterogeneous treatment effects



3/6

Prediction v. Causal Prediction Causality & Machine Learning Heterogeneous Treatment Effects

Causality and machine learning

Machine learning literature tends to focus on prediction tasks
Growing literature incorporates various forms of machine
learning into causal inference

Graphical models for causal discovery and inference
ML-based propensity scores to compare similar treatment and
control groups
ML for model specification under selection on observables
Learning unobserved features from other features
Heterogeneous treatment effects



4/6
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Causal estimands of interest

For each covariate profile x , the conditional average treatment
effect (CATE) is defined as:

τCATE (x) = E[Y (1)− Y (0)|X = x ]

More flexible marginal conditional average treatment effect
(MCATE) defined as

τMCATE (x) =
∫

E[Y (1)−Y (0)|(X 1,X 2, ...XS = xS , ..Xd )]dFX−S |XS =xS

New class which evaluates treatment effect by comparing
potential outcomes’ distribution functions: Distributional
Average Treatment Effect (DATE):

τDATE (S) = Div(FY (1)|S ,FY (0)|S)
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ML methods for heterogeneous treatment effects

Recent & forthcoming literature provide data-driven methods
for investigation & potential discovery of sub-populations:

Sparse regression models (LASSO, ridge regression, elastic net)
Restrictive assumptions & limitations of (linear) regression

Tree-based methods - recursively partitioning data into
homogeneous sub-populations

Greedy partitioning; unstable; discontinuous approximations
Ensemble methods (BART, random forests) improve upon
single tree model

Treatment Effect Subset Scan (TESS) by Mcfowland et al
Frame identification as pattern detection problem; maximize a
nonparametric scan statistic over all sub-populations, while
being parsimonious in which effects to estimate
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Prediction v. Causal Prediction Causality & Machine Learning Heterogeneous Treatment Effects

Detailed theoretical results in paper.

Thank you.



A survey of Variational AutoEncoders 
(VAEs) and the variants

Yuanyuan Feng & Hongyu Zhu



Motivation

● Generative models in deep neural network -- GANs and VAEs.
● VAEs can be interpreted from both neural network formulation 

(encoder/decoder) and graphical model (inference) perspectives -- 
mathematically interesting.

● Efficiently approximate intractable (posterior) distribution -- Maximize lower 
bound objectives.



● VAE: Kingma & Welling (2013) -- The intractable posterior inference can be 
made especially efficient from a recognition model using a reparametrization 
trick.

● CVAE: Kingma, Rezende & Mahamed (2014) -- Semi-supervised learning 
with deep generative models and performs conditional generation on MNIST 
dataset.

          

Related work I -- VAE & Conditional VAE



● DVAE: Im, et. al (2015) -- Denoising VAEs are trained with noise injected in their 
stochastic hidden layer. A modified training criterion which corresponds to a 
tractable lower bound is proposed when the input data is corrupted.

● AAE: Makhzani, et. al (2015) -- uses GAN to perform variational inference by 
matching the aggregated posterior of the hidden layer with an arbitrary prior 
distribution.

          

Related work II -- Denoising VAE & Adversarial Autoencoders
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Carnegie Mellon

Multiple linear regression model and the ordinary square estimator for ᵚ:

Least Squares Estimator

OLS works well only under strict 
conditions and assumptions.

What if:
● wrong observations in the 

dataset occur?
● assumptions are incorrect 

(E[Xiϵi]  ≠ 0)

Misleading and totally damaged!



Carnegie Mellon

Robust Estimator Measure
Two measures for the robustness of estimators (T):

Influence function: the dependence of the estimator on the value of one of the         
points in the sample.

Breakdown points: the proportion of incorrect observations an estimator can  
                               handle before giving an incorrect result. 



Carnegie Mellon

σ: scale variable

M - estimator: automatically normal distributed

e.g. for the robust function in M - estimator

M - estimator has bounded influence function according to Y, but the breakdown 
point is still super low, which is 0%.

Robust Estimator - M-estimator



Carnegie Mellon

Generalized M-estimators are introduced in order to bound the influence function 
of outlying X by means of some weight function w.

Generalized m-estimator

Computationally efficient by iterated reweighted least square method: 

Finally, repeat from the second step until converge



Carnegie Mellon

● G-M-estimator has bounded influence function of outlying X, but no 
improvements to the breakdown points.

● Other robust estimators with better breakdown points results：
○ MM-estimators: high-breakdown and high-efficiency estimators, where 

the initial estimate is obtained with an S-estimator, and it is then improved 
with an M-estimator.

○ Least median of squares (LMS): 50% breakdown point estimator, 

Other Robust Estimator
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Introduction

Smoothing splines bring some flexibility to regression compared to
linear and polynomial regression

Conventionally the roughness is penalized uniformly

Further flexibility can be incorporated by letting the penalty vary
by roughness of the fitted curve
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Recent works
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varying smoothing parameteŕ, Biometrika 100, 4.
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adaptive smoothing splineś, Biometrika 93, 112-25
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Set up

yi = f0(ti ) + σ(ti )εi , i = 1, 2, ..., n

ti are design points on [0,1]
εi are i.i.d D(0,1)
σ(.) is variance function
f0 is true regression function
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Problem

Minimize

1

n

n∑
i=1

σ−2(ti ){yi − f (ti )}2 + λ

∫ 1

0
{f (m)(t)}2dx
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Modified problem for adaptive penalty

Ψ(f ) =
1

n

n∑
i=1

σ−2(ti ){yi − f (ti )}2 + λ

∫ 1

0
ρ(t){f (m)(t)}2dt,

λ > 0
ρ : [0, 1] −→ (0,∞)
f (i) absolutely continuous for i upto m − 1
f (m) ∈ L2[0, 1]
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Necessary and sufficient condition

ωn(t) =
1

n

∑n
i=1 I (t ≤ ti )

ľl(f , t) =
∫ t
0 σ

−2(s)f (s)dωn(s),

ľk(f , t) =
∫ t
0 ľk−1(f , s)ds, (2 ≤ k ≤ m)

h(ti ) = yi

Theorem 1. Necessary and sufficient conditions for f̂ ∈Wm
2 to

minimize ψ are that

(−1)mλρ(t)f̂ (m)(t) + ľm(f̂ , t) = ľm(h, t), a.e

and
ľk(f̂ , 1) = ľk(h, 1), (k = 1, ...,m)
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ľl(f , t) =
∫ t
0 σ

−2(s)f (s)dωn(s),
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and
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Corollary

Corollary 1. n2m/(4m+1){f̂ (t)− f0(t)} converges to

N[(−1)m−1r(t){ρ(t)f
(m)
0 (t)}(m), L0r(t)1−1/(2m)ρ(t)−1/(2m)]

in distribution.

λopt = n−2m/(4m+1)

Minimize integrated MSE−→ ρ(t)
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Justification of method with simulation



Thank You

10/10



On monotonic improvement guarantees and
sampling efficiency for approximate policy gradient

methods

Lisa Lee (lslee@cs.cmu.edu)

Carnegie Mellon University

May 2, 2017
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Motivation

We focus on policy gradient (PG) methods, a popular class of
reinforcement learning algorithms that have been at the heart of
significant advances in AI and robotics.

A policy π describes how an agent will act when in some state s. The
goal is to find an optimal policy that maximizes the expected cumulative
reward,

η(π) := Eτ∼π

[ ∞∑
t=0

γtr(st)

]
where the expectation is taken over trajectories τ := (s0, a0, s1, a1, . . .).

PG methods directly optimize η(πθ) by estimating its gradient w.r.t.
the policy parameters θ.

They are appealing because they reduce RL to stochastic gradient
descent.

Lisa Lee (CMU) Approximate PG methods May 2, 2017 2 / 13



Motivation

Main challenges of PG methods:

1 Difficulty of obtaining stable and steady improvement despite the
nonstationarity of the incoming data

2 High sample complexity

Lisa Lee (CMU) Approximate PG methods May 2, 2017 3 / 13



Monotonic improvement guarantees
Natural gradient method (Kakade, 2001)

Kakade (2001) provided a natural gradient method for policy iteration
that has guaranteed performance improvement.

Moves toward choosing a greedy optimal action rather than just a
good action.

Represents the steepest descent direction based on the underlying
structure of the parameter space.

Other works (Kakade 2002, Schulman 2015) build off of this paper.

Lisa Lee (CMU) Approximate PG methods May 2, 2017 4 / 13



Monotonic improvement guarantees
Optimizing a lower bound on η (Schulman et al., 2015))

Thm (Schulman et al., 2015)

For stochastic policies π, π̃,

η(π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃) (1)

where C := 4εγ
(1−γ)2 and ε := maxs,a |Aπ(s, a)| is the max expected

advantage.

Thus, we are guaranteed to improve the true objective η by optimizing the
lower bound

max
θ

[
Lπθold (πθ)− CDmax

KL (πθold , πθ)
]

(2)

Trust Region Policy Optimization (Schulman et al., 2015) is an approximate
algorithm for optimizing Eq. (2).

Lisa Lee (CMU) Approximate PG methods May 2, 2017 5 / 13



High sample complexity problem
Bias vs. variance tradeoff

Bias vs. variance tradeoff of the policy gradient estimator ĝ ≈ ∇θη(πθ):

θ ← θ + εĝ

High variance necessitates using more samples.

High bias can cause the algorithm to fail to converge, or to converge
to a poor solution that is not even a local optimum.

Lisa Lee (CMU) Approximate PG methods May 2, 2017 6 / 13



High sample complexity problem
Variance reduction techniques

Overview:

Unbiased estimators (Williams, 1992, Sutton et al., 1999; Baxter & Bartlett, 2000) exhibit
variance that scales unfavorably with the time horizon.

Actor-critic methods (another class of PG methods) use a value
function rather than the empirical returns, obtaining a ĝ with lower
variance but more bias.

Using an exponentially weighted estimator of the advantage function
(Schulman et al. 2016) has shown to significantly reduce variance while
maintaining a tolerable level of bias.

ĝ =
1

N

N∑
n=1

∞∑
t=0

Ân
t∇θ log πθ(ant | snt )

Lisa Lee (CMU) Approximate PG methods May 2, 2017 7 / 13



Thank you

Lisa Lee (CMU) Approximate PG methods May 2, 2017 8 / 13



Definitions

Define the following distance between two policies π, π̃:

Dmax
KL (π, π̃) := max

s
DKL [π(· | s) ‖ π̃(· | s)]

where DKL [p ‖ q] :=
∑

i pi log pi
qi

is the Kullback-Leibler divergence for
discrete probability distributions p, q.

Lisa Lee (CMU) Approximate PG methods May 2, 2017 9 / 13



Definitions

We use the following standard definitions of the state-action value
function Qπ, the value function Vπ, and the advantage function Aπ:

Qπ(st , at) = Est+1,at+1,...

[ ∞∑
l=0

γ l r(st+l)

]
(3)

Vπ(st) = Eat ,st+1,...

[ ∞∑
l=0

γ l r(st+l)

]
(4)

Aπ(s, a) = Qπ(s, a)− Vπ(s) (5)

where at ∼ π(at | st) and st+1 ∼ P(st+1 | st , at).

Lisa Lee (CMU) Approximate PG methods May 2, 2017 10 / 13



A useful identity for η

The following useful identity expresses the expected return of another
policy π̃ in terms of the advantage over π, accumlated over timesteps:

Lem

Given two policies π, π̃,

η(π̃) = η(π) + Eτ∼π̃

[ ∞∑
t=0

γtAπ(st , at)

]
(6)

= η(π) +
∑
s

ρπ̃(s)
∑
a

π̃(a | s)Aπ(s, a) (7)

where ρπ(s) =
∑∞

t=0 γ
tP(st = s | π̃) is the (unnormalized) discounted

visitation frequencies.

Lisa Lee (CMU) Approximate PG methods May 2, 2017 11 / 13



A local approximation to η

However, in the approximate setting, there will be some states s for which
the expected advantage is negative, i.e.,

∑
a π̃(a | s)Aπ(s, a) < 0, due to

estimation and approximation error. We introduce the following local
approximation to η(π̃):

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a | s)γtAπ(s, a) (8)

which uses the visitation frequency ρπ rather than ρπ̃, ignoring changes in
state visitation density due to changes in the policy.

Lisa Lee (CMU) Approximate PG methods May 2, 2017 12 / 13



Difficult to choose a stepsize that works for the entire course of the
optimization, especially because the statistics of the states and
rewards changes

Often, the policy prematurely converges to a nearly-deterministic
policy with a suboptimal behavior.

We survey results on strong theoretical performance guarantees for reliable
monotonic improvement.

Lisa Lee (CMU) Approximate PG methods May 2, 2017 13 / 13
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Introduction Graph Based Method

This project aims to review some of the previous and current
work that may give insights into how spectral graph theory
works when applied in semi-supervised learning, particularly,
graph Laplacian.

Bulllet points
performance of graph laplacian
the performance when hyperparameters of the similarity
graph,
transformation of graph laplacian and noise model need to
be regularized which constrain the performance.



Introduction Graph Based Method

Graph representation of the data.

List of doing
Graph Construction
Injecting labels on a subset of vertices
Infer labels on unlabeled vertices on the graph



Introduction Graph Based Method

Problem Setup
While we have G = (V ,E) which are vertices and edges,the
observations as {xi}ni=1,the edges denoted as W , which Wij
connected the points xi and xj . Y denote the label. And the
vertices V can be partitioned as two sets as a label set Vlabel
and an unlabel set Vunlabel .The goal is to predict the label Ŷu
for the unlabel vertices. And for the weighted matrix, we have
assumptionsas

Wij ≥ 0, ∀i , j and Wij = Wji ,∀i , j
no edge means Wij = 0
no self loops, which means Wii = 0,∀1 ≤ i ≤ n
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