
Homework 1
10/36-702

Due Friday February 3 at 3:00 pm

1 Mathematical Statistics warm-up (do you remember 705?)

(a) Suppose that Xn ≥ 0 and E(Xn)=O(rn). Prove that Xn =OP(rn).

(b) Suppose that Xn ≥ 0 and Xn = OP(rn). Give an example to show that in general, this does not
imply that E(Xn)=O(rn).

(c) Prove that for X ≥ 0, it holds that E(X ) = ∫ ∞
0 P(X > t)dt. You may assume that X is continu-

ously distributed and hence has a probability density function.

(d) Suppose that Xn ≥ 0 and Xn = OP(rn), the latter bound holding “exponentially” fast, meaning
that there are constants γ0,n0 > 0 such that for all γ≥ γ0 and n ≥ n0, we have

Xn ≤ γrn with probability at least 1−exp(−γ).

Prove that E(Xn)=O(rn). (Hint: use the formulation for E(Xn) from the last question.)

(e) Let X1, . . . , Xn ∼ P, i.i.d., with µ= E(X i) and σ2 =Var(X i). Define

X n = 1
n

n∑
i=1

X i, S2
n = 1

n

n∑
i=1

(X i − X̄n)2.

(i) Prove that S2
n

p→σ2.

(ii) Prove that p
n(X n −µ)

Sn

d→ N(0,1).

(f) Let X ∈Rp and Y ∈R.

(i) Prove that E(Y − f (X ))2 is minimized by choosing f ∗(x)= E(Y |X = x).

(ii) Prove that E(Y − X Tβ)2 is minimized by choosing β∗ = B−1α, where B = E(X X T ) and α =
E(Y X ).

2 Linear regression and linear classification

(a) Let Σ= E[X X T ]. Assume that Σ is nonsingular. Let v1, . . . ,vd be the (orthonormal) eigenvectors
of Σ and let λ1, . . . ,λd be the corresponding eigenvectors. Let β∗ minimize E(Y − X Tβ)2.

(Below we will write 〈u,v〉 = uT v for the inner product between vectors u,v.)

(i) Show that β∗ =∑d
j=1 a jv j where

a j =
E[〈X ,v j〉Y ]

λ j
, j = 1, . . . ,d.
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(ii) Show that, for any vector b,

E[〈X ,b〉Y ]= E[〈X ,b〉〈X ,β∗〉],

and
E[(Y −〈b, X 〉)2]−E[(Y −〈β∗, X 〉)2]= E[〈b−β∗, X 〉2]= (b−β∗)TΣ(b−β∗).

(iii) Suppose that the data are drawn independently (X1,Y1), . . . , (Xn,Yn) ∼ P, where each X i ∈
R, E[X i] = 0, and E[X2

i ] = 1. Also, assume that each Yi and X i are bounded. Let (X ,Y ) ∼ P be
an independent pair. Let β∗ minimize E(Y −Xβ)2 and let β̂ minimize n−1 ∑n

i=1(Yi−βX i)2. Show
that ∫

|xβ̂− xβ∗|2dP(x)=OP(1/n).

(b) (Optional bonus problem) For β= (β1,β2, . . .) a sequence of real numbers, let

|β(1)| ≥ |β(2)| ≥ |β(3)| ≥ · · ·

denote the components of β ordered by their decreasing absolute values. The weak `p norm of
β, denoted by ‖β‖w,p, is the smallest C such that

|β( j)| ≤
C

j1/p , j = 1,2, . . .

Let D = {ψ1,ψ2, . . . , } be a countable collection of functions on [0,1]. Assume that
∫
ψi(x)ψ j(x)dx =

0 for each i 6= j and
∫
ψ2

j (x)dx = 1 for each j. The weak Lp ball is defined as

Lw,p(C)=
{

f =∑
j
β jψ j : ‖β‖w,p ≤ C

}
.

Define the best N-term approximation error

σN ( f )= inf
|Λ|≤N

inf
g∈Span(Λ)

‖ f − g‖,

where Λ⊆D, Span(Λ) denotes the set of linear combinations of functions in Λ, and ‖ f − g‖2 =∫
( f (x)− g(x))2dx. Show the following: if f ∈ Lw,p(C) with 0< p < 2, then

σN ( f )=O
(

1
Ns

)
,

where s = 1
p − 1

2 . Hint: an N-term approximation that achieves this order of error is in Span(Λ)
where Λ contains the functions that correspond to β(1), . . . ,β(N) in the expansion f =∑

jβ jψ j.

(c) Suppose that P(Y = 1) = P(Y =−1) = 1
2 and further, the two class distributions are X |Y =−1 ∼

Uniform(−10,5) and X |Y = 1 ∼ Uniform(−5,10). Derive an expression for the Bayes classifier,
and the Bayes risk.

(d) Construct a concrete binary class classification example, in which the data from the two classes
are linearly separable but the LDA solution does not separate the data. (A clear/thorough
description is all that is needed, not a formal proof.)

2



3 Nonparametric regression

(a) Assume that we observe i.i.d. samples (xi, yi) ∈R×R, i = 1, . . . ,n from a model

yi = f0(xi)+εi, i = 1, . . . ,n.

where εi, i = 1, . . . ,n are independent with E(εi) = 0 and E(ε2
i ) = σ2. For simplicity, we treat the

input points xi ∈ [0,1], i = 1, . . . ,n as fixed, satisfying the condition

Pn(I)≥ c|I|, for any interval I ⊆ [0,1] with |I| ≥ 1/n,

where Pn is the empirical distribution of the input points. Also assume that x ∈ [0,1]. We
also assume that the underlying regression function f0 has a continuous, bounded derivative.
Consider f̂ , the kernel smoothing estimate with a boxcar kernel and bandwidth h.

(i) Prove that the squared bias and variance of f̂ , at an arbitrary point x, satisfy(
E[ f̂ (x)]− f0(x)

)2︸ ︷︷ ︸
Bias2( f̂ (x))

. h2 and E
[(

f̂ (x)−E[ f̂ (x)]
)2]︸ ︷︷ ︸

Var( f̂ (x))

.
1

nh
.

(Hint: use a Taylor expansion of f0 around x.)

(ii) Derive the rate for the optimal choice of bandwidth h, and then give the error rate for the
corresponding kernel smoothing estimator.

(b) Consider the univariate kth order local polynomial regression estimate, trained on the points
(xi, yi) ∈R×R, i = 1, . . . ,n, which we know can be expressed as

f̂ (x)=
n∑

i=1
wi(x)yi,

for some weights wi(x), i = 1, . . .n.

(i) Prove that at any point x ∈R, we have
n∑

i=1
wi(x)= 1 and

n∑
i=1

wi(x)(xi − x) j = 0, for j = 1, . . .k.

(ii) Now assume the same model for the data as in part (a), and further assume that xi = i/n,
i = 1, . . . ,n, and f0 ∈ H1(k+1,L) for a positive integer k and a constant L > 0. Also assume that
x ∈ [0,1]. Take f̂ to be the local polynomial regression estimate of order k, and compute the bias
of f̂ at an arbitrary point x, using the results in the last part. (Hint: use a Taylor expansion,
and the results of the last question. You can use the fact that

∑n
i=1 |wi(x)| ≤ C for some constant

C that does not depend on n or h.) What do you conclude about the bias of local polynomial
regression, compared that of kernel regression?

(iii) Why don’t we just keep increasing the polynomial order k without end? You can answer
this either with some theory, or a quick simulation. (Hint: consider the variance of f̂ . You can
use the fact that

∑n
i=1 w2

i (x) is an increasing function of k.)

(c) (Optional bonus problem) Suppose that, in backfitting, we choose our univariate smoother
just to be standard univariate linear regression. Prove that backfitting converges in one pass,
and the resulting estimate is just standard multivariate linear regression.
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