
Homework 2
10/36-702

Due Friday March 3 at 3:00 pm

1 Splines, kernels, and wavelets

In the next several parts, you’ll do some work on the different ways to represent the smoothing
spline estimator. (Some of the details can be found in the lecture notes and in that case you can just
recapitulate the arguments rigorously here.)

(a) Let f̂ denote the cubic smoothing spline fit on the pairs (xi, yi) ∈R×R, i = 1, . . . ,n, and S denote
its smoother matrix, i.e., so that µ̂= ( f̂ (x1), . . . f̂ (xn)) ∈Rn satisfies

µ̂= Sy.

Let g1, . . . , gn be a basis for the set of natural cubic splines with knots at x1, . . . , xn. You may
assume (as proved in the lecture notes) that the smoothing spline solution f̂ lies in the span of
g1, . . . , gn. Show that the vector of fitted values can be written as µ̂= Nβ̂, where

β̂= argmin
β∈Rn

‖y−Nβ‖2
2 +λβTΩβ,

where λ≥ 0 is the smoothing spline tuning parameter, and hence

S = N(NT N +λΩ)−1NT ,

for a suitable matrices N,Ω ∈Rn×n defined in terms of g1, . . . , gn. (Some details for this can be
found in the lecture notes and you can just recapitulate the arguments rigorously here.)

(b) Recall that the leave-one-out cross-validation (CV) error is defined as

CV( f̂ )= 1
n

n∑
i=1

(
yi − f̂ −i(xi)

)2.

where f̂ −i is the estimator trained on all but the ith pair (xi, yi), for i = 1, . . . ,n. The lecture
notes gave the following magical shortcut computation for the leave-one-out CV error:

1
n

n∑
i=1

(yi − f̂ −i(xi))2 = 1
n

n∑
i=1

( yi − f̂ (xi)
1−Sii

)2
, (1)

and here you will prove it for the smoothing spline estimator.

(i) First fix some arbitrary i. Define z ∈ Rn so that z j = yj for all j 6= i, and zi = f̂ −i(xi). Prove
that f̂ −i(xi)=∑n

j=1 Si j z j, and hence

f̂ −i(xi)= 1
1−Sii

(
f̂ (xi)−Sii yi

)
. (2)
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(Hint: there are different ways to prove this; one way involves recalling the Sherman-Morrison
update formula, and another involves considering the smoothing spline criterion with response
z, when we include and exclude the ith sample point.)

(ii) Establish using (2) that

f̂ (xi)− f̂ −i(xi)= Sii
(
yi − f̂ −i(xi)

)
,

and hence

yi − f̂ −i(xi)= yi − f̂ (xi)
1−Sii

.

Square both sides, and sum over i = 1, . . .n, to give the result in (1).

(c) Verify the leave-one-out CV formula in (1) empirically. Simulate some data (or find some real
data), perform leave-one-out CV according to the original definition, according to the shortcut
formula, and show that these match over a discrete of tuning parameter values λ. Then plot
the smoothing spline fit, on top of the data set, at the value of λ that minimizes the CV error.
For this part and part (d) you may use any available package you prefer (e.g. smooth.spline
and KernSmooth in R).

(d) Prove that the property (2) and so the leave-one-out shortcut (1) also holds for kernel smooth-
ing. Verify that this leave-one-out CV formula holds empirically, for an example data set with
two-dimensional inputs points. As you did with smoothing splines, plot the data and the kernel
smoothing estimate (now a 3d plot, or a contour plot, or a heat map, etc.), at the value of the
bandwidth h that minimizes the CV error.

(e) Let W ∈Rn×n be an orthogonal basis matrix (so, like the matrix N above but with orthonormal
columns). Consider the wavelet smoothing estimator defined as µ̂=Wβ̂, and

β̂= argmin
β∈Rn

1
2
‖y−Wβ‖2

2 +λ‖β‖1,

where λ≥ 0 is a tuning parameter. Show that

β̂i = Tλ((WT y)i), i = 1, . . . ,n,

where Tλ is the soft-thresholding operator with threshold level λ, i.e.,

Tλ(x)=


x−λ x >λ
0 |x| ≤λ
x+λ x <−λ.

Conclude that wavelet smoothing is not a linear smoother, i.e., µ̂= µ̂(y) is not a linear function
of y. (For this, you must only demonstrate that µ̂(ay+b) 6= aµ̂(y)+b for some y,b ∈Rn, a ∈R.)

(f) Assume the normal data model
y∼ N(µ,σ2I),
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for some mean vector µ ∈Rn and variance parameter σ2 > 0. Prove that the risk of the wavelet
smoothing estimator with soft-thresholding function, for an arbitrary choice of tuning param-
eter λ, satisfies

1
n
E‖µ̂−µ‖2

2 =
1
n

n∑
i=1

r((WTµ)i,λ),

where

r(θ,λ)= θ2
∫ λ−θ

σ

−λ−θ
σ

φ(z)dz+
∫ ∞
λ−θ
σ

(σz−λ)2φ(z)dz+
∫ −λ−θ

σ

−∞
(σz+λ)2φ(z)dz,

and φ denotes the standard (univariate) normal density function.

(g) Prove, following from the last part, that for λ=σ√
2logn, the wavelet smoothing smoother

estimator with soft-thresholding function has risk satisfying

1
n
E‖µ̂−µ‖2

2 ≤
σ2

n
+ 2logn+1

n

n∑
i=1

min
{
(WTµ)2

i ,σ2
}
.

(Hint: start with σ2 = 1 for simplicity. Prove that, for any λ,θ ≥ 0, it holds that 0≤ ∂r(θ,λ)/∂θ ≤
2θ; from this, argue that r(θ,λ) is monotone increasing in θ, and further

r(θ,λ)≤ r(0,λ)+min{θ2, r(∞,λ)}.

Then, derive upper bounds on r(0,λ), r(∞,λ) (for the former you can use Mills’ ratio, and for
the latter use direct arguments), to give

r(θ,λ)≤ e−λ
2/2 +min{θ2,1+λ2}.

Plug in λ=√
2logn to give

r(θ,λ)≤ 1
n
+min{θ2,1+2logn}≤ 1

n
+ (2logn+1)min{θ2,1}.

Finally, argue that an analogous bound holds for general σ2, and average the right-hand side
above over θ = (WTµ)i, i = 1, . . . ,n, to give the result.)

In what situations (i.e., for what configurations of the mean µ) will this risk bound be small?

(Bonus) Consider a “poor man’s” version of smoothing splines, whose fitted values are given by µ̂=Wβ̂,
and

β̂= argmin
β∈Rn

‖y−Wβ‖2
2 +λ‖β‖2

2,

where W ∈Rn×n is an orthogonal basis matrix. Show that

β̂i = (WT y)i

1+λ , i = 1, . . . ,n.

Using the normal data model we considered above for wavelet smoothing, give an upper bound
on the risk of this (poor man’s) version of smoothing splines. Compare it to our previous upper
bound for the risk of wavelet smoothing, across different settings for µ, when both use the same
orthogonal transformation W , and both are properly tuned. When does wavelet smoothing have
better risk? When does it have worse risk?
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2 Density estimation

Let p̂h be the kernel density estimator (in one dimension) with bandwidth h = hn satisfying hn → 0
and nhn →∞. Let s2

n(x) = var(p̂h(x)). Assume that the density function is bounded, and the kernel
function is bounded with a compact support.

(a) Show that
p̂h(x)− ph(x)

sn(x)
 N(0,1)

where ph(x)= E[p̂h(x)].

Hint: The Lyapunov central limit theorem says the following: Suppose that Y1,Y2, . . . are inde-
pendent. Let µi = E[Yi] and σ2

i =Var(Yi). Let s2
n =∑n

i=1σ
2
i . If

lim
n→∞

1
s2+δ

n

n∑
i=1

E[|Yi −µi|2+δ]= 0

for some δ> 0. Then s−1
n

∑
i(Yi −µi) N(0,1).

(b) Suppose that the bandwidth hn is chosen optimally. Assume that the density function has a
bounded continuous second derivative. Show that bias2(x)/s2

n(x) does not necessarily tend to 0
as n →∞. To reduce the bias, one can use a simple trick called “twicing.” Define

p†(x)= 2p̂h(x)− p̂p
2h(x).

Show that, for this estimator, bias2(x)/s2
n(x)→ 0.

Comment: this implies that
p†

h(x)−p(x)
sn(x)  N(0,1). The twicing estimator is equivalent to using

the modified kernel K̃ = 2K −K ?K . Here, ? denotes convolution.

3 Clustering

Suppose that Y1, . . . ,Yn ∼ p where Yi ∈Rd. Suppose that

p =
k∑

j=1
π j p j

where π j > 0,
∑

jπ j = 1 and p j is a density function supported on a compact, connected set A j. Let

δ j` = inf
x∈A j

inf
y∈A`

||x− y||

for j 6= `. Assume that min j,`δ j` ≥ ∆ > 0. Let γ = max j diameter(A j). Finally, we will also assume
that p j is uniform on A j.
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(a) Show that, if ∆ is sufficiently large, then k-means is consistent. That is, each A j is contained
in a separate Voronoi cell, with probability tending to 1. Show that if ∆ is not large enough,
consistency can fail.

(b) Assume there exists ε0, c > 0 that for all x ∈ ⋃k
j=1 A j and ε ∈ (0,ε0), p(B(x,ε)) ≥ cωεd, where

B(x,ε) := {y ∈ Rd : ‖x− y‖ < ε} and ω being a volume of a unit ball. Show that for sufficiently
small h > 0 (but not necessarily going to 0), level set clustering using the kernel density estima-
tor with the boxcar kernel K(x)= 1

ω
I(x ∈B(0,1)) is consistent in the sense that, with probability

tending to 1, there exist disjoint density level set clusters B1, . . . ,Bk such that A j ⊂ B j for each
j. You can assume that conditions in Theorem 15 of Density Estimation notes are satisfied.
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