Homework 3
10/36-702
Due Friday March 31 at 3:00 pm

1 Reproducing kernel Hilbert spaces

(a) Let /# be a RKHS generated by a kernel K. Consider training data (X1,Y7),...,(X,,Y,) where
Y; €{-1,+1}. Let 1 =0 be a fixed real number, and let f minimize Y. ; L(f(X;),Y;) + )LIIfII?{.
Show that f has the form

fl)=Y a;K(X;,X)
i=1

where @ = (d1,...,a0,) minimizes
Q(Ka)+)LaT[Ka

for some function @ where K is an n x n matrix with K(j,2) = K(X;,X}).

(b) Let & be the set of all functions f :[0,1] — R such that f(x) = ax for some real number a. Show
that this is a RKHS with kernel K(x,y) = xy.

2 Basic inequalities

(a) Show that there exists a random variable X = 0 such that Markov’s inequality is an equality.

(b) Show that there exists a random variable Y such that Chebyshev’s inequality is an equality.

3 Chernoff’s method

Recall Chernoff’s method where we use the fact that P(X > §) < inf;»ge “°E[e’X]. Let X = 0. Suppose
that the moment generating function for X exists. Let § > 0. Show that
. E[X*]
inf
k=0,12,.. &

<infe ¥ F[e'X].
t>0

(Hence, Chernoff’s method does not necessarily give the tightest possible bounds.)

4 Sub-Gaussian variables

A random variable is sub-Gaussian if there exists a > 0 such that for all te R

0242
Fle!¥ M < e 7.



(a) Let X be Rademacher. Thus P(X =1) = P(X = -1) = 1/2. Show that X is sub-Gaussian with
a=1.

(b) Show that every bounded random variable is sub-Gaussian.

(c) Show that, if X is sub-Gaussian then

2

P(X -yl =) <2 22,

(d) Let X be sub-Gaussian with mean 0. Show that there exists b >0 and ¢ > 0 such that
P(X|=¢t)<cP(Z|=t)
for all ¢ = 0, where Z ~ N(0,b2).

You may use the following fact without proof: Let Z ~ N(0,1) and z > 0. Let ¢(z) be the standard
Normal density. Then P(Z = z) = ¢(2)(1/z — 1/23).

Hint: Consider the ratio P(X = ¢)/P(Z = t). Now consider two cases: (1) 0 <t <20 and (i1) ¢ > 20.

5 Inequality on a convex function

Let ¢ : R — R be a convex, non-decreasing function . Let & be a class of functions. Let ¢ = {f —E[f(X)]:
feZ}. Let
1 n
En=sup= Y 0;f(X;)
fegni=1
where 01,...,0, are Rademacher. Show that

E =

#(sup1Pa() P (1) ¢(%§n)].

6 Rademacher complexity

Let & denote all indicator functions of finite subsets of [0,1]. Let P be the uniform distribution on
[0,1]. Show that Rad,,(¥) = 1/2, where

Rad, (%)= [E(supl Z O'if(Zi)).

feF N i=1

7 Minimax rate

Let X1,...,X, ~Unif(0,0) where 0 <0 < M for some constant M. Let
R, =inf sup [Egl0—0|
0 0e(0,M)

be the minimax risk for estimating 6. Show that R, = 1/n. (Recall that a, = b, means that both
a,/b, and b,/a, are bounded for all large n.)



8 Hellinger distance

The Hellinger distances between distributions P and @ is

H(P,Q)=\/f(\/p7—\/6)2

where P has density p and @ has density q.

(a) Let TV denote the total variation distance. Show that

2
TV(RQ)sH(P,Q)\/l—w.

You may use the following fact without proof: TV(P,Q) =P - Q|1/2.

(b) Let X1,...,X, beiid. Let p” = p(x1,...,x,) =[]; p(x;) and ¢" = q(x1,...,x,) = [1; q¢(x;) be joint
density functions. Let p; = p(x;) and q; = q(x;). Show that

H(p",q")=V2 \/1— [[a-@W2H2(p;,q,).
=1



