
Homework 3
10/36-702

Due Friday March 31 at 3:00 pm

1 Reproducing kernel Hilbert spaces

(a) Let H be a RKHS generated by a kernel K . Consider training data (X1,Y1), . . . , (Xn,Yn) where
Yi ∈ {−1,+1}. Let λ ≥ 0 be a fixed real number, and let f̂ minimize

∑n
i=1 L( f (X i),Yi)+λ|| f ||2K .

Show that f̂ has the form

f̂ (x)=
n∑

i=1
α̂iK(X i, X )

where α̂= (α̂1, . . . , α̂n) minimizes
Q(Kα)+λαTKα

for some function Q where K is an n×n matrix with K( j,k)= K(X j, Xk).

(b) Let F be the set of all functions f : [0,1]→R such that f (x)= ax for some real number a. Show
that this is a RKHS with kernel K(x, y)= xy.

2 Basic inequalities

(a) Show that there exists a random variable X ≥ 0 such that Markov’s inequality is an equality.

(b) Show that there exists a random variable Y such that Chebyshev’s inequality is an equality.

3 Chernoff’s method

Recall Chernoff ’s method where we use the fact that P(X > δ)≤ inft>0 e−tδE[etX ]. Let X ≥ 0. Suppose
that the moment generating function for X exists. Let δ> 0. Show that

inf
k=0,1,2,...

E[X k]
δk ≤ inf

t>0
e−tδ E[etX ].

(Hence, Chernoff ’s method does not necessarily give the tightest possible bounds.)

4 Sub-Gaussian variables

A random variable is sub-Gaussian if there exists a > 0 such that for all t ∈R

E[et(X−µ)]≤ e
a2 t2

2 .
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(a) Let X be Rademacher. Thus P(X = 1) = P(X = −1) = 1/2. Show that X is sub-Gaussian with
a = 1.

(b) Show that every bounded random variable is sub-Gaussian.

(c) Show that, if X is sub-Gaussian then

P(|X −µ| ≥ t)≤ 2e−
t2

2a2 .

(d) Let X be sub-Gaussian with mean 0. Show that there exists b > 0 and c > 0 such that

P(|X | ≥ t)≤ cP(|Z| ≥ t)

for all t ≥ 0, where Z ∼ N(0,b2).

You may use the following fact without proof: Let Z ∼ N(0,1) and z > 0. Let φ(z) be the standard
Normal density. Then P(Z ≥ z)≥φ(z)(1/z−1/z3).

Hint: Consider the ratio P(X ≥ t)/P(Z ≥ t). Now consider two cases: (i) 0≤ t ≤ 2σ and (ii) t > 2σ.

5 Inequality on a convex function

Let φ :R→R be a convex, non-decreasing function . Let F be a class of functions. Let G = { f −E[ f (X )] :
f ∈F }. Let

ξn = sup
f ∈G

1
n

n∑
i=1

σi f (X i)

where σ1, . . . ,σn are Rademacher. Show that

E

[
φ

(
sup
f ∈F

|Pn( f )−P( f )|
)]

≥ E
[
φ

(1
2
ξn

)]
.

6 Rademacher complexity

Let F denote all indicator functions of finite subsets of [0,1]. Let P be the uniform distribution on
[0,1]. Show that Radn(F )≥ 1/2, where

Radn(F )= E
(
sup
f ∈F

1
n

n∑
i=1

σi f (Zi)

)
.

7 Minimax rate

Let X1, . . . , Xn ∼Unif(0,θ) where 0< θ < M for some constant M. Let

Rn = inf
θ̂

sup
θ∈(0,M)

Eθ|θ̂−θ|

be the minimax risk for estimating θ. Show that Rn ³ 1/n. (Recall that an ³ bn means that both
an/bn and bn/an are bounded for all large n.)

2



8 Hellinger distance

The Hellinger distances between distributions P and Q is

H(P,Q)=
√∫

(
p

p−p
q)2

where P has density p and Q has density q.

(a) Let TV denote the total variation distance. Show that

TV (P,Q)≤ H(P,Q)

√
1− H2(P,Q)

4
.

You may use the following fact without proof: TV (P,Q)= ‖P −Q‖1/2.

(b) Let X1, . . . , Xn be iid. Let pn ≡ p(x1, . . . , xn) = ∏
i p(xi) and qn = q(x1, . . . , xn) = ∏

i q(xi) be joint
density functions. Let pi = p(xi) and qi = q(xi). Show that

H(pn, qn)=
p

2

√
1−

n∏
i=1

(1− (1/2)H2(pi, qi)).
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