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Distribution-Free Prediction Sets
Jing LEI, James ROBINS, and Larry WASSERMAN

This article introduces a new approach to prediction by bringing together two different nonparametric ideas: distribution-free inference and
nonparametric smoothing. Specifically, we consider the problem of constructing nonparametric tolerance/prediction sets. We start from the
general conformal prediction approach, and we use a kernel density estimator as a measure of agreement between a sample point and the
underlying distribution. The resulting prediction set is shown to be closely related to plug-in density level sets with carefully chosen cutoff
values. Under standard smoothness conditions, we get an asymptotic efficiency result that is near optimal for a wide range of function
classes. But the coverage is guaranteed whether or not the smoothness conditions hold and regardless of the sample size. The performance
of our method is investigated through simulation studies and illustrated in a real data example.

KEY WORDS: Conformal prediction; Consistency; Density level sets; Finite sample; Kernel density.

1. INTRODUCTION

1.1 Prediction Sets and Density Level Sets

Suppose we observe independent and identically distributed
(iid) data Y1, . . . , Yn ∈ Rd from a distribution P. Our goal is to
construct a prediction set Cn = Cn(Y1, . . . , Yn) ⊆ Rd such that

P (Yn+1 ∈ Cn) ≥ 1 − α (1)

for a fixed 0 < α < 1, where P = Pn+1 is the product proba-
bility measure over the (n+ 1)-tuple (Y1, . . . , Yn+1). In general,
we let P denote Pn or Pn+1 depending on the context.

The prediction set problem has a natural connection to density
level sets and density-based clustering. Given a random sample
from a distribution, it is often of interest to ask where most of
the probability mass is concentrated. A natural answer to this
question is the density level set L(t) = {y ∈ Rd : p(y) ≥ t},
where p is the density function of P. When the distribution
P is multimodal, a suitably chosen t will give a clustering of
the underlying distribution (Hartigan 1975). When t is given,
consistent estimators of L(t) and rates of convergence have
been studied in detail (Polonik 1995; Tsybakov 1997; Baillo,
Cuestas-Alberto, and Cuevas 2001; Baillo 2003; Cadre 2006;
Willett and Nowak 2007; Rigollet and Vert 2009; Rinaldo and
Wasserman 2010). It often makes sense to define t implicitly
using the desired probability coverage (1 − α):

t(α) = inf {t : P (L(t)) ≥ 1 − α} . (2)

Let μ(·) denote the Lebesgue measure on Rd . If the contour
{y : p(y) = t(α)} has zero Lebesgue measure, then it is easily
shown that

C(α) := L(t(α)) = arg min
C
μ(C) , (3)

where the min is over {C : P (C) ≥ 1 − α}. Therefore, the
density-based clustering problem can sometimes be formulated
as estimation of the minimum volume prediction set.
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The study of prediction sets has a long history in statistics un-
der various names such as “tolerance regions” and “minimum
volume sets;” see, for example, Wilks (1941), Wald (1943),
Fraser and Guttman (1956), Guttman (1970), Aichison and
Dunsmore (1975), Chatterjee and Patra (1980), Di Bucchian-
ico, Einmahl, and Mushkudiani (2001), Cadre (2006), and Li
and Liu (2008). Also related is the notion of quantile contours
(Wei 2008). In this article, we study a newer method due to
Vovk, Gammerman, and Shafer (2005), which we describe in
Section 2.

1.2 Main Results

Let Cn be a prediction set. There are two natural criteria to
measure its quality: validity and efficiency. By validity, we mean
that Cn has the desired coverage for all P [e.g., in the sense of
(1)]. We measure the efficiency of Cn in terms of its closeness
to the optimal (oracle) set C(α). Since p is unknown, C(α) cannot
be used as an estimator but only as a benchmark in evaluating
the efficiency. We define the loss function of Cn by

R(Cn) = μ
(
Cn�C(α)

)
, (4)

where � denotes the symmetric set difference. We say that Cn
is efficient at rate rn for a class of distributions P if, for every
P ∈ P , P (R(Cn) ≥ rn) → 0 as n → ∞. Such loss functions
have been used, for example, by Chatterjee and Patra (1980)
and Li and Liu (2008) in nonparametric prediction set estimation
and by Tsybakov (1997) and Rigollet and Vert (2009) in density
level set estimation.

In this article, we constructCn with the following properties.

1. Finite sample validity:Cn satisfies (1) for all P and n under
no assumption other than iid.

2. Asymptotic efficiency: Cn is efficient at rate (log n/n)cp,α

for some constant cp,α > 0 depending only on the smooth-
ness of p.

3. For any y ∈ Rd , the computational cost of evaluating
1(y ∈ Cn) is linear in n.

Our prediction set is obtained by combining the idea of con-
formal prediction (Vovk, Gammerman, and Shafer 2005) with
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density estimation. We show that such a set, whose analytical
form may be intractable, is sandwiched by two kernel density
level sets with carefully tuned cutoff values. Therefore, the effi-
ciency of the conformal prediction set can be approximated by
those of the two kernel density level sets. As a by-product, we
obtain a kernel density level set that always contains the con-
formal prediction set and satisfies finite sample validity as well
as asymptotic efficiency. In the efficiency argument, we refine
the rates of convergence for plug-in density level sets at implic-
itly defined levels first developed in Cadre (2006) and Cadre,
Pelletier, and Pudlo (2009), which may be of independent in-
terest. We remark that, while the method gives valid prediction
regions in any dimension, the efficiency of the region can be
poor in higher dimensions.

1.3 Related Work

The conformal prediction method (Vovk, Gammerman, and
Shafer 2005; Shafer and Vovk 2008) is a general approach for
constructing distribution-free, sequential prediction sets using
exchangeability and is usually applied to sequential classifica-
tion and regression problems (Vovk, Nouretdinov, and Gam-
merman 2009). We show that one can adapt the method to the
prediction task described in (1). We describe this general method
in Section 2 and our adaptation in Section 3.

In multivariate prediction set estimation, common approaches
include methods based on statistically equivalent blocks (Tukey
1947; Li and Liu 2008) and plug-in density level sets (Chatterjee
and Patra 1980; Hyndman 1996; Cadre 2006). In the former, an
ordering function taking values in R1 is used to order the data
points. Then one-dimensional tolerance interval methods (e.g.,
Wilks 1941) can be applied. Such methods usually give accurate
coverage but efficiency is hard to prove. Li and Liu (2008)
proposed an estimator, with a high computational cost, using the
multivariate spacing depth as the ordering function. Consistency
is only proved when the level sets are convex. On the other hand,
the plug-in methods (Chatterjee and Patra 1980) give provable
validity and efficiency in an asymptotic sense regardless of the
shape of the distribution, with a much easier implementation. As
mentioned earlier, our estimator can be approximated by plug-in
level sets, which are similar to those introduced in Chatterjee
and Patra (1980), Hyndman (1996), Cadre (2006), and Park,
Huang, and Ding (2010). However, these methods do not give
finite sample validity.

Other important work on estimating tolerance regions and
minimum volume prediction sets includes Polonik (1997),
Walther (1997), Di Bucchianico, Einmahl, and Mushkudiani
(2001), and Scott and Nowak (2006). Scott and Nowak (2006)
did have finite sample results but did not have the guarantee
given in Equation (1), which is the focus of this article. Band-
width selection for level sets is discussed in Samworth and
Wand (2010). There is also a literature on anomaly detection
that amounts to constructing prediction sets. Recent advances
in this area include Zhao and Saligrama (2009), Sricharan and
Hero (2011), and Steinwart, Hush, and Scovel (2005).

In Section 2, we introduce conformal prediction. In Section 3,
we describe a construction of prediction sets by combining con-
formal prediction with kernel density estimators. The approx-
imation result (sandwich lemma) and asymptotic properties are

also discussed. A method for choosing the bandwidth is given
in Section 4. Simulation and a real data example are presented
in Section 5. Some technical proofs are given the Appendix.

2. CONFORMAL PREDICTION

Let Y1, . . . , Yn be a random sample from P and let Y =
(Y1, . . . , Yn). Fix some y ∈ Rd and let us tentatively set Yn+1 =
y. Let σi = σ ({Y1, . . . , Yn+1}, Yi) be a “conformity score” that
measures how similar Yi is to {Y1, . . . , Yn+1}. We only require
that σ be symmetric in the entries of it first argument. We test
the hypothesis H0 : Yn+1 = y by computing the p-value

πn(y) = 1

n+ 1

n+1∑
j=1

1[σj ≤ σn+1].

By symmetry, under H0, the ranks of the σi are uniformly
distributed among {1/(n+ 1), 2/(n+ 1), . . . , 1} and hence for
any α ∈ (0, 1), we have P (πn(y) ≤ α̃) ≤ α where α̃ = 	(n+
1)α
/(n+ 1) ≈ α. Let

Ĉ(α)(Y1, . . . , Yn) = {y : πn(y) ≥ α̃} . (5)

It follows that underH0, we have P [Yn+1 ∈ Ĉ(α)(Y1, . . . , Yn)] ≥
1 − α. Based on the above discussion, any conformity measure
σ can be used to construct prediction sets with finite sample
validity, with no assumptions on P. The only requirement is
exchangeability of the data. In this article, we will use σi =
p̂(Yi) where p̂ is an appropriate density estimator.

3. CONFORMAL PREDICTION WITH KERNEL
DENSITY

3.1 The Method

For a given bandwidth hn and kernel function K, let

p̂n(u) = 1

nhdn

n∑
i=1

K

(
u− Yi

hn

)
(6)

be the usual kernel density estimator. For now, we focus on
a given bandwidth hn. The theoretical and practical aspects of
choosing hn will be discussed in Sections 3.3 and 4, respectively.
For any given y ∈ Rd , let Yn+1 = y and define the augmented
density estimator

p̂yn(u) = 1

hdn(n+ 1)

n+1∑
i=1

K

(
u− Yi

hn

)
=
(

n

n+ 1

)
p̂n(u)

+ 1

hdn(n+ 1)
K

(
u− y

hn

)
. (7)

Now we use the conformity measure σi = p̂
y
n(Yi) and the p-

value becomes

πn(y) := 1

n+ 1

n+1∑
i=1

1
[
p̂yn(Yi) ≤ p̂yn(y)

]
.

The resulting prediction set is Ĉ(α) = {y : πn(y) ≥ α̃}. It follows
that P [Yn+1 ∈ Ĉ(α)] ≥ 1 − α for all P and all n as required.

Figure 1 shows a one-dimensional example of the procedure.
The top left plot shows a histogram of some data of sample size
20 from a two-component Gaussian mixture. The next three
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Figure 1. Top left: histogram of some data. Top middle, top right, and bottom left show three kernel density estimators and the corresponding
conformal prediction sets with bandwidth 0.1, 1, and 10, respectively. Bottom middle: Lebesgue measure as a function of bandwidth. Bottom
right: estimator and prediction set obtained from the bandwidth with smallest prediction set.

plots (top middle, top right, bottom left) show three kernel den-
sity estimators with increasing bandwidths as well as the confor-
mal prediction sets derived from these estimators withα = 0.05.
Every bandwidth leads to a valid set, but undersmoothing and
oversmoothing lead to larger sets. The bottom middle plot shows
the Lebesgue measure of the set as a function of bandwidth. The
bottom right plot shows the estimator and prediction set based
on the bandwidth whose corresponding conformal prediction
set has the minimal Lebesgue measure.

3.2 An Approximation

The conformal prediction set is expensive to compute since
we have to compute πn(y) for every y ∈ Rd . Here we derive
an approximation to Ĉ(α) that can be computed quickly and
maintains finite sample validity. Define the upper and lower
level sets of density p at level t, respectively:

L(t) = {y : p(y) ≥ t}, and L�(t) = {y : p(y) ≤ t}. (8)

The corresponding level sets of p̂n are denoted by Ln(t) and
L�n(t), respectively. Let Y(1), . . . , Y(n) be the reordered data so
that p̂n(Y(1)) ≤ · · · ≤ p̂n(Y(n)). Let in,α = 	(n+ 1)α
, and de-
fine the inner and outer sandwiching sets:

L−
n = Ln

(
p̂n(Y(in,α))

)
, L+

n = Ln
(
p̂n(Y(in,α)

)− (nhd )−1ψK
)
,

where ψK = supu,u′ |K(u) −K(u′)|. Then we have the follow-
ing “sandwich” lemma, whose proof can be found in Ap-
pendix B.

Lemma 3.1. (Sandwich Lemma). Let Ĉ(α) be the conformal
prediction set based on the kernel density estimator. Assume
that supu |K(u)| = K(0). Then

L−
n ⊆ Ĉ(α) ⊆ L+

n . (9)

According to the sandwich lemma, L+
n also guarantees

distribution-free finite sample coverage and is easier to ana-
lyze. Moreover, it is much faster to compute since it avoids ever
having to compute the kernel density estimator based on the
augmented data. The inner set, L−

n , which is used as an estimate
of C(α) in related work such as in Chatterjee and Patra (1980);

Hyndman (1996); and Cadre, Pelletier, and Pudlo (2009), gener-
ally does not have finite sample validity. We confirm this through
simulations in Section 5. Next we investigate the efficiency of
these prediction sets.

3.3 Asymptotic Properties

The inner and outer sandwiching sets L−
n and L+

n are plug-
in estimators of density level sets of the form Ln(t (α)

n ) = {y :
p̂n(y) ≥ t (α)

n }, where t (α)
n = p̂n(Y(in,α)) for the inner set L−

n and
t (α)
n = p̂n(Y(in,α)) − (nhdn)−1ψK for the outer set L+

n . Here we
can view t (α)

n as an estimate of t (α). In Cadre, Pelletier, and
Pudlo (2009), it is shown that, under regularity conditions of the
density p, the plug-in estimators t (α)

n and Ln(t (α)
n ) are consistent

with convergence rate 1/
√
nhdn for a range of hn. Here we refine

the results under more general conditions. We note that similar
convergence rates for plug-in density level sets with a fixed
and known level are obtained in Rigollet and Vert (2009). The
extension to unknown levels is nontrivial and needs slightly
stronger regularity conditions.

Intuitively speaking, the plug-in density level setLn(t (α)
n ) is an

accurate estimator ofL(t (α)) if p̂n and t (α)
n are accurate estimators

of p and t (α), and p is not too flat at level t (α). The following
smoothness condition is assumed for p and K to ensure accurate
density estimation.

A1. The density p is Hölder smooth of order β, with β > 0,
and K is a valid kernel of order β.

Hölder smoothness and valid kernels are standard assumptions
for nonparametric density estimation. We give their definitions
in Appendix A.

Remark 3.2. Assumption A1 can be relaxed in a similar way
as in Rigollet and Vert (2009). The idea is that we only need
to estimate the density very accurately in a neighborhood of
∂C(α) (the boundary of the optimal set). Therefore, it would be
sufficient to have the strongβ-Hölder smoothness condition near
∂C(α), together with a weaker β ′-Hölder smoothness condition
(β ′ ≤ β) everywhere else. For presentation simplicity, we stick
with the global smoothness condition in A1.
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To control the regularity of p at level t (α), a common assump-
tion is the γ -exponent condition, which was first introduced by
Polonik (1995) and has been used by many others (see, e.g.,
Tsybakov 1997 and Rigollet and Vert 2009). In our argument,
such an assumption is also related to estimating t (α) itself.
Specifically, we assume

A2. There exist constants 0 < c1 ≤ c2 and ε0 > 0 such that

c1|ε|γ ≤ |P ({y : p(y) ≤ t (α) + ε}) − α|
≤ c2|ε|γ , ∀ − ε0 ≤ ε ≤ ε0. (10)

The gamma exponent condition requires that the density to be
neither flat (for stability of level set) nor steep (for accuracy
of t (α)

n ). As indicated in Audibert and Tsybakov (2007), A1
and A2 cannot hold simultaneously unless γ (1 ∧ β) ≤ 1. In the
common case γ = 1, this always holds.

Assumptions A1 and A2 extend those in Cadre et al. (2009),
where β = γ = 1 is considered. The next theorem states the
quality of cutoff values used in the sandwiching sets L−

n

and L+
n .

Theorem 3.3. Let t (α)
n = p̂n(Y(in,α)), where p̂n is the kernel

density estimator given by Equation (6), and Y(i) and in,α are
defined as in Section 3.2. Assume that A1–A2 hold and choose
hn � (log n/n)1/(2β+d). Then for anyλ > 0, there exist constants
Aλ, A′

λ depending only on p, K, and α, such that

P

(∣∣t (α)
n − t (α)

∣∣ ≥Aλ
(

log n

n

) β

2β+d
+ A′

λ

(
log n

n

) 1
2γ

)
=O(n−λ).

(11)

We give the proof of Theorem 3.3 in Appendix C. Theorem
3.3 is useful for establishing the convergence of the correspond-
ing level set. Observing that (nhdn)−1 = o((log n/n)β/(2β+d)), it
follows immediately that the cutoff value used in L+

n also sat-
isfies (11). The next theorem, proved in Appendix C, gives the
rate of convergence for our estimators.

Theorem 3.4. Under same conditions as in Theorem 3.3, for
any λ > 0, there exist constants Bλ, B ′

λ depending on p, K, and
α only, such that, for all Ĉ ∈ {Ĉ(α), L−

n , L
+
n },

P

(
μ
(
Ĉ�C(α)

) ≥ Bλ

(
log n

n

) βγ

2β+d
+B ′

λ

(
log n

n

) 1
2

)
=O(n−λ).

(12)

Remark 3.5. In the most common cases γ = 1, or β ≥ 1/2,
γβ ≤ 1, the term (log n/n)βγ/(2β+d) dominates the convergence
rate. It matches the minimax risk rate of the plug-in density level
set at a known level developed by Rigollet and Vert (2009). As
a result, not knowing the cutoff value t (α) does not change the
difficulty of estimation. When βγ/(2β + d) > 1/2, the rate is
dominated by (log n/n)1/2 and does not agree with the known
minimax lower bound and we do not know if the

√
log n/n can

be eliminated from the result.

Remark 3.6. The theorems above were stated for the optimal
choice of bandwidth. The method is still consistent with similar
arguments whenever nhdn/ log n → ∞ and hn → 0, although
the resulting rates will no longer be optimal.

Remark 3.7. The same conclusions in Theorems 3.3 and 3.4
hold under a weaker version of Assumption A1. To make this
idea more precise, suppose the density function is only β-Hölder
smooth in a neighborhood of the level set contour {y : p(y) =
t (α)}, but less smooth everywhere else. Then the same proofs
of Theorems 3.3 and 3.4 can be used to obtain a slower rate of
convergence. After establishing this first consistency result, one
can apply the argument again, with the analysis confined in the
smooth neighborhood, to obtain the desired rate of convergence.
However, in the interest of space and clarity, we will prove our
results only under the more restrictive smoothness assumptions
that we have stated.

4. CHOOSING THE BANDWIDTH

As illustrated in Figure 1, the efficiency of Ĉ(α) depends on
the choice of hn. The size of estimated prediction sets can be
very large if the bandwidth is either too large or too small. There-
fore, in practice, it is desirable to choose a good bandwidth in an
automatic and data-driven manner. In kernel density estimation,
the choice of bandwidth has been one of the most important top-
ics and many approaches have been studied; see Loader (1999),
Mammen et al. (2011), Samworth and Wand (2010), and ref-
erences therein. Here we consider choosing the bandwidth by
minimizing the volume of the conformal prediction set.

Let H = {h1, . . . , hm} be a grid of candidate bandwidths. We
compute the prediction set for each h ∈ H and choose the one
with the smallest volume. To preserve finite sample validity,
we use sample splitting as described in Algorithm 1. We state
the following result and omit its proof.

Proposition 4.1. If Ĉ satisfies finite sample validity for all
h, then Ĉĥ,2, the output of the sample splitting tuning algorithm,
also satisfies finite sample validity.

Algorithm 1: Tuning With Sample Splitting
Input: sample Y = (Y1, . . . , Yn), prediction set estimator Ĉ,
level α, and candidate set H

1. Split the sample randomly into two equal-sized subsam-
ples, Y1 and Y2.

2. Construct prediction sets {Ĉh,1 : h ∈ H} each at level 1 −
α, using subsample Y1.

3. Let ĥ = arg minh μ(Ĉh,1).
4. Return Ĉĥ,2, which is constructed using bandwidth ĥ and

subsample Y2.

There are two justifications for choosing a bandwidth to make
μ(Ĉh) small. The first is pragmatic: in making predictions, it
seems desirable to have a small prediction set. The second reason
is that minimizing μ(C) can potentially lead to good risk prop-
erties in terms of the loss μ(C�C(α)) as we now show. Recall
that R(C) = μ(C�C(α)) and define E(C) = μ(C) − μ(C(α)).
To avoid technical complications, we will assume in this sec-
tion that the sample space is compact and focus on the simple
case γ = 1 in condition A2.

Lemma 4.2. Let Ĉ be an estimator of C(α). Then E(Ĉ) ≤
R(Ĉ). Furthermore, if Ĉ is finite sample valid and A2
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Figure 2. Conformal prediction set (left) and the convex hull of the multivariate spacing depth-based tolerance set (right), with data from a
two-component Gaussian mixture. The online version of this figure is in color.

holds with γ = 1, then E(R(Ĉ)) ≤ c1[E(E(Ĉ))]1/2 for some
constant c1.

The bandwidth selection algorithm makes E(Ĉ) small. The
lemma gives us at least some assurance that making E(Ĉ) small
will help to make R(Ĉ) small. The proof of Lemma 4.2 is given
in Appendix D. (A similar result can be found in Scott and
Nowak (2006).) However, it is an open question whether R(Ĉ)
achieves the minimax rate.

5. NUMERICAL EXAMPLES

We first consider simulations on Gaussian mixtures and
double-exponential mixtures in two and three dimensions. We
apply the bandwidth selector presented in Section 4 to both Ĉ(α)

and L+
n . The bandwidth used for L−

n is the same as that for L+
n .

Therefore, in the results, it is possible to see if L−
n is bigger than

Ĉ(α), or if Ĉ(α) is bigger thanL+
n because of different bandwidths

and data splitting.

5.1 2D Gaussian Mixture

We first consider a two-component Gaussian mixture in
R2. The first component has mean (

√
2 log n− 2, 0) and

variance diag(4, 1/4), and the second component has mean
(0,

√
2 log n− 2) and variance diag(1/4, 4) (see Figure 2). This

choice of component centers is to make a moderate overlap be-

tween the data clouds from the two components. It makes the
prediction set problem more challenging.

Table 1 shows the coverage and Lebesgue measure of the
prediction set at level 0.9 (α = 0.1) over 100 repetitions. The
coverage is excellent and the size of the set is close to optimal.
Both the conformal set Ĉ(α) and the outer sandwiching set L+

n

give correct coverage regardless of the sample size. It is worth
noting that the inner sandwiching set L−

n (corresponding to
the method in Hyndman (1996) and Park, Huang, and Ding
(2010)) does not give the desired coverage, which suggests that
decreasing the cutoff value in L+

n is not merely an artifact of
proof, but a necessary tuning. The observed excess loss also
reflects a rate of convergence that supports our theoretical results
on the symmetric difference loss. We compare our method with
the approach introduced by Zhao and Saligrama (2009) (ĈZS),
where the prediction set is constructed by ranking the distances
from each data point to its kth nearest neighbor. It has been
reported that the choice of k is not crucial and we use k = 6.
(We remark further on the choice of k at the end of this section.)
This method is similar to ours but does not have finite sample
validity. We observe that the finite sample coverage of ĈZS is
less than the nominal level.

Figure 2 shows a typical realization of the estimators. In both
panels, the dots are data points when n = 200. The left panel
shows the conformal prediction set with sample splitting (blue
solid curve), together with the inner and outer sandwiching sets
(red-dashed and green-dotted curves, respectively). Also plotted

Table 1. The simulation results for 2D Gaussian mixture with α = 0.1 over 100 repetitions (mean and one standard deviation). The Lebesgue
measure of the ideal set ≈ 28.02

Coverage Lebesgue measure

n = 100 n = 200 n = 1000 n = 100 n = 200 n = 1000

Ĉ(α) 0.886 ± 0.005 0.897 ± 0.002 0.900 ± 0.001 35.6 ± 0.7 34.3 ± 0.3 31.1 ± 0.2
L−
n 0.861 ± 0.004 0.882 ± 0.001 0.896 ± 0.001 29.8 ± 0.3 34.1 ± 0.2 32.2 ± 0.1
L+
n 0.907 ± 0.003 0.900 ± 0.001 0.907 ± 0.001 36.2 ± 0.4 36.9 ± 0.2 34.1 ± 0.1
ĈZS 0.853 ± 0.004 0.867 ± 0.002 0.881 ± 0.001 28.1 ± 0.4 28.2 ± 0.2 28.0 ± 0.1
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Figure 3. Lebesgue measure of prediction sets versus bandwidth.
The online version of this figure is in color.

is the ideal set C(α) (gray dash-dotted curve). It is clear that all
three estimated sets capture the main part of the ideal set, and
they are mutually close. On the right panel, we plot a realiza-
tion of the depth-based approach from Li and Liu (2008). This
approach does not require any tuning parameter. However, it
takes O(nd+1) time to evaluate 1(y ∈ Ĉ) for any single y. In
practice, it is recommended to compute the empirical depth
only for all the data points and use the convex hull of all data
points with high depth as the estimated prediction set. Such a
convex hull construction misses the “L” shape of the ideal set.
Moreover, in our implementation, the running time of the kernel
density method is much shorter even when n = 200.

Figure 3 shows the effect of bandwidth on the excess loss
E(Ĉ) = μ(Ĉ) − μ(C(α)) based on a typical implementation with
n = 200, where the y axis is the Lebesgue measure of the es-
timated sets. We observe that for the conformal prediction set
Ĉ(α), the excess loss is stable for a wide range of bandwidths,
especially that moderate undersmoothing does not harm the per-
formance very much. An intuitive explanation is that the data
near the contour are dense enough to allow for moderate under-
smoothing. Similar phenomena should be expected whenever
α is not too small. Moreover, the selected bandwidth from the
outer sandwiching set L+

n is close to that obtained from the con-
formal set. This observation may be of practical interest since it
is usually much faster to compute L+

n .

Remark 5.1. The ĈZS method requires a choice of k. We
tried k = 2, 3, . . . , 20. The coverage increases with k but does
not reach the nominal 0.9 level even when k = 20. The Lebesgue
measure also increases with k and after k = 20, it becomes larger
than the conformal region.

5.2 Further Simulations

We now investigate the performance of our method using
distributions with heavier tails and in higher dimensions. These
simulations confirm that our method always give finite sample
coverage, even when the density estimation is very challenging.

5.2.1 Double Exponential Distribution. In this setting, the
distribution also has two balanced components. The first compo-
nent has independent double exponential coordinates: Y (1) ∼
2 DoubleExp(1) + 2.2 log n, Y (2) ∼ 0.5 DoubleExp(1), where
DoubleExp(1) has density exp(−|y|)/2. The second component
has the two coordinates switched. The centering at 2.2 log n is
chosen so that there is moderate overlap between data clouds
from two components. The results are summarized in Table 2.

5.2.2 Three-Dimensional Data. Now we increase the di-
mension of data. The Gaussian mixture is the same as in the
two-dimensional setup, with the third coordinate being an inde-
pendent Gaussian with mean zero and variance 1/4. The results
are summarized in Table 3.

Remark 5.2. In the above two simulation settings, the confor-
mal prediction sets are much larger than the ideal (oracle) set un-
less the sample size is very large (n = 1000). This is because of
the difficulty of multivariate nonparametric density estimation.
In fact, the kernel density estimator may no longer lead to a good
conformity score in this case. However, the theory of conformal
prediction is still valid as reflected by the coverage. Thus, one
may use other conformity scores such as the k-nearest-neighbor
radius, for which a nonconformal version has been reported
in Zhao and Saligrama (2009). Other possible choices include
Gaussian mixture density estimators and semiparametric mod-
els. These extensions will be pursued in future work.

5.3 Application to Breast Cancer Data

In this subsection, we apply our method to the Wisconsin
Breast Cancer Dataset (available at the University of California,
Irvine (UCI) machine learning repository). The dataset contains
nine features of 699 patients among which 241 are malignant
and 458 are benign. Although this dataset is commonly used to
test classification algorithms, it has been used to test prediction
region methods in the literature (see, e.g, Park, Huang, and Ding
2010). In this example, we use prediction sets to tell malignant
cases from benign ones. Formally, we assume that the benign
cases are sampled from a common distribution, and we construct
a 95% prediction set corresponding to the high-density region
of the underlying distribution. Although the prediction sets are
constructed using only the benign cases, the efficiency of the
estimated prediction/tolerance set can be measured not only in

Table 2. The simulation results for 2D double exponential mixture with α = 0.1 over 100 repetitions (mean and one standard deviation). The
Lebesgue measure of the ideal set ≈ 55

Coverage Lebesgue measure

n = 100 n = 200 n = 1000 n = 100 n = 200 n = 1000

Ĉ(α) 0.895 ± 0.005 0.916 ± 0.003 0.91 ± 0.002 77.7 ± 3 76.6 ± 1.6 62.3 ± 0.6
L−
n 0.864 ± 0.006 0.897 ± 0.003 0.90 ± 0.001 66.5 ± 2.3 71.7 ± 1.2 58.3 ± 0.3
L+
n 0.893 ± 0.005 0.912 ± 0.003 0.92 ± 0.001 86.1 ± 7.4 78.2 ± 1.3 65.0 ± 0.4
ĈZS 0.871 ± 0.004 0.892 ± 0.003 0.897 ± 0.001 58.2 ± 1.5 60.2 ± 1.0 55.2 ± 0.4
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Table 3. The simulation results for 3D Gaussian mixture with α = 0.1 over 100 repetitions (mean and one standard deviation). The Lebesgue
measure of the ideal set ≈ 62

Coverage Lebesgue measure

n = 100 n = 200 n = 1000 n = 100 n = 200 n = 1000

Ĉ(α) 0.917 ± 0.004 0.902 ± 0.003 0.900 ± 0.002 109 ± 2.4 89 ± 1.5 74 ± 0.7
L−
n 0.875 ± 0.005 0.880 ± 0.003 0.889 ± 0.002 109 ± 2.1 98 ± 1.5 81 ± 0.7
L+
n 0.892 ± 0.004 0.898 ± 0.003 0.916 ± 0.002 118 ± 2.2 109 ± 1.6 96 ± 0.9
ĈZS 0.869 ± 0.003 0.872 ± 0.002 0.879 ± 0.001 75 ± 1.3 69 ± 0.8 64 ± 0.4

terms of its Lebesgue measure, but also in terms of the number
of false negatives (i.e., the number of malignant cases covered
by the prediction set). Ideally the prediction set shall contain
most of benign cases but few malignant cases and hence can be
used as a classifier.

In our implementation, the data dimension is reduced to two
using standard principal components analysis. Such a dimension
reduction simplifies visualization and has also been used in Park,
Huang, and Ding (2010). If no dimension reduction is used, the
data concentrates near a low dimensional subset of the space, and
other conformity scores, such as the k nearest neighbors radius,
can be used instead of kernel density estimation. To test the out-
of-sample performance of our method, we randomly choose 100
out of 458 benign cases as testing data. The prediction region
is constructed using only the remaining 358 benign cases with
coverage level 0.95 and kernel density bandwidth 0.8. We repeat
this experiment 100 times. A typical implementation is plotted in
Figure 4. In Table 4, we report the mean coverage on the testing
data as well as the malignant data. The resulting conformal
prediction sets give the desired coverage for the benign cases
and low false coverage for the malignant cases. Note that in this
case, the inner density level set L−

n is equivalent to the method
proposed in Park, Huang, and Ding (2010), which in general
does not have finite sample validity. In our experiment, the

Figure 4. Prediction sets for benign instances. Crosses: benign; di-
amonds: malignant. Blue dashed curve: L+

n ; black dotted curve: L−
n ;

Red solid curve: Ĉ(α). The online version of this figure is in color.

Table 4. Application to the breast cancer data with α = 0.05 over 100
repetitions. Reported are the mean and one estimated standard

deviation of the empirical coverage on the testing benign data and the
malignant data

Method Ĉ(α) L−
n L+

n

Test sample
coverage

0.9514 ± 0.0012 0.9488 ± 0.0012 0.9534 ± 0.0013

Malignant data
coverage

0.0141 ± 0.0002 0.0044 ± 0.0001 0.0420 ± 0.0004

average out-of-sample coverage is slightly below the nominal
level (by about one standard deviation). In this example, we see
that the conformal methods (Ĉ(α) andL+

n ) give similar empirical
performance as the conventional nonconformal method (L−

n ),
with additional finite sample guarantee.

APPENDIX A: DEFINITIONS

A.1 Hölder Smooth Functions

The Hölder class is a popular smoothness condition in nonparametric
inferences (Tsybakov 2009, sec. 1.2). Here we use the version given in
Rigollet and Vert (2009).

Let s = (s1, . . . , sd ) be a d-tuple of nonnegative integers and
|s| = s1 + · · · + sd . For any x ∈ Rd , let xs = x

s1
1 · · · xsdd and Ds be

the differential operator:

Dsf = ∂ |s|f
∂x

s1
1 . . . ∂x

sd
d

(x1, . . . , xd ).

Given β > 0, for any functions f that are 	β
 times differentiable,
denote its Taylor expansion of degree 	β
 at x0 by

f (β)
x0

(x) =
∑
|s|≤β

(x − x0)s

s1! . . . sd !
Dsf (x0).

Definition A.1 (Hölder class). For constants β > 0, L > 0, define
the Hölder class(β,L) to be the set of 	β
-times differentiable func-
tions on Rd such that∣∣f (x) − f (β)

x0
(x)
∣∣ ≤ L‖x − x0‖β . (A.1)

A.2 Valid Kernels

A standard condition on the kernel is the notion of β-valid kernels.

Definition A.2 (β-valid kernel). For any β > 0, functionK : Rd �→
R1 is a β-valid kernel if (a) K is supported on [−1, 1]d ; (b)

∫
K = 1; (c)∫ |K|r < ∞, all r ≥ 1; and (d)

∫
ysK(y)dy = 0 for all 1 ≤ |s| ≤ β.

The last condition is interpreted elementwise. In the literature, β-
valid kernels are usually used with Hölder class of functions to derive
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fast rates of convergence. The existence of univariate β-valid kernels
can be found in section 1.2 of Tsybakov (2009). A multivariate β-valid
kernel can be obtained by taking direct product of univariate β-valid
kernels.

APPENDIX B: PROOF OF LEMMA 3.1

Proof of Lemma 3.1. Let P y
n = n

n+1Pn + 1
n+1 δy , where Pn is the

empirical distribution defined by the sample Y = (Y1, . . . , Yn) and δy
is the point mass distribution at y. Define functions

G(t) = P (L�(t)),

Gn(t) = Pn
(
L�n(t)

) = n−1
n∑
i=1

1(p̂n(Yi) ≤ t),

Gy
n(t) = P y

n

(
p̂yn(Y ) ≤ t

)
= 1

n+ 1

(
n∑
i=1

1
(
p̂yn(Yi) ≤ t

)+ 1
(
p̂yn(y) ≤ t

))
.

The functions G, Gn, and Gy
n defined above are the cumulative distri-

bution function (CDF) of p(Y ) and its empirical versions with sample
Y and aug(Y, y), respectively, where aug(Y, y) = (Y1, . . . , Yn, y). By
(5), the conformal prediction set can be written as

Ĉ(α) = {
y ∈ Rd : Gy

n

(
p̂yn(y)

) ≥ α̃
}
.

The proof is based on a direct characterization of L−
n and L+

n . First,
for each y ∈ L−

n and i ≤ in,α , we have

p̂yn(y) − p̂yn
(
Y(i)

) = n

n+ 1

(
p̂n(y) − p̂n

(
Y(i)

))
+ 1

(n+ 1)hd

(
K(0) −K

(
Y(i) − y

h

))
≥ 0.

As a result, Gy
n(p̂

y
n(y)) ≥ in,α/(n+ 1) = α̃ and hence y ∈ Ĉ(α). Simi-

larly, for each y /∈ L+
n and i ≥ in,α , we have

p̂
y

h(y) − p̂
y

h

(
Y(i)

) = n

n+ 1

(
p̂h(y) − p̂h

(
Y(i)

))+ 1

(n+ 1)hd

×
(
K(0) −K

(
Y(i) − y

h

))
≤ n

n+ 1

(
p̂h(y) − p̂h

(
Y(in,α )

))+ 1

(n+ 1)hd
ψK < 0.

Therefore, Gy
n(p̂

y
n(y)) ≤ (in,α − 1)/(n+ 1) < α̃ and hence y /∈

Ĉ(α). �

APPENDIX C: PROOF OF THEOREMS 3.3 AND 3.4

The bias in the estimated cutoff level t (α)
n can be bounded in terms

of two quantities:

Vn = sup
t>0

|Pn(L�(t)) − P (L�(t))|, Rn = ‖p̂n − p‖∞.

Here Vn can be viewed as the maximum of the empirical process
Pn − P over a nested class of sets and Rn is the L∞ loss of the density
estimator. As a result, Vn can be bounded using the standard empirical
process and Vapnik-Chervonenkis (VC) dimension argument and Rn
can be bounded using the smoothness of p and kernel K with a suitable
choice of bandwidth. Formally, we provide upper bounds for these two
quantities through the following lemma.

Lemma C.1. Let Vn, Rn be defined as above, then under Assump-
tions A1 and A2, for any λ > 0, there exist constants A1,λ and A2,λ

depending on λ only, such that

P

(
Vn ≥ A1,λ

√
log n

n

)
= O(n−λ),

P

(
Rn ≥ A2,λ

(
log n

n

) β
2β+d

)
= O(n−λ).

Proof. First, it is easy to check that the class of sets {L�(t) : t > 0}
are nested with VC dimension 2 and hence by classical empirical
process theory (see, e.g., van der Vaart and Wellner (1996), sec. 2.14),
there exists a constant C0 > 0 such that for all η > 0

P (Vn ≥ η) ≤ C0n
2 exp(−nη2/32). (A.2)

Let η = A
√

log n/n, we have

P (Vn ≥ A
√

log n/n) ≤ C0n
2 exp(−A2 log n/32) = C0n

−(A2/32−2).
(A.3)

The first result then follows by choosing A1,λ = √
32(λ+ 2). Next

we bound Rn. Let p̄ = E[p̂n] and εn = (log n/n)β/(2β+d). By triangle
inequality, Rn ≤ ‖p̂n − p̄‖∞ + ‖p̄ − p‖∞.Due to a result of Giné and
Guillou (2002) [see also (49) in chapter 3 of Prakasa Rao (1983)],
under Assumption A1, there exist constants C1, C2, and B0 > 0 such
that have for all B ≥ B0,

P (‖p̂n − p̄‖∞ ≥ Bεn) ≤ C1 exp(−C2B
2 log(h−1

n )) = C1h
C2B

2

n .

(A.4)

On the other hand, by Assumption A1, for some constant C3,

‖p̄ − p‖∞ ≤ C3h
β
n . (A.5)

In (A.3), (A.4), and (A.5), the constants Ci , i = 0, . . . , 3, depend on p
and K only. Hence,

P (‖p̂ − p‖∞ ≥ (C3 + B)εn) ≤ C1h
C2B

2

n , (A.6)

which concludes the second part by choosing A2,λ = C3 +
√

(2β+d)λ
C2

.

�
Proof of Theorem 3.3. Let αn = in,α/n = 	(n+ 1)α
/n. We have

|αn − α| ≤ 1/n. Recall that the ideal level t (α) can be written as t (α) =
G−1(α) where the function G is the CDF of p(Y ), as defined in Section
3.2. By the γ -exponent condition, the inverse of G is well defined in a
small neighborhood of α. When n is large enough, we can define t (αn)

as t (αn) = G−1(αn).
Again, by the γ -exponent condition, c1|t (αn) − t (α)|γ ≤ |G(t (αn)) −

G(t (α))| = |αn − α| ≤ 1
n
. Therefore, for n large enough

|t (αn) − t (α)| ≤ (c1n)−1/γ . (A.7)

Equation (A.7) allows us to switch to the problem of bounding |t (α)
n −

t (αn)|. Recall that t (α)
n = p̂n(Y(in,α )). The key of the proof is to observe

that t (α)
n = G−1

n (αn) := inf{t : Gn(t) ≥ αn}. Then it suffices to show
that G−1 and G−1

n are close at αn. In fact, by definition of Rn, we
have for all t > 0: L�(t − Rn) ⊆ L�n(t) ⊆ L�(t + Rn). As a result, we
have

Pn(L
�(t − Rn)) ≤ Pn

(
L�n(t)

) ≤ Pn(L
�(t + Rn)).

By definition of Vn,

P (L�(t − Rn)) − Vn ≤ Pn
(
L�n(t)

) ≤ P (L�(t + Rn)) + Vn.

By definition of G and Gn, the above inequality becomes

G(t − Rn) − Vn ≤ Gn(t) ≤ G(t + Rn) + Vn.

Let Wn = Rn + (2Vn/c1)1/γ . Suppose n is large enough such that

( c1

n

) 1
γ +

(
2A1,λ

c1

√
log n

n

) 1
γ

< ε0,

then on the event Vn ≤ A1,λ

√
log n
n

,

Gn

(
t (αn) −Wn

) ≤ G
(
t (αn) −Wn + Rn

)+ Vn

= G
(
t (αn) − (2Vn/c1)1/γ

)−G
(
t (αn)

)+ αn + Vn

≤ αn − Vn < αn.



286 Journal of the American Statistical Association, March 2013

where the last inequality uses the left side of the γ -exponent condition.
Similarly, Gn(t (αn) +Wn) > αn. Hence, for n large enough, if Vn ≤
A1,λ

√
(log n)/n, then ∣∣t (α)

n − t (αn)
∣∣ ≤ Wn . (A.8)

To conclude the proof, first note that ( c1
n

)
1
γ = o(( log n

n
)

1
2γ ). Then we can

find constant A′
λ such that for all n large enough,(
A′
λ −

(
2A1,λ

c1

) 1
γ

)(
log n

n

) 1
2γ

≥
( c1

n

) 1
γ

. (A.9)

Let Aλ = A2,λ. Combining Equations (A.7) and (A.8), on the event

En,λ :=
{
Rn ≤ Aλ

(
log n

n

) β
2β+d

, Vn ≤ A1,λ

(
log n

n

) 1
2
}
, (A.10)

we have, for n large enough,∣∣t (α)
n − t (α)

∣∣ ≤ ∣∣t (α)
n − t (αn)

∣∣+ ( c1

n

) 1
γ ≤ Wn +

(c1

n

) 1
γ

≤ Rn + (
2c−1

1 Vn
)1/γ +

( c1

n

) 1
γ

≤ Aλ

(
log n

n

) β
2β+d

+
(

2A1,λ

c1

√
log n

n

) 1
γ

+
( c1

n

) 1
γ

≤ Aλ

(
log n

n

) β
2β+d

+ A′
λ

(
log n

n

) 1
2γ

,

where the second last inequality is from the definition of En,λ and the
last inequality is from the choice of A′

λ. The proof is concluded by
observing P (Ec

n,λ) = O(n−λ), a consequence of Lemma C.1 �

Proof of Theorem 3.4. In the proof, we write tn for t (α)
n as a generic

estimate of t (α) that satisfies (11). Observe that

μ
(
Ln(tn)�C(α)

) = μ
({
p̂n ≥ tn, p < t (α)

})
+ μ

({
p̂n < tn, p ≥ t (α)

})
. (A.11)

Note that{
p̂n ≥ tn, p < t (α)

} ⊆ {
t (α) − ∣∣tn − t (α)

∣∣− Rn ≤ p < t (α)
}
, (A.12)

and{
p̂n < tn, p ≥ t (α)

} ⊆ {
t (α) < p ≤ t (α) + ∣∣t (α) − tn

∣∣+ Rn
}
. (A.13)

Therefore

Ln(tn)�C(α) ⊆ {
t (α) − ∣∣tn − t (α)

∣∣− Rn < p ≤ t (α)

+ ∣∣t (α) − tn
∣∣+ Rn

}
. (A.14)

Suppose n is large enough such that

2A2,λ

(
log n

n

) β
2β+d

+ A′
λ

(
log n

n

) 1
2γ

<

(
ε0 ∧ t (α)

2

)
,

where the constant A2,λ is defined as in Lemma C.1 and A′
λ is defined

as in Equation (A.9). Then on the event En,λ as defined in Equation
(A.10), applying Theorem 3.3 and condition (10) on the right-hand side
of (A.14) yields

μ
(
Ln(tn)�C(α)

) ≤ P
(
Ln(tn)�C(α)

)
t (α) − ∣∣tn − t (α)

∣∣− Rn

≤ 2

t (α)
c2

(
2A2,λ

(
log n

n

) β
2β+d

+ A′
λ

(
log n

n

) 1
2γ
)γ

≤ Bλ

(
log n

n

) βγ
2β+d

+ B ′
λ

(
log n

n

) 1
2

, (A.15)

where Bλ, B ′
λ are positive constants depending only on p, K, α, and γ .

As a result, both L−
n and L+

n satisfies the claim of Theorem 3.4. The
claim also holds for Ĉ(α) by the sandwich lemma. �

APPENDIX D: PROOF OF LEMMA 4.2

Proof of Lemma 4.2. The first statement follows since

E(C) = μ(C) − μ(C∗) = μ(C ∩ Cc∗) + μ(C ∩ C∗)

− [μ(C∗ ∩ C) + μ(C∗ ∩ Cc)]
= μ(C ∩ Cc∗) − μ(C∗ ∩ Cc)] ≤ μ(C ∩ Cc∗) + μ(C∗ ∩ Cc)]
= R(C).

For the second statement, let I denote the indicator function for
C and let I∗ denote the indicator function for C∗. Note that, for all
y, (I (y) − I∗(y))(λ− p(y)) ≥ 0. Let λ = λα and define Wε = {y :
|p(y) − λ| > ε}. From Assumption A2 with γ = 1, we have that
μ(C�C∗) ≤ μ((C�C∗) ∩Wε) + cε for some c > 0. Hence,

μ(C�C∗) ≤ μ((C�C∗) ∩Wε) + cε

= 1

ε

∫
Wε

|I (y) − I∗(y)|εdμ(y) + cε

≤ 1

ε

∫
Wε

|I (y) − I∗(y)| |λ− p(y)| dμ(y) + cε

≤ 1

ε

∫
(I (y) − I∗(y)) (λ− p(y)) dμ(y) + cε

= λ

ε
[μ(C) − μ(C∗)] − 1

ε
[P (C) − P (C∗)] + cε

= λ

ε
E(C) − 1

ε
[P (C) − (1 − α)] + cε.

Since E(P (C)) ≥ 1 − α, if we take expected values of both sides,
we have that E(R(C)) ≤ λ

ε
E (E(C)) + cε. The conclusion follows by

setting ε = √
λE (E(C)) /c. �

[Received March 2012. Revised November 2012.]
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