
RKHS and Mercel Kernels

1 Hilbert Spaces

A Hilbert space is a complete inner product space. We will see that a reproducing kernel
Hilbert space (RKHS) is a Hilbert space with extra structure that makes it very useful for
statistics and machine learning.

An example of a Hilbert space is

L2[0, 1] =
{
f : [0, 1]→ R :

∫
f 2 <∞

}
endowed with the inner product

〈f, g〉 =

∫
f(x)g(x)dx.

The corresponding norm is

||f || =
√
〈f, f〉 =

√∫
f 2(x)dx.

We write fn → f to mean that ||fn − f || → 0 as n→∞.

2 Evaluation Functional

The evaluation functional δx assigns a real number to each function. It is defined by δxf =
f(x). In general, the evaluation functional is not continuous. This means we can have fn → f
but δxfn does not converge to δxf . For example, let f(x) = 0 and fn(x) =

√
nI(x < 1/n2).

Then ||fn−f || = 1/
√
n→ 0. But δ0fn =

√
n which does not converge to δ0f = 0. Intuitively,

this is because Hilbert spaces can contain very unsmooth functions. We shall see that RKHS
are Hilbert spaces where the evaluation functional is continous. Intuitively, this means that
the functions in the space are well-behaved.

What has this got to do with kernels? Hang on; we’re getting there.
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3 Motivating Example: Nonparametric Regression

We observe (X1, Y1), . . . , (Xn, Yn) and we want to estimate m(x) = E(Y |X = x). The
approach we used earlier was based on smoothing kernels:

m̂(x) =

∑
i Yi K

(
||x−Xi||

h

)
∑

iK
(
||x−Xi||

h

) .

Another approach is regularization: choose m to minimize∑
i

(Yi −m(Xi))
2 + λJ(m)

for some penalty J . This is equivalent to: choose m ∈ M to minimize
∑

i(Yi − m(Xi))
2

where M = {m : J(m) ≤ L} for some L > 0.

We would like to construct M so that it contains smooth functions. We shall see that a
good choice is to use a RKHS.

4 Mercer Kernels

A RKHS is defined by a Mercer kernel. A Mercer kernel K(x, y) is a function of two
variables that is symmetric and positive definite. This means that, for any function f ,∫ ∫

K(x, y)f(x)f(y)dx dy ≥ 0.

(This is like the definition of a positive definite matrix: xTAx ≥ 0 for each x.)

Our main example is the Gaussian kernel

K(x, y) = e−
||x−y||2

σ2 .

Given a kernel K, let Kx(·) be the function ontained by fixing the first coordinate. That is,
Kx(y) = K(x, y). For the Gaussian kernel, Kx is a Normal, centered at x. We can create
functions by taking linear combinations of the kernel:

f(x) =
k∑
j=1

αjKxj(x).
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Let H0 denote all such functions:

H0 =

{
f :

k∑
j=1

αjKxj(x)

}
.

Given two such functions f(x) =
∑k

j=1 αjKxj(x) and g(x) =
∑m

j=1 βjKyj(x) we define an
inner product

〈f, g〉 = 〈f, g〉K =
∑
i

∑
j

αiβjK(xi, yj).

In general, f (and g) might be representable in more than one way. You can check that
〈f, g〉K is independent of how f (or g) is represented. The inner product defines a norm:

||f ||K =
√
〈f, f, 〉 =

√∑
j

∑
k

αjαkK(xj, xk) =
√
αTKα

where α = (α1, . . . , αk)
T and K is the k × k matrix with Kjk = K(xj, xk).

5 The Reproducing Property

Let f(x) =
∑

iKxi(x). Note the following crucual property:

〈f,Kx〉 =
∑
i

αiK(xi, x) = f(x).

This follows from the definition of 〈f, g〉 where we take g = Kx. This implies that

〈Kx, Ky〉 = K(x, y).

This is called the reproducing property. It also implies that Kx is the representer of the
evaluation functional.

The completion of H0 with respect to || · ||K is denoted by HK and is called the
RKHS generated by K.

To verify that this is a well-defined Hilbert space, you should check that the following
properties hold:

〈f, g〉 = 〈g, f〉
〈cf + dg, h〉 = c〈f, h〉+ c〈g, h〉
〈f, f〉 = 0 iff f = 0.
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The last one is not obvious so let us verify it here. It is easy to see that f = 0 impies that
〈f, f〉 = 0. Now we must show that 〈f, f〉 = 0 implies that f(x) = 0. So suppose that
〈f, f〉 = 0. Pick any x. Then

0 ≤ f 2(x) = 〈f,Kx〉2 = 〈f,Kx〉 〈f,Kx〉
≤ ||f ||2 ||Kx||2 = 〈f, f〉2 ||Kx||2 = 0

where we used Cauchy-Schwartz. So 0 ≤ f 2(x) ≤ 0 which means that f(x) = 0.

Returning to the evaluation functional, suppose that fn → f . Then

δxfn = 〈fn, Kx〉 → 〈f,Kx〉 = f(x) = δxf

so the evaluation functional is continuous. In fact, a Hilbert space is a RKHS if and
only if the evaluation functionals are continuous.

6 Examples

Example 1 Let H be all functions f on R such that the support of the Fourier transform
of f is contained in [−a, a]. Then

K(x, y) =
sin(a(y − x))

a(y − x)

and

〈f, g〉 =

∫
fg.

Example 2 Let H be all functions f on (0, 1) such that∫ 1

0

(f 2(x) + (f ′(x))2)x2dx <∞.

Then
K(x, y) = (xy)−1

(
e−xsinh(y)I(0 < x ≤ y) + e−ysinh(x)I(0 < y ≤ x)

)
and

||f ||2 =

∫ 1

0

(f 2(x) + (f ′(x))2)x2dx.

Example 3 The Sobolev space of order m is (roughly speaking) the set of functions f such
that

∫
(f (m))2 <∞. For m = 1 and X = [0, 1] the kernel is

K(x, y) =

{
1 + xy + xy2

2
− y3

6
0 ≤ y ≤ x ≤ 1

1 + xy + yx2

2
− x3

6
0 ≤ x ≤ y ≤ 1
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and

||f ||2K = f 2(0) + f ′(0)2 +

∫ 1

0

(f ′′(x))2dx.

7 Spectral Representation

Suppose that supx,yK(x, y) <∞. Define eigenvalues λj and orthonormal eigenfunctions ψj
by ∫

K(x, y)ψj(y)dy = λjψj(x).

Then
∑

j λj <∞ and supx |ψj(x)| <∞. Also,

K(x, y) =
∞∑
j=1

λjψj(x)ψj(y).

Define the feature map Φ by

Φ(x) = (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .).

We can expand f either in terms of K or in terms of the basis ψ1, ψ2, . . .:

f(x) =
∑
i

αiK(xi, x) =
∞∑
j=1

βjψj(x).

Furthermore, if f(x) =
∑

j ajψj(x) and g(x) =
∑

j bjψj(x), then

〈f, g〉 =
∞∑
j=1

ajbj
λj

.

Roughly speaking, when ||f ||K is small, then f is smooth.

8 Representer Theorem

Let ` be a loss function depending on (X1, Y1), . . . , (Xn, Yn) and on f(X1), . . . , f(Xn). Let

f̂ minimize
`+ g(||f ||2K)

where g is any monotone increasing function. Then f̂ has the form

f̂(x) =
n∑
i=1

αiK(xi, x)

for some α1, . . . , αn.
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9 RKHS Regression

Define m̂ to minimize
R =

∑
i

(Yi −m(Xi))
2 + λ||m||2K .

By the representer theorem, m̂(x) =
∑n

i=1 αiK(xi, x). Plug this into R and we get

R = ||Y −Kα||2 + λαTKα

where Kjk = K(Xj, Xk) is the Gram matrix. The minimizer over α is

α̂ = (K + λI)−1Y

and m̂(x) =
∑

j α̂jK(Xi, x). The fitted values are

Ŷ = Kα̂ = K(K + λI)−1Y = LY.

So this is a linear smoother.

We can use cross-validation to choose λ. Compare this with smoothing kernel regres-
sion.

10 Logistic Regression

Let

m(x) = P(Y = 1|X = x) =
ef(x)

1 + ef(x)
.

We can estimate m by minimizing

−loglikelihood + λ||f ||2K .

Then f̂ =
∑

jK(xj, x) and α may be found by numerical optimization; see the chapter. In
this case, smoothing kernels are much easier.

11 Support Vector Machines

Suppose Yi ∈ {−1,+1}. Recall the the linear SVM minimizes the penalized hinge loss:

J =
∑
i

[1− Yi(β0 + βTXi)]+ +
λ

2
||β||22.
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The dual is to maximize ∑
i

αi −
1

2

∑
i,j

αiαjYiYj〈Xi, Xj〉

subject to 0 ≤ αi ≤ C.

The RKHS version is to minimize

J =
∑
i

[1− Yif(Xi)]+ +
λ

2
||f ||2K .

The dual is the same except that 〈Xi, Xj〉 is replaced with K(Xi, Xj). Thisis called the
kernel trick.

12 The Kernel Trick

This is a fairly general trick. In many algorithms you can replace 〈xi, xj〉 with K(xi, xj) and
get a nonlinear version of the algorithm. This is equivalent to replacing x with Φ(x) and
replacing 〈xi, xj〉 with 〈Φ(xi),Φ(xj)〉. However, K(xi, xj) = 〈Φ(xi),Φ(xj)〉 and K(xi, xj) is
much easier to compute.

In summary, by replacing 〈xi, xj〉 with K(xi, xj) we turn a linear procedure into a nonlinear
procedure without adding much computation.

13 Hidden Tuning Parameters

There are hidden tuning parameters in the RKHS. Consider the Gaussian kernel

K(x, y) = e−
||x−y||2

σ2 .

For nonparametric regression we minimize
∑

i(Yi − m(Xi))
2 subject to ||m||K ≤ L. We

control the bias variance tradeoff by doing cross-validation over L. But what about σ?

This parameter seems to get mostly ignored. Suppose we have a uniform distribution on a
circle. The eigenfunctions of K(x, y) are the sines and cosines. The eigenvalues λk die off
like (1/σ)2k. So σ affects the bias-variance tradeoff since it weights things towards lower
order Fourier functions. In principle we can compensate for this by varying L. But clearly
there is some intercation between L and σ. The practical effect is not well understood.

Now consider the polynomial kernel K(x, y) = (1 + 〈x, y〉)d. This kernel has the same
eigenfunctions but the eignvalues decay at a polynomial rate depending on d. So there is an
interaction between L, d and, the choice of kernel itself.

7



14 Two Sample Test

Gretton, Borgwardt, Rasch, Scholkopf and Smola (GBRSS 2008) show how to use kernels
for two sample testing. Suppose that

X1, . . . , Xm ∼ P Y1, . . . , Yn ∼ Q.

We want to test the null hypothesis H0 : P = Q.

Let F = {f : ||f ||K ≤ 1}. Define

M = sup
f∈F

∣∣∣∣∣EP [f(X)]− EQ[f(X)]

∣∣∣∣∣.
Under weak regulaarty conditions on K, it can be shown that M = 0 if and only if P = Q.
Thus we can test H0 by estimating M .

Define

M̂ = sup
f∈F

∣∣∣∣∣ 1

m

m∑
i=1

f(Xi)−
1

n

m∑
i=1

f(Yi)

∣∣∣∣∣ .
Some calcculations show that

M̂2 =
1

m2

∑
j,k

K(Xj, Xk)−
2

mn

∑
j,k

K(Xj, Yk) +
1

n2

∑
j,k

K(Yj, Yk).

We reject H0 if M̂ > t. We can determine t exactly using a permutation test.

Using McDiarmmid’s inequality and a Rademacher bound, GBRSS shows that

P

(
|M̂ −M | > 2

(√
C

m
+

√
C

n

)
+ ε

)
≤ exp

(
− ε2mn

C(m+ n)

)
.

There is a connection with smoothing kernels. Let

f̂X(u) =
1

m

n∑
i=1

κ(Xi − u)

and similarly for f̂Y . Then ∫
|f̂X(u)− f̂Y (u)|2du = M̂2

where M̂ is based on the kernel K(x, y) =
∫
κ(x−z)κ(y−z)dz. So they are really the same!
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In practice, one would use the Gaussian kernel Kσ(x, y) = e−
||x−y||2

σ2 . Call the resulting

statistic M̂σ. For hypothesis testing, there is no need to choose a bandwidth σ. Just define

M̂ = sup
σ
M̂σ.

Again, the critical value can be obtained using permutation methods. This is needed since
the distribution of M̂ under H0 is very complex and involved unknown quantities. (See
Rosenbaum (2005, Biometrika) for a cool, two-sample test with an exact, known, distribution
free null distribution.)
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