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ABSTRACT
We propose new inference tools for forward stepwise regression, least angle regression, and the lasso.
Assuming a Gaussian model for the observation vector y, we first describe a general scheme to perform
valid inference after any selection event that can be characterized as y falling into a polyhedral set. This
framework allows us to derive conditional (post-selection) hypothesis tests at any step of forward stepwise
or least angle regression, or any step along the lasso regularization path, because, as it turns out, selection
events for these procedures can be expressed as polyhedral constraints on y. The p-values associated with
these tests are exactly uniform under the null distribution, in finite samples, yielding exact Type I error con-
trol. The tests can also be inverted to produce confidence intervals for appropriate underlying regression
parameters. The R package selectiveInference, freely available on the CRAN repository, implements
the new inference tools described in this article. Supplementarymaterials for this article are available online.

1. Introduction

Consider observations y ∈ R
n drawn from a Gaussian model

y = θ + ε, ε ∼ N(0, σ 2I). (1)

Given a fixed matrix X ∈ R
n×p of predictor variables, our focus

is to provide inferential tools for methods that perform vari-
able selection and estimation in an adaptive linear regression of
y on X . Unlike much of the related literature on adaptive lin-
ear modeling, we do not assume that the true model is itself lin-
ear, that is, we do not assume that θ = Xβ∗ for a vector of true
coefficients β∗ ∈ R

p. The particular regression models that we
consider in this article are built from sequential procedures that
add (or delete) one variable at a time, such as forward stepwise
regression (FS), least angle regression (LAR), and the lasso reg-
ularization path. However, we stress that the underpinnings of
our approach extends well beyond these cases.

To motivate the basic problem and illustrate our proposed
solutions, we examine a dataset of 67 observations and 8 vari-
ables, where the outcome is the log prostate specific antigen
(PSA) level of men who had surgery for prostate cancer. The
same dataset was used to motivate the covariance test in Lock-
hart et al. (2014).1The first two numeric columns of Table 1 show
the p-values for regression coefficients of variables that enter the
model, across steps of FS. The first column shows the results
of applying naive, ordinary t-tests to compute the significance
of these regression coefficients. We see that the first four vari-
ables are apparently significant at the 0.05 level, but this is sus-
pect, as the p-values do not account for the greedy selection of

CONTACT Ryan J. Tibshirani ryantibs@cmu.edu Department of Statistics and Machine Learning Department, B Baker Hall, Carnegie Mellon University, Pitts-
burgh, PA .
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.
The results for the naive FS test and the covariance test differ slightly from those that appear in Lockhart et al. (). We use a version of FS that selects variables to
maximize the drop in residual sum of squares at each step; Lockhart et al. () used a version based on the maximal absolute correlation of a variable with the residual.
Also, our naive FS p-values are one-sided, tomatch the one-sided nature of the other p-values in the table, whereas Lockhart et al. () used two-sided naive FS p-values.
Finally, we use an Exp(1) limit for the covariance test, and Lockhart et al. () used an F-distribution to account for the unknown variance.

variables that is inherent to FS. The second column shows our
new selection-adjusted p-values for FS, from a truncated Gaus-
sian (TG) test developed in Sections 3 and 4. These do properly
account for the greediness: they are conditional on the active set
at each step, and now just two variables are significant at the 0.05
level.

The last three numeric columns of Table 1 show analogous
results for the LAR algorithm applied to the prostate cancer data
(the LAR and lasso paths are identical here, as there were no
variable deletions). The covariance test (Lockhart et al. 2014),
reviewed in the Section 7, measures the improvement in the
LAR fit due to adding a predictor at each step, and the third col-
umn shows p-values from its Exp(1) asymptotic null distribu-
tion. Our new framework applied to LAR, described in Section
4, produces the results in the rightmost column. We note that
this TG test assumes far less than the covariance test. In fact, our
TG p-values for both FS and LAR do not require assumptions
about the predictors X , or about the true model being linear.
They also use a null distribution that is correct in finite sam-
ples, rather than asymptotically, under Gaussian errors in (1).
The fourth column in the table shows a computationally efficient
approximation to the TG test for LAR, that we call the spacing
test. Later, we establish an asymptotic equivalence between our
new spacing test for LAR and the covariance test, and this is sup-
ported by the similarity between their p-values in the table.

The R package selectiveInference provides an
implementation of the TG tests for FS and LAR, and all other
inference tools described in this article. This package is available
on the CRAN repository, as well as https://github.com/selective-
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Table . Prostate cancer data example: p-values across steps of the forward step-
wise (FS) path, computed using naive t-tests that do not account for greedy selec-
tion, and our new truncated Gaussian (TG) test for FS; also shown are p-values for
the least angle regression (LAR) path, computed using the covariance test of Lock-
hart et al. (), and our new spacing and TG tests for LAR.

FS, naive FS, TG LAR, cov LAR, spacing LAR, TG

lcavol . . lcavol . . .
lweight . . lweight . . .
svi . . svi . . .
lbph . . lbph . . .
pgg . . pgg . . .
lcp . . age . . .
age . . lcp . . .
gleason . . gleason . . .

inference/R-software. A Python implementation is also available
at https://github.com/selective-inference/Python-software.

A highly nontrivial and important question is to figure out
how to combine p-values, such as those in Table 1, to build a
rigorous stopping rule, that is, a model selection rule. While we
recognize its importance, this topic is not the focus of our article.
Our focus is to provide amethod for computing proper p-values
like those in Table 1 in the first place, which we view as a major
step in the direction of answering the model selection problem
in a practically and theoretically satisfactorymanner. Our future
work is gearedmore towardmodel selection; we also discuss this
problem in more detail in Section 2.3.

1.1. RelatedWork

There is much recent work on inference for high-dimensional
regression models. One class of techniques, for example, by
Wasserman and Roeder (2009), Meinshausen and Buhlmann
(2010), and Minnier, Tian, and Cai (2011) is based on sample-
splitting or resampling methods. Another class of approaches,
for example, by Zhang and Zhang (2014), Buhlmann (2013),
van de Geer et al. (2014), and Javanmard andMontanari (2014a,
2014b) is based on “debiasing” a regularized regression estima-
tor, like the lasso. The inferential targets considered in the afore-
mentionedworks are all fixed, and not post-selected, like the tar-
gets we study here. As we see it, it is clear (at least conceptually)
how to use sample-splitting techniques to accommodate post-
selection inferential goals; it is much less clear how to do so with
the debiasing tools mentioned above.

Berk et al. (2013) carried out valid post-selection inference
(PoSI) by considering all possible model selection procedures
that could have produced the given submodel. As the authors
state, the inferences are generally conservative for particular
selection procedures, but have the advantage that they do not
depend on the correctness of the selected submodel. This same
advantage is shared by the tests we propose here. Comparisons
of our tests, built for specific selectionmechanisms, and the PoSI
tests, which aremuchmore general, would be interesting to pur-
sue in future work.

Lee et al. (2016), reporting on work concurrent with that
of this article, constructed p-values and intervals for lasso
coefficients at a fixed value of the regularization parameter λ

(instead of a fixed number of steps k along the lasso path, as we
consider in Section 4). This article and ours both leverage the
same core statistical framework, using truncated Gaussian (TG)
distributions, for exact post-selection inference, but differ in

the applications pursued with this framework. After our work
was completed, there was further progress on the application
and development of exact post-selection inference tools, for
example, by Lee and Taylor (2014), Reid, Taylor, and Tibshirani
(2014), Loftus and Taylor (2014), Choi, Taylor, and Tibshirani
(2014), and Fithian, Sun, and Taylor (2014).

1.2. Notation andOutline

Our notation in the coming sections is as follows. For a matrix
M ∈ R

n×p and list S = [s1, . . . sr] ⊆ [1, . . . p], we write MS ∈
R

n×|S| for the submatrix formed by extracting the correspond-
ing columns ofM (in the specified order). Similarly for a vector
x ∈ R

p, we write xS to denote the relevant subvector. We write
(MTM)+ for the (Moore–Penrose) pseudoinverse of the square
matrixMTM, andM+ = (MTM)+MT for the pseudoinverse of
the rectangular matrix M. Finally, we use PL for the projection
operator onto a linear space L.

Here is an outline for the rest of this article. Section 2 gives
an overview of our main results. Section 3 describes our gen-
eral framework for exact conditional inference, with truncated
Gaussian (TG) test statistics. Section 4 presents applications of
this framework to three sequential regression procedures: FS,
LAR, and lasso. Section 5 derives a key approximation to our TG
test for LAR, named the spacing test, which is considerably sim-
pler (both in terms of form and computational requirements)
than its exact counterpart. Section 6 covers empirical exam-
ples, and Section 7 draws connections between the spacing and
covariance tests. We finish with a discussion in Section 8.

2. Summary of Results

We now summarize our conditional testing framework that
yields the p-values demonstrated in the prostate cancer data
example, beginning briefly with the general problem setting we
consider. Consider testing the hypothesis

H0 : vTθ = 0, (2)

conditional on having observed y ∈ P , where P is a given poly-
hedral set, and v is a given contrast vector.We derive a test statis-
tic T (y,P, v ) with the property that

T (y,P, v )
P0∼ Unif (0, 1), (3)

where P0(·) = PvT θ=0( · | y ∈ P ), the probability measure
under θ for which vTθ = 0, conditional on y ∈ P . The asser-
tion is thatT (y,P, v ) is exactly uniformunder the nullmeasure,
for any finite n and p. This statement assumes nothing about the
polyhedron P , and requires only Gaussian errors in the model
(1). As it has a uniform null distribution, the test statistic in (3)
serves as its own p-value, and so hereafter we will refer to it in
both ways (test statistic and p-value).

Why should we concern ourselves with an event y ∈ P , for
a polyhedron P? The short answer: for many regression pro-
cedures of interest—in particular, for the sequential algorithms
FS, LAR, and lasso—the event that the procedure selects a given
model (after a given number of steps) can be represented in this
form. For example, consider FS after one step, with p = 3 vari-
ables total: the FS procedure selects variable 3, and assigns it a

https://github.com/selective-inference/R-software
https://github.com/selective-inference/Python-software
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positive coefficient, if and only if

XT
3 y/‖X3‖2 ≥ ±XT

1 y/‖X1‖2,
XT
3 y/‖X3‖2 ≥ ±XT

2 y/‖X2‖2.
With X considered fixed, these inequalities can be compactly
represented as�y ≥ 0, where the inequality is meant to be inter-
preted componentwise, and � ∈ R

4×n is a matrix with rows
X3/‖X3‖2 ± X1/‖X1‖2, X3/‖X3‖2 ± X2/‖X2‖2. Hence if ĵ1(y)
and ŝ1(y) denote the variable and sign selected by FS at the first
step, then we have shown that{

y : ĵ1(y) = 3, ŝ1(y) = 1
}

= {y : �y ≥ 0},
for a particular matrix �. The right-hand side above is clearly a
polyhedron (in fact, it is a cone). To test the significance of the
third variable, conditional on it being selected at the first step of
FS, we consider the null hypothesis H0 as in (2), with v = X3,
and P = {y : �y ≥ 0}. The test statistic that we construct in (3)
is conditionally uniform under the null. This can be reexpressed
as

PXT
3 θ=0

(
T1 ≤ α

∣∣∣ ĵ1(y) = 3, ŝ1(y) = 1
)

= α, (4)

for all 0 ≤ α ≤ 1. The conditioning in (4) is important because
it properly accounts for the adaptive (i.e., greedy) nature of FS.
Loosely speaking, it measures the magnitude of the linear func-
tion XT

3 y—not among all y marginally—but among the vectors
y that would result in FS selecting variable 3, and assigning it a
positive coefficient.

A similar construction holds for a general step k of FS: let-
ting Âk(y) = [ ĵ1(y), . . . ĵk(y)] denote the active list after k steps
(so that FS selects these variables in this order) and ŝAk (y) =
[ŝ1(y), . . . ŝk(y)] denote the signs of the corresponding coeffi-
cients, we have, for any fixed Ak and sAk ,{

y : Âk(y) = Ak, ŝAk (y) = sAk

}
= {y : �y ≥ 0},

for another matrix �. With v = (X+
Ak

)T ek, where ek is the kth
standard basis vector, the hypothesis in (2) is eTk X

+
Ak

θ = 0, that
is, it specifies that the last partial regression coefficient is not sig-
nificant, in a projected linear model of θ on XAk . For P = {y :
�y ≥ 0}, the test statistic in (3) has the property

PeTk X
+
Ak

θ=0

(
Tk ≤ α

∣∣∣ Âk(y) = Ak, ŝAk (y) = sAk

)
= α, (5)

for all 0 ≤ α ≤ 1.We emphasize that the p-value in (5) is exactly
(conditionally) uniform under the null, in finite samples. This
is true without placing any restrictions on X (besides a general
position assumption), and notably, without assuming linearity
of the underlying model (i.e., without assuming θ = Xβ∗). Fur-
ther, though we described the case for FS here, essentially the
same story holds for LAR and lasso. The TG p-values for FS and
LAR in Table 1 correspond to tests of hypotheses as in (5), that
is, tests of eTk X

+
Ak

θ = 0, over steps of these procedures.
An important point to keep in mind throughout is that our

testing framework for the sequential FS, LAR, and lasso proce-
dures is not specific to the choice v = (X+

Ak
)Tek, and allows for

the testing of arbitrary linear contrasts vTθ (as long as v is fixed
by the conditioning event). For concreteness, we will pay close
attention to the case v = (X+

Ak
)Tek, since it gives us a test for the

significance of variables as they enter themodel, but many other
choices of v could be interesting and useful.

2.1. Conditional Confidence Intervals

A strength of our framework is that our test statistics can be
inverted tomake coverage statements about arbitrary linear con-
trasts of θ . In particular, consider the hypothesis test defined by
v = (X+

Ak
)T ek, for the kth step of FS (similar results apply to LAR

and lasso). By inverting our test statistic in (5), we obtain a con-
ditional confidence interval Ik satisfying

P

(
eTk X

+
Ak

θ ∈ Ik
∣∣∣ Âk(y) = Ak, ŝAk (y) = sAk

)
= 1 − α. (6)

In words, the random interval Ik traps with probability 1 − α the
coefficient of the last selected variable, in a regressionmodel that
projects θ onto XAk , conditional on FS having selected variables
Ak with signs sAk , after k steps of the algorithm. As (6) is true
conditional on �y ≥ 0, we can also marginalize this statement
to yield

P

(
eTk X

+
Âk

θ ∈ Ik
)

= 1 − α. (7)

Note that Âk = Âk(y) denotes the random active list after k FS
steps. Written in the unconditional form (7), we call Ik a selec-
tion interval for the random quantity eTk X

+
Âk

θ . We use this name
to emphasize the difference in interpretation here, versus the
conditional case: the selection interval covers amoving target, as
both the identity of the kth-selected variable, and the identities
of all the previously selected variables (which play a role in the
kth partial regression coefficient of θ onXÂk

), are random—they
depend on y.

We have seen that our intervals can be interpreted condition-
ally, as in (6), or unconditionally, as in (7). The former is per-
haps more aligned with the spirit of post-selection inference, as
it guarantees coverage, conditional on the output of our selec-
tion procedure. But the latter interpretation is also interesting,
and in a way, cleaner. From the unconditional point of view,
we can roughly think of the selection interval Ik as covering the
project population coefficient of the “kth most important vari-
able” as deemed by the sequential regression procedure at hand
(FS, LAR, or lasso). Figure 1 displays 90% confidence intervals
at each step of FS, run on the prostate cancer dataset discussed
in the introduction.

2.2. Marginalization

Similar to the formation of selection intervals in the last subsec-
tion, we note that any amount of coarsening, that is, marginal-
ization, of the conditioning set in (5) results in a valid interpreta-
tion for p-values. For example, bymarginalizing over all possible
sign lists sAk associated with Ak, we obtain

PeTk X
+
Ak

θ=0

(
Tk ≤ α

∣∣∣ Âk(y) = Ak

)
= α,

so that the conditioning event only encodes the observed active
list, and not the observed signs. Thus, we have another possible
interpretation for the statistic (p-value) Tk: under the null mea-
sure, which conditions on FS having selected the variables Ak
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Figure . Prostate cancer data example: % naive confidence intervals and conditional confidence intervals (or, selection intervals) computed using the TG (truncated
Gaussian) statistics, for FS (forward stepwise). Black dots denote the estimatedpartial regression coefficients for the variable to enter, in a regression on the active submodel.
The upper confidence limits for some parameters exceed the range for the y-axis on the plot, and their actual values marked at the appropriate places.

(regardless of their signs), Tk is uniformly distributed. The idea
of marginalization will be important when we discuss details of
the constructed tests for LAR and lasso.

2.3. Model Selection

How can the inference tools of this article be translated into
rigorous rules for model selection? This is of course an impor-
tant (and difficult) question, and we do not yet possess a com-
plete understanding of the model selection problem, though it
is the topic of future work. Below we describe three possible
strategies formodel selection, using the p-values that come from
our inference framework. We do not have extensive theory to
explain or evaluate them, but all are implemented in the R pack-
age selectiveInference.

� Inference from sequential p-values. We have advocated the
idea of computing p-values across steps of the regres-
sion procedure at hand, as exemplified in Table 1. Here,
at each step k, the p-value tests eTk X

+
Ak

θ = 0, that is, tests
the significance of the variable to enter the active set Ak,
in a projected linear model of the mean θ on the vari-
ables in Ak. G’Sell et al. (2016) proposed sequential stop-
ping rules using such p-values, including the “Forward-
Stop” rule, which guarantees false discovery rate (FDR)
control at a given level. For example, the ForwardStop
rule at a nominal 10% FDR level, applied to the TG p-
values from the LAR path for the prostate cancer data
(the last column of Table 1), yields a model with three
predictors. However, it should be noted that the guar-
antee for FDR control for ForwardStop in G’Sell et al.
(2016) assumes that the p-values are independent, and
this is not true for the p-values from our inference
framework.

� Inference at a fixed step k. Instead of looking at p-values
across steps, we could instead fix a step k, and inspect
the p-values corresponding to the hypotheses eTj X

+
Aj

θ =
0, for j = 1, . . . k. This tests the significance of every
variable, among the rest in the discovered active set Ak,
and it still fits within our developed framework: we are
just using different linear contrasts v = (X+

Aj
)T e j of the

mean θ , for j = 1, . . . k. The results of these tests are
genuinely different, in terms of their statistical meaning,

than the results from testing variables as they enter the
model (since the active set changes at each step). Given the
p-values corresponding to all active variables at a given
step k, we could, for example, perform a Bonferroni cor-
rection, and declare significance at the level α/k, to select
a model (a subset of Ak) with Type I error controlled at the
level α. For example, when we apply this strategy at step
k = 5 of the LAR path for the prostate cancer data, and
examine Bonferroni-corrected p-values at the 0.05 level,
only two predictors (lweight and pgg45) end up being
significant.

� Inference at an adaptively selected step k. Finally, the above
scheme for inference could be conducted with a step num-
ber k that is adaptively selected, instead of fixed ahead of
time, provided the selection event that determines k is a
polyhedral set in y. A specific example of this is an Akaike
information criterion (AIC)-style rule, which chooses the
step k after which the AIC criterion rises, say, twice in a
row.We omit the details, but verifying that such a stopping
rule defines a polyhedral constraint for y is straightforward
(it follows essentially the same logic as the arguments that
show the FS selection event is itself polyhedral, which are
given in Section 4.1). Hence, by including all the neces-
sary polyhedral constraints—those that determine k, and
those that subsequently determine the selectedmodel—we
can compute p-values for each of the active variables at an
adaptively selected step k, using the inference tools derived
in this article. When this method is applied to the prostate
cancer dataset, the AIC-style rule (which stops once it sees
two consecutive rises in the AIC criterion) chooses k = 4.
Examining Bonferroni corrected p-values at step k = 4,
only one predictor (lweight) remains significant at the 0.05
level.

3. Conditional Gaussian Inference After Polyhedral
Selection

In this section, we present a few key results on Gaussian con-
trasts conditional on polyhedral events, which provide a basis
for themethods proposed in this article. The same core develop-
ment appears in Lee et al. (2016); for brevity, we refer the reader
to the latter article for formal proofs. We assume y ∼ N(θ,	),
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where θ ∈ R
n is unknown, but 	 ∈ R

n×n is known. This gen-
eralizes our setup in (1) (allowing for a general error covariance
matrix). We also consider a generic polyhedron P = {y : �y ≥
u}, where � ∈ R

m×n and u ∈ R
m are fixed, and the inequality is

to be interpreted componentwise. For a fixed v ∈ R
n, our goal

is to make inferences about vTθ conditional on y ∈ P . Next, we
provide a helpful alternate representation for P .

Lemma 1 (Polyhedral selection as truncation). For any	, v such
that vT	v 	= 0,

�y ≥ u ⇐⇒ V lo(y) ≤ vTy ≤ Vup(y), V0(y) ≤ 0, (8)

where

V lo(y) = max
j:ρ j>0

uj − (�y) j + ρ jv
Ty

ρ j
, (9)

Vup(y) = min
j:ρ j<0

uj − (�y) j + ρ jv
Ty

ρ j
, (10)

V0(y) = max
j:ρ j=0

uj − (�y) j, (11)

and ρ = �	v/vT	v . Moreover, the triplet (V lo,Vup,V0)(y) is
independent of vTy.

Remark 1. The result in (8), with V lo,Vup,V0 defined as in (9)–
(11), is a deterministic result that holds for all y. Only the last
independence result depends on normality of y.

See Figure 2 for a geometric illustration of this lemma. Intu-
itively, we can explain the result as follows, assuming for sim-
plicity (and without a loss of generality) that 	 = I. We first
decompose y = Pvy + Pv⊥y, where Pvy = vvTy/‖v‖22 is the pro-
jection of y along v , and Pv⊥y = y − Pvy is the projection onto
the orthocomplement of v . Accordingly, we view y as a devia-
tion from Pv⊥y, of an amount vTy, along the line determined
by v . The quantities V lo and Vup describe how far we can devi-
ate on either side of Pv⊥y, before y leaves the polyhedron. This
gives rise to the inequality V lo ≤ vTy ≤ Vup. Some faces of the
polyhedron, however, may be perfectly aligned with v (i.e., their
normal vectors may be orthogonal to v), and V0 accounts for
this by checking that y lies on the correct side of these faces.

From Lemma 1, the distribution of any linear function vTy,
conditional on the selection �y ≥ u, can be written as the con-
ditional distribution

vTy
∣∣V lo(y) ≤ vTy ≤ Vup(y), V0(y) ≤ 0. (12)

Since vTy has a Gaussian distribution, the above is a truncated
Gaussian distribution (with random truncation limits). A simple
transformation leads to a pivotal statistic, which will be critical
for inference about vTθ .

Lemma 2 (Pivotal statistic after polyhedral selection). Let �(x)
denote the standard normal cumulative distribution function
(CDF), and let F [a,b]

μ,σ 2 denote the CDF of an N(μ, σ 2) random
variable truncated to lie in [a, b], that is,

F [a,b]
μ,σ 2 (x) = �((x − μ)/σ ) − �((a − μ)/σ )

�((b− μ)/σ ) − �((a − μ)/σ )
.

Figure . Geometry of polyhedral selection as truncation. For simplicity, we assume
that	 = I (otherwise standardize as appropriate). The shaded gray area is the poly-
hedral set {y : �y ≥ u}. By breakingup y into its projectiononto v and its projection
onto the orthogonal complement of v , we see that �y ≥ u holds if and only if vT y
does not deviate too far from Pv⊥y, hence trapping it in between boundsV lo,Vup .
Furthermore, these boundsV lo,Vup are functions of Pv⊥y alone, so under normal-
ity, they are independent of vT y.

For vT	v 	= 0, the statistic F [V lo,Vup]
vT θ,vT	v

(vTy) is a pivotal quantity
conditional on �y ≥ u:

P

(
F [V lo,Vup]
vT θ,vT	v

(vTy) ≤ α

∣∣∣�y ≥ u
)

= α, (13)

for any 0 ≤ α ≤ 1, where V lo, Vup are as defined in (9), (10).

Remark 2. A referee of this article astutely noted the connection
between Lemma 2 and classic results on inference in an expo-
nential family model (e.g., Chapter 4 of Lehmann and Romano
2005), in the presence of nuisance parameters. The analogy is in
a rotated coordinate system, the parameter of interest is vTθ , and
the nuisance parameters correspond to Pv⊥θ . This connection is
developed in Fithian, Sun, and Taylor (2014).

The pivotal statistic in the lemma leads to valid conditional
p-values for testing the null hypothesisH0 : vTθ = 0, and corre-
spondingly, conditional confidence intervals for vTθ . We divide
our presentation into two parts, on one-sided and two-sided
inference.

3.1. One-Sided Conditional Inference

The result below is a direct consequence of the pivot in Lemma
2.

Lemma 3 (One-sided conditional inference after polyhedral
selection). Given vT	v 	= 0, suppose that we are interested in
testing

H0 : vTθ = 0 against H1 : vTθ > 0.

Define the test statistic

T = 1 − F [V lo,Vup]
0,vT	v

(vTy), (14)
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where we use the notation of Lemma 2 for the truncated normal
CDF. Then T is a valid p-value forH0, conditional on �y ≥ u:

PvT θ=0(T ≤ α | �y ≥ u) = α, (15)

for any 0 ≤ α ≤ 1. Further, define δα to satisfy

1 − F [V lo,Vup]
δα,vT	v

(vTy) = α. (16)

Then I = [δα,∞) is a valid one-sided confidence interval for
vTθ , conditional on �y ≥ u:

P(vTθ ≥ δα | �y ≥ u) = 1 − α. (17)

Note that by defining our test statistic in terms of the con-
ditional survival function, as in (14), we are implicitly align-
ing ourselves to have power against the one-sided alternative
H1 : vTθ > 0. This is because the truncated normal survival
function 1 − F [a,b]

μ,σ 2 (x), evaluated at any fixed point x, is mono-
tone increasing inμ. The same fact (monotonicity of the survival
function in μ) validates the coverage of the constructed confi-
dence interval in (16) and (17).

3.2. Two-Sided Conditional Inference

For a two-sided alternative, we use a simple modification of the
one-sided test in Lemma 3.

Lemma 4 (Two-sided conditional inference after polyhedral
selection). Given vT	v 	= 0, suppose that we are interested in
testing

H0 : vTθ = 0 against H1 : vTθ 	= 0.

Define the test statistic

T = 2 · min
{
F [V lo,Vup]
0,vT	v

(vTy), 1 − F [V lo,Vup]
0,vT	v

(vTy)
}
, (18)

where we use the notation of Lemma 2 for the truncated normal
CDF. Then T is a valid p-value forH0, conditional on �y ≥ u:

PvT θ=0(T ≤ α | �y ≥ u) = α, (19)

for any 0 ≤ α ≤ 1. Further, define δα/2, δ1−α/2 to satisfy

1 − F [V lo,Vup]
δα/2,vT	v

(vTy) = α/2, (20)

1 − F [V lo,Vup]
δ1−α/2,vT	v

(vTy) = 1 − α/2. (21)

Then

P(δα/2 ≤ vTθ ≤ δ1−α/2 | �y ≥ u) = 1 − α. (22)

The test statistic in (18), defined in terms of the minimum
of the truncated normal CDF and survival function, has power
against the two-sided alternative H1 : vTθ 	= 0. The proof of its
null distribution in (19) follows from the simple fact that ifU is
a standard uniform random variable, then so is 2 · min{U, 1 −
U }. The construction of the confidence interval in (20), (21),
(22) again uses the monotonicity of the truncated normal sur-
vival function in the underlying mean parameter.

4. Exact Selection-Adjusted Tests for FS, LAR, LASSO

Here, we apply the tools of Section 3 to the case of selection in
regression using the forward stepwise (FS), least angle regres-
sion (LAR), or lasso procedures. We assume that the columns of
X are in general position. Thismeans that for any k < min{n, p},
any subset of columns Xj1 , . . .Xjk , and any signs σ1, . . . σk ∈
{−1, 1}, the affine span of σ1Xj1 , . . . σkXjk does not contain any
of the remaining columns, up to a sign flip (i.e., does not contain
any of ±Xj , j 	= j1, . . . jk). One can check that this implies the
sequence of FS estimates is unique. It also implies that the LAR
and lasso paths of estimates are uniquely determined (Tibshirani
2013). The general position assumption is not at all stringent, for
example, if the columns of X are drawn according to a contin-
uous probability distribution, then they are in general position
almost surely.

Next, we show that the model selection events for FS, LAR,
and lasso can be characterized as polyhedra (indeed, cones) of
the form {y : �y ≥ 0}. After this, we describe the forms of the
exact conditional tests and intervals, as provided by Lemmas 1–
4, for these procedures, and discuss some important practical
issues.

4.1. Polyhedral Sets for FS Selection Events

Recall that FS repeatedly adds the predictor to the current active
model that most improves the fit. After each addition, the active
coefficients are recomputed by least-square regression on the
active predictors. This process ends when all predictors are in
the model, or when the residual error is zero.2

Formally, suppose that Ak = [ j1, . . . jk] is the list of active
variables selected by FS after k steps, and sAk = [s1, . . . sk]
denotes their signs upon entering. That is, at each step k, the
variable jk and sign sk satisfy

RSS
(
y,X[ j1,... jk−1, jk]

) ≤ RSS
(
y,X[ j1,... jk−1, j]

)
for all j 	= j1, . . . jk,

and sk = sign
(
eTk (X[ j1,... jk])

+y
)
,

where RSS(y,XS) denotes the residual sum of squares from
regressing y onto XS, for a list of variables S.

The set of all observations vectors y that give active list Ak
and sign list sAk over k steps, denoted

P =
{
y : Âk(y) = Ak, ŝAk (y) = sAk

}
, (23)

is indeed a polyhedron of the formP = {y : �y ≥ 0}. The proof
of this fact uses induction. The case when k = 1 can be seen
directly by inspection, as j1 and s1 are the variable and sign to
be chosen by FS if and only if∥∥∥(

I − Xj1X
T
j1/‖Xj1‖22

)
y
∥∥∥2

2
≤

∥∥∥(
I − XjXT

j /‖Xj‖22
)
y
∥∥∥2

2
for all j 	= j1, and

s1 = sign(XT
j1y),

 Slightly different versions of FS result from different ways of defining the notion
of the predictor that “most improves the fit.” Our definition based on RSS drop
is equivalent to choosing the variable that, once orthogonalized with respect to
the current active model, achieves the largest absolute correlation with the resid-
ual. Other common versions of FS—e.g., choosing the variable that achieves the
largest absolute correlation with the residual (without orthogonalization)—will
clearly also fit into our polyhedral framework.
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which is equivalent to

s1XT
j1y/‖Xj1‖2 ≥ ±XT

j y/‖Xj‖2 for all j 	= j1.

Thus, the matrix � begins with 2(p− 1) rows of the form
s1Xj1/‖Xj1‖2 ± Xj/‖Xj‖2, for j 	= j1. Nowassume the statement
is true for k − 1 steps. At step k, the optimality conditions for
jk, sk can be expressed as∥∥∥(

I − X̃ jk X̃
T
jk/‖X̃ jk‖22

)
r
∥∥∥2

2
≤

∥∥∥(
I − X̃ jX̃T

j /‖X̃ j‖22
)
r
∥∥∥2

2
for all j 	= j1, . . . jk, and

sk = sign(X̃T
jk r),

where X̃ j denotes the residual from regressingXj ontoXAk−1 , and
r the residual from regressing y onto XAk−1 . As in the k = 1 case,
the above is equivalent to

skX̃T
jk r/‖X̃ jk‖2 ≥ ± X̃T

j r/‖X̃ j‖2 for all j 	= j1, . . . jk,

or

skXT
jk P

⊥
Ak−1

y/‖P⊥
Ak−1

Xjk‖2 ≥ ±XT
j P

⊥
Ak−1

y/‖P⊥
Ak−1

Xj‖2
for all j 	= j1, . . . jk,

where P⊥
Ak−1

denotes the projection orthogonal to the column
space ofXAk−1 . Hence, we append 2(p− k) rows to�, of the form
P⊥
Ak−1

(skXjk/‖P⊥
Ak−1

Xjk‖2 ± Xj/‖P⊥
Ak−1

Xj‖2), for j 	= j1, . . . jk. In
summary, after k steps, the polyhedral set for the FS selection
event (23) corresponds to a matrix � with 2pk − k2 − k rows.3

4.2. Polyhedral Sets for LAR Selection Events

The LAR algorithm (Efron et al. 2004) is an iterative method,
like FS, that produces a sequence of nested regression models.
As before, we keep a list of active variables and signs across steps
of the algorithm. Here is a concise description of the LAR steps.
At step k = 1, we initialize the active variable and sign list with
A = [ j1] and sA1 = [s1], where j1, s1 satisfy

( j1, s1) = argmax
j=1,...p, s∈{−1,1}

sXT
j y. (24)

(This is the same selection as made by FS at the first step, pro-
vided that X has columns with unit norm.) We also record the
first knot

λ1 = s1XT
j1y. (25)

For a general step k > 1, we form the list Ak by appending jk to
Ak−1, and form sAk by appending sk to sAk−1 , where jk, sk satisfy

( jk, sk) = argmax
j/∈Ak−1, s∈{−1,1}

XT
j P⊥

Ak−1
y

s − XT
j (X+

Ak−1
)T sAk−1

·1
{

XT
j P⊥

Ak−1
y

s − XT
j (X+

Ak−1
)T sAk−1

≤ λk−1

}
. (26)

 We have been implicitly assuming thus far that k < p. If k = p (so that neces-
sarily p ≤ n), then we must add an “extra” row to �, this row being P⊥

Ap−1
spXjp ,

which encodes the sign constraint spXT
jpP

⊥
Ap−1

y ≥ 0. For k < p, this constraint

is implicitly encoded due to the constraints of the form skXT
jk
P⊥
Ak−1

y ≥ ±a for
some a.

Above, P⊥
Ak−1

is the projection orthogonal to the column space of
XAk−1 , 1{·} denotes the indicator function, and λk−1 is the knot
value from step k − 1. We also record the kth knot

λk = XT
jk P

⊥
Ak−1

y
sk − XT

jk (X
+
Ak−1

)T sAk−1

. (27)

The algorithm terminates after the k-step model if k = p, or if
λk+1 < 0.

LAR is often viewed as “less greedy” than FS. It is also inti-
mately tied to the lasso, as covered in the next subsection. Now,
we verify that the LAR selection event

P =
{
y : Âk(y) = Ak, ŝAk (y) = sAk, Ŝ
(y) = S
, 
 = 1, . . . k

}
(28)

is a polyhedron of the form P = {y : �y ≥ 0}. We can see that
the LAR event in (28) contains “extra” conditioning, Ŝ
(y) = S
,

 = 1, . . . k, when compared to the FS event in (23). Explained
in words, S
 ⊆ {1, . . . p} × {−1, 1} contains the variable-sign
pairs that were “in competition” to become the active variable-
sign pair step 
. A subtlety of LAR: it is not always the case that
S
 = Ac


−1 × {−1, 1}, since some variable-sign pairs are auto-
matically excluded from consideration, as they would have pro-
duced a knot value that is too large (larger than the previous
knot λ
−1). This is reflected by the indicator function in (26).
The characterization in (28) is still perfectly viable for infer-
ence, because any conditional statement over P in (28) trans-
lates into a valid onewithout conditioning on Ŝ
(y), 
 = 1, . . . k,
by marginalizing over all possible realizations S
, 
 = 1, . . . k.
(Recall the discussion of marginalization in Section 2.2.)

The polyhedral representation for P in (28) again proceeds
by induction. Starting with k = 1, we can express the optimality
of j1, s1 in (24) as

c( j1, s1)Ty ≥ c( j, s)Ty, for all j 	= j1, s ∈ {−1, 1},
where c( j, s) = sXj. Thus � has 2(p− 1) rows, of the form
c( j1, s1) − c( j, s) for j 	= j1, s ∈ {−1, 1}. (In the first step, S1 =
{1, . . . p} × {−1, 1}, and we do not require extra rows of � to
explicitly represent it.) Further, suppose that the selection set can
be represented in the desiredmanner, after k − 1 steps. Then the
optimality of jk, sk in (26) can be expressed as

c( jk, sk,Ak−1, sAk−1 )
Ty ≥ c( j, s,Ak−1, sAk−1 )

Ty
for all ( j, s) ∈ Sk \ {( jk, sk)},

c( jk, sk,Ak−1, sAk−1 )
Ty ≥ 0,

where c( j, s,Ak−1, sAk−1 ) = (P⊥
Ak−1

Xj)/(s − XT
j (X+

Ak−1
)T sAk−1 ).

The set Sk is characterized by

c( j, s,Ak−1, sAk−1 )
Ty ≤ λk−1 for ( j, s) ∈ Sk,

c( j, s,Ak−1, sAk−1 )
Ty ≥ λk−1 for ( j, s) ∈ (

Ac
k−1 × {−1, 1}) \ Sk.

Notice that λk−1 = c( jk−1, sk−1,Ak−2, sAk−2 )
Ty is itself a linear

function of y, by the inductive hypothesis. Therefore, the new
� matrix is created by appending the following |Sk| + 2(p−
k + 1) rows to the previous matrix: c( jk, sk,Ak−1, sAk−1 ) −
c( j, s,Ak−1, sAk−1 ), for ( j, s) ∈ Sk \ {( jk, sk)}; c( jk, sk,Ak−1,

sAk−1 ); c( jk−1, sk−1,Ak−2, sAk−2 ) − c( j, s,Ak−1, sAk−1 ), for ( j, s)
∈ Sk; c( j, s,Ak−1, sAk−1 ) − c( jk−1, sk−1,Ak−2, sAk−2 ) for ( j, s)
∈ (Ac

k−1 × {−1, 1}) \ Sk. In total, the number of rows of � at
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step k of LAR is bounded above by
∑k


=1(|S
| + 2(p− 
 +
1)) ≤ 3pk − 3k2/2 + 3k/2.

4.3. Polyhedral Sets for Lasso Selection Events

By introducing a step into the LAR algorithm that deletes vari-
ables from the active set if their coefficients pass through zero,
the modified LAR algorithm traces out the lasso regularization
path (Efron et al. 2004). To concisely describe this modification,
at a step k > 1, denote by ( jaddk , saddk ) the variable-sign pair to
enter the model next, as defined in (26), and denote by λadd

k the
value of λ at which they would enter, as defined in (27). Now
define

jdelk = argmax
j∈Ak−1\{ jk−1}

eTj X
+
Ak−1

y

eTj (XT
Ak−1

XAk−1 )
−1sAk−1

·1
{

eTj X
+
Ak−1

y

eTj (XT
Ak−1

XAk−1 )
−1sAk−1

≤ λk−1

}
, (29)

the variable to leave the model next, and

λdel
k =

eTjdelk
X+
Ak−1

y

eTjdelk
(XT

Ak−1
XAk−1 )

−1sAk−1

, (30)

the value of λ at which it would leave. The lasso regulariza-
tion path is given by executingwhichever action—variable entry,
or variable deletion—happens first, when seen from the per-
spective of decreasing λ. That is, we record the kth knot λk =
max{λadd

k , λdel
k }, and we form Ak, sAk by either adding jaddk , saddk

to Ak−1, sAk−1 if λk = λadd
k , or by deleting jdelk from Ak−1 and its

sign from sAk−1 if λk = λdel
k .

We show that the lasso selection event4

P =
{
y : Â
(y) = A
, ŝA


(y) = sA

, Ŝadd
 (y) = Sadd
 ,

Ŝdel
 (y) = Sdel
 , 
 = 1, . . . k
}
, (31)

can be expressed in polyhedral form {y : �y ≥ 0}. A difference
between (31) and the LAR event in (28) is that, in addition to
keeping track of the set Sadd
 of variable-sign pairs in consid-
eration to become active (to be added) at step 
, we must also
keep track of the set Sdel
 of variables in consideration to become
inactive (to be deleted) at step 
. As discussed earlier, a valid
inferential statement conditional on the lasso event P in (31) is
still valid once we ignore the conditioning on Ŝadd
 (y), Ŝdel
 (y),

 = 1, . . . k, by marginalization.

To build the � matrix corresponding to (31), we begin the
same construction as we laid out for LAR in the last subsec-
tion, and simply add more rows. At a step k > 1, the rows we
described appending to � for LAR now merely characterize the
variable-sign pair ( jaddk , saddk ) to enter the model next, as well as
the set Saddk . To characterize the variable jdelk to leave the model
next, we express its optimality in (29) as

d( jdelk ,Ak−1, sAk−1 )
Ty ≥ d( j,Ak−1, sAk−1 )

Ty

 The observant reader might notice that the selection event for the lasso in (),
compared to that for FS in () and LAR in (), actually enumerates the assign-
ments of active sets Â
(y) = A
 , 
 = 1, . . . k across all k steps of the path. This is
done because, with variable deletions, it is no longer possible to express an entire
history of active sets with a single list. The same is true of the active signs.

for all j ∈ Sdelk \ { jdelk },
d( jdelk ,Ak−1, sAk−1 )

Ty ≥ 0,

where d( j,Ak−1, sAk−1 )=((X+
Ak−1

)T e j)/(eTj (XT
Ak−1

XAk−1 )
−1sAk−1 ),

and Sdelk is characterized by

d( j, s,Ak−1, sAk−1 )
Ty ≤ λk−1 for ( j, s) ∈ Sdelk ,

d( j, s,Ak−1, sAk−1 )
Ty ≥ λk−1 for ( j, s) ∈ Ak−1 \ Sdelk .

Recall that λk−1 = bTk−1y is a linear function of y, by the induc-
tive hypothesis. If a variablewas added at step k − 1, then bk−1 =
c( jk−1, sk−1,Ak−2, sAk−2 ); if instead a variable was deleted at step
k − 1, then bk−1 = d( jk−1,Ak−2, sAk−2 ). Finally, wemust charac-
terize step k as either witnessing a variable addition or deletion.
The former case is represented by

c( jaddk , saddk ,Ak−1, sAk−1 )
T ≥ d( jdelk ,Ak−1, sAk−1 )

Ty,

the latter case reverses the above inequality. Hence, in
addition to those described in the previous subsection,
we append the following |Sdelk | + |Ak−1| + 1 rows to �:
d( jdelk ,Ak−1, sAk−1 ) − d( j,Ak−1, sAk−1 ) for ( j, s) ∈ Sdelk \ { jdelk };
d( jdelk ,Ak−1, sAk−1 ); bk−1 − d( j,Ak−1, sAk−1 ) for ( j, s) ∈ Sdelk ;
d( j,Ak−1, sAk−1 ) − bk−1 for ( j, s) ∈ Ak−1 \ Sdelk ; and either
c( jaddk , saddk ,Ak−1, sAk−1 ) − d( jdelk ,Ak−1, sAk−1 ), or the negative
of this quantity, depending on whether a variable was added or
deleted at step k. Altogether, the number of rows of � at step
k is at most

∑k

=1(|Sadd
 | + |Sdel
 | + 2|Ac


−1| + |A
−1| + 1) ≤
3pk + k.

4.4. Details of the Exact Tests and Intervals

Given a number of steps k, after we have formed the appropri-
ate � matrix for the FS, LAR, or lasso procedures, as derived
in the last three subsections, computing conditional p-values
and intervals is straightforward. Consider testing a generic null
hypothesisH0 : vTθ = 0 where v is arbitrary. First, we compute,
as prescribed by Lemma 1, the quantities

V lo = max
j:(�v ) j>0

−(�y) j · ‖v‖22/(�v ) j + vTy,

Vup = min
j:(�v ) j<0

−(�y) j · ‖v‖22/(�v ) j + vTy.

Note that the number of operations needed to compute V lo,Vup

is O(mn), where m is the number of rows of �. For testing
against a one-sided alternative H1 : vTθ > 0, we form the test
statistic

Tk = 1 − F [V lo,Vup]
0,σ 2‖v‖22 (vTy) =

�
(

Vup

σ‖v‖2

)
− �

(
vT y

σ‖v‖2

)
�

(
Vup

σ‖v‖2

)
− �

(
V lo

σ‖v‖2

) .

By Lemma 3, this serves as valid p-value, conditional on the
selection. That is,

PvT θ=0

(
Tk ≤ α

∣∣∣ Âk(y) = Ak, ŝAk (y) = sAk

)
= α, (32)

for any 0 ≤ α ≤ 1. Also by Lemma 3, a conditional confidence
interval is derived by first computing δα that satisfies

1 − F [V lo,Vup]
δα,σ 2‖v‖22 (v

Ty) = α.
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Thenwe let Ik = [δα,∞), which has the proper conditional cov-
erage, in that

P

(
vTθ ∈ Ik

∣∣∣ Âk(y) = Ak, ŝAk (y) = sAk

)
= 1 − α. (33)

For testing against a two-sided alternative H1 : vTθ 	= 0, we
instead use the test statistic

T ′
k = 2 · min{Tk, 1 − Tk},

and by Lemma 4, the same results as in (32), (33) follow, but with
T ′
k in place of Tk, and I′k = [δα/2, δ1−α/2] in place of Ik.
Recall that the case when v = (X+

Ak
)Tek, and the null hypoth-

esis is H0 : eTk X
+
Ak

θ = 0, is of particular interest, as discussed in
Section 2. Here, we are testing whether the coefficient of the last
selected variable, in the population regression of θ on XAk , is
equal to zero. For this problem, the details of the p-values and
intervals follow exactly as above with the appropriate substitu-
tion for v . However, as we examine next, the one-sided variant
of the test must be handled with care, in order for the alternative
to make sense.

4.5. One-Sided or Two-Sided Tests?

Consider testing the partial regression coefficient of the vari-
able to enter, at step k of FS, LAR, or lasso, in a projected lin-
ear model of θ on XAk . With the choice v = (X+

Ak
)Tek, the one-

sided setup H0 : vTθ = 0 versus H1 : vTθ > 0 is not inherently
meaningful, since there is no reason to believe ahead of time that
the kth population regression coefficient eTk X

+
Ak

θ should be posi-
tive. By defining v = sk(X+

Ak
)T ek, where recall sk is the sign of the

kth variable as it enters the (FS, LAR, or lasso) model, the null
H0 : skeTk X

+
Ak

θ = 0 is unchanged, but the one-sided alternative
H1 : skeTk X

+
Ak

θ > 0 now has a concrete interpretation: it says that
the population regression coefficient of the last selected variable
is nonzero, and has the same sign as the coefficient in the fitted
(sample) model.

Clearly, the one-sided test here will have stronger power than
its two-sided version when the described one-sided alternative
is true. It will lack power when the appropriate population
regression coefficient is nonzero, and has the opposite sign as
the coefficient in the sample model. However, this is not really
of concern, because the latter alternative seems unlikely to be
encountered in practice, unless the size of the population effect
is very small (in which case the two-sided test would not likely
reject, as well). For these reasons, we often prefer the one-sided
test, with v = sk(X+

Ak
)Tek, for pure significance testing of the

variable to enter at the kth step. The p-values in Table 1, for
example, were computed accordingly.

With confidence intervals, the story is different. Informally,
we find one-sided (i.e., half-open) intervals, which result from
a one-sided significance test, to be less desirable from the per-
spective of a practitioner. Hence, for coverage statements, we
often prefer the two-sided version of our test, which leads to
two-sided conditional confidence intervals (selection intervals).
The intervals in Figure 1, for example, were computed in this
way.

4.6. Models with Intercept

Often, we run FS, LAR, or lasso by first beginning with an inter-
cept term in the model, and then adding predictors. Our selec-
tion theory can accommodate this case. It is easiest to simply
consider centering y and the columns of X , which is equivalent
to including an intercept term in the regression. After center-
ing, the covariance matrix of y is 	 = σ 2(I − 11T/n), where
1 is the vector of all 1s. This is fine, because the polyhedral
theory from Section 3 applies to Gaussian random variables
with an arbitrary (but known) covariance. With the centered y
and X , the construction of the polyhedral set (� matrix) car-
ries over just as described in Sections 4.1, 4.2, or 4.3. The con-
ditional tests and intervals also carry over as in Section 4.4,
except with the general contrast vector v replaced by its own
centered version. Note that when v lies in the column space
of X , for example, when v = (X+

Ak
)Tek, no changes at all are

needed.

4.7. HowMuch to Condition on?

In Sections 4.1, 4.2, and 4.3, we saw in the construction of the
polyhedral sets in (23), (28), (31) that it was convenient to con-
dition on different quantities to define the FS, LAR, and lasso
selection events, respectively. All three of the polyhedra in (23),
(28), (31) condition on the active signs sAk of the selectedmodel,
and the latter two condition on more (loosely, the set of vari-
ables that were eligible to enter or leave the active model at
each step). The decisions here, about what to condition on, were
driven entirely by computational convenience. It is important
to note that—even though any amount of extra conditioning
will still lead to valid inference once we marginalize out part
of the conditioning set (recall Section 2.2)—a greater degree
of conditioning will generally lead to less powerful tests and
wider intervals. This not only refers to the extra conditioning
in the LAR and lasso selection events, but also to the specifica-
tion of active signs sAk common to all three events. At the price
of increased computation, one can eliminate unnecessary condi-
tioning by considering a union of polyhedra (rather than a single
one) as determining a selection event. This is done in Lee et al.
(2016) and Reid, Taylor, and Tibshirani (2014). In FS regression,
one can condition only on the sufficient statistics for the nui-
sance parameters, and obtain the most powerful selective test.
Details are in Fithian, Sun, and Taylor (2014) and Fithian et al.
(2016).

5. The Spacing Test for LAR

A computational challenge faced by the FS, LAR, and lasso tests
described in the last section is that the matrices � computed
for the polyhedral representations {y : �y ≥ 0} of their selection
events can grow very large; in the FS case, the matrix� will have
2pk after k steps, and for LAR and lasso, it will have roughly 3pk
rows. Thismakes it cumbersome to formV lo,Vup, as the compu-
tational cost for these quantities scales linearly with the number
of rows of�. In this section, we derive a simple approximation to
the polyhedral representations for the LAR events, which reme-
dies this computational issue.
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5.1. A Refined Characterization of the Polyhedral Set

We begin with an alternative characterization for the LAR selec-
tion event, after k steps. The proof draws heavily on results from
Lockhart et al. (2014), and is given in Appendix A.1.

Lemma 5. Suppose that the LAR algorithm produces the list
of active variables Ak and signs sAk after k steps. Define
c( j, s,Ak−1, sAk−1 ) = (P⊥

Ak−1
Xj)/(s − XT

j (X+
Ak−1

)T sAk−1 ), with the
convention A0 = sA0 = ∅, so that c( j, s,A0, sA0 ) = c( j, s) =
sXj. Consider the following conditions:

c( j1, s1,A0, sA0 )
Ty ≥ c( j2, s2,A1, sA1 )

Ty ≥ · · ·
≥ c( jk, sk,Ak−1, sAk−1 )

Ty ≥ 0, (34)

c( jk, sk,Ak−1, sAk−1 )
Ty ≥ M+

k

(
jk, sk, c( jk−1, sk−1,

Ak−2, sAk−2 )
Ty

)
, (35)

c( j
, s
,A
−1, sA
−1 )
Ty ≤ M−




(
j
, s
, c( j
−1, s
−1,

A
−2, sA
−2 )
Ty

)
, for 
 = 1, . . . k,

(36)

0 ≥ M0



(
j
, s
, c( j
−1, s
−1,

A
−2, sA
−2 )
Ty

)
, for 
 = 1, . . . k,

(37)
0 ≤ MS


 y, for 
 = 1, . . . k. (38)

(Note that for 
 = 1 in (36), (37), we are meant to interpret
c( j0, s0,A−1, sA−1 )

Ty = ∞.) The set of all y satisfying the above
conditions is the same as the set P in (28).

Moreover, the quantity M+
k in (35) can be written as a max-

imum of linear functions of y, each M−

 in (36) can be written

as a minimum of linear functions of y, each M0

 in (37) can be

written as a maximum of linear functions of y, and each MS

 in

(38) is a matrix. Hence, (34)–(38) can be expressed as �y ≥ 0
for a matrix �. The number of rows of � is bounded above by
4pk − 2k2 − k.

At first glance, Lemma 5 seems to have done little for us over
the polyhedral characterization in Section 4.2: after k steps, we
are now faced with a � matrix that has on the order of 4pk rows
(even more than before!). Meanwhile, at the risk of stating the
obvious, the characterization in Lemma 5 is far more succinct
(i.e., the � matrix is much smaller) without the conditions in
(36)–(38). Indeed, in certain special cases (e.g., orthogonal pre-
dictors) these conditions are vacuous, and so they do not con-
tribute to the formation of�. Even outside of such cases, we have
found that dropping the conditions (36)–(38) yields an accurate
(and computationally efficient) approximation of the LAR selec-
tion set in practice. This is discussed next.

5.2. A Simple Approximation of the Polyhedral Set

It is not hard to see from their definitions in Appendix A.1 that
when X is orthogonal (i.e., when XTX = I), we have M−


 =
∞ and M0


 = −∞, and furthermore, the matrix MS

 has zero

rows, for each 
. This means that the conditions (36)–(38) are

vacuous. The polyhedral characterization in Lemma 5, there-
fore, reduces to {y : �y ≥ U }, where � has only k + 1 rows,
defined by the k + 1 constraints (34), (35), and U is a ran-
dom vector with components U1 = · · · = Uk = 0, and Uk+1 =
M+

k ( jk, sk, c( jk−1, sk−1,Ak−2, sAk−2 )
Ty).

For a general (nonorthogonal) X , we might still consider
ignoring the conditions (36)–(38) and using the compact repre-
sentation {y : �y ≥ U } induced by (34), (35). This is an approx-
imation to the exact polyhedral characterization in Lemma 5,
but it is a computationally favorable one, since � has only k +
1 rows (compared to about 4pk rows per the construction of
the lemma). Roughly speaking, the constraints in (36)–(38) are
often inactive (loose) among the full collection (34)–(38), so
dropping them does not change the geometry of the set. Though
we do not pursue formal arguments to this end (beyond the
orthogonal case), empirical evidence suggests that this approxi-
mation is often justified.

Thus, let us suppose for the moment that we are interested in
the polyhedron {y : �y ≥ U } with �,U as defined above, either
serving an exact representation, or an approximate one, reduc-
ing the full description in Lemma 5. Our focus is the application
of our polyhedral inference tools fromSection 3 to {y : �y ≥ U }.
Recall that the established polyhedral theory considers sets of
the form {y : �y ≥ u}, where u is fixed. As the equivalence in
(8) is a deterministic rather than a distributional result, it holds
whetherU is random or fixed. But the independence of the con-
structed V lo,Vup,V0, and vTy is not as immediate. The quan-
tities V lo,Vup,V0 are now functions of y andU , both of which
are random. An important special case occurs when vTy and
the pair ((I − 	vvT/vT	v )y,U ) are independent. In this case
V lo,Vup,V0—which only depend on the latter pair above—are
clearly independent of vTy. To be explicit, we state this result as
a corollary.

Corollary 1 (Polyhedral selection as truncation, random U). For
any fixed y, �,U, v with vT	v 	= 0,

�y ≥ U ⇐⇒ V lo(y,U ) ≤ vTy ≤ Vup(y,U ), V0(y,U ) ≤ 0,

where

V lo(y,U ) = max
j:ρ j>0

Uj − (�y) j + ρ jv
Ty

ρ j
,

Vup(y,U ) = min
j:ρ j<0

Uj − (�y) j + ρ jv
Ty

ρ j
,

V0(y,U ) = max
j:ρ j=0

Uj − (�y) j,

and ρ = �	v/vT	v . Moreover, assume that y and U are ran-
dom, and that

U is a function of (I − 	vvT/vT	v )y, (39)

so vTy and the pair ((I − 	vvT/vT	v )y,U ) are independent.
Then the triplet (V lo,Vup,V0)(y,U ) is independent of vTy.

Under the condition (39) on U , the rest of the inferential
treatment proceeds as before, as Corollary 1 ensures that we
have the required alternate truncated Gaussian representation
of �y ≥ U , with the random truncation limits V lo,Vup being
independent of the univariate Gaussian vTy. In our LAR prob-
lem setup,U is a given random variate (as described in the first
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paragraph of this subsection). The relevant question is of course:
when does (39) hold? Fortunately, this condition holds with only
very minor assumptions on v : this vector must lie in the column
space of the LAR active variables at the current step.

Lemma 6. Suppose that we have run k steps of LAR, and repre-
sent the conditions (34), (35) in Lemma 5 as�y ≥ U . Under our
running regression model y ∼ N(θ, σ 2I), if v is in the column
space of the active variables Ak, written v ∈ col(XAk ), then the
condition in (39) holds, so inference for vTθ can be carried out
with the same set of tools as developed in Section 3, conditional
on �y ≥ U .

The proof is given inAppendixA.2. For example, if we choose
the contrast vector to be v = (X+

Ak
)Tek, a case we have revis-

ited throughout the article, then this satisfies the conditions of
Lemma 6. Hence, for testing the significance of the projected
regression coefficient of the latest selected LAR variable, condi-
tional on�y ≥ U , wemay use the p-values and intervals derived
in Section 3. We walk through this usage in the next subsection.

5.3. The Spacing Test

The (approximate) representation of the form {y : �y ≥ U }
derived in the last subsection (where � is small, having k + 1
rows), can only be used to conduct inference over vTθ for cer-
tain vectors v , namely, those lying in the span of current active
LAR variables. The particular choice of contrast vector

v = c( jk, sk,Ak−1, sAk−1 ) = P⊥
Ak−1

Xjk

sk − XT
jk (X

+
Ak−1

)T sAk−1

, (40)

paired with the compact representation {y : �y ≥ U }, leads to
a very special test that we name the spacing test. From the def-
inition (40), and the well-known formula for partial regression
coefficients, we see that the null hypothesis being considered is

H0 : vTθ = 0 ⇐⇒ H0 : eTk X
+
Ak

θ = 0,

that is, the spacing test is a test for the kth coefficient in the
regression of θ on XAk , just as we have investigated all along
under the equivalent choice of contrast vector v = (X+

Ak
)Tek.

Themain appeal of the spacing test lies in its simplicity. Letting

ωk = ∥∥(X+
Ak

)T sAk − (X+
Ak−1

)T sAk−1

∥∥
2, (41)

the spacing test statistic is defined by

Tk = �(λk−1
ωk
σ

) − �(λk
ωk
σ

)

�(λk−1
ωk
σ

) − �(M+
k

ωk
σ

)
. (42)

Above, λk−1 and λk are the knots at steps k − 1 and k in the LAR
path, andM+

k is the random variable from Lemma 5. The statis-
tic in (42) is one-sided, implicitly aligned against the alterna-
tiveH1 : vTθ > 0, where v is as in (40). Since vTy = λk ≥ 0, the
denominator in (40) must have the same sign as XT

jk P
⊥
Ak−1

y, that
is, the same sign as eTk X

+
Ak
y. Hence,

H1 : vTθ > 0 ⇐⇒ H1 : sign(eTk X
+
Ak
y) · eTk X+

Ak
θ > 0,

that is, the alternative hypothesis H1 is that the population
regression coefficient of the last selected variable is nonzero, and
shares the sign of the sample regression coefficient of the last

variable. This is a natural setup for a one-sided alternative, as
discussed in Section 4.5.

The spacing test statistic falls directly out of our polyhedral
testing framework, adapted to the case of a randomU (Corollary
1 and Lemma 6). It is a valid p-value for testing H0 : vTθ = 0,
and has exact conditional size. We emphasize this point by stat-
ing it in a theorem.

Theorem 1 (Spacing test). Suppose that we have run k steps of
LAR. Represent the conditions (34), (35) in Lemma 5 as �y ≥
U . Specifically, we define � to have the following k + 1 rows:

�1 = c( j1, s1,A0, sA0 ) − c( j2, s2,A1, sA1 ),

�2 = c( j2, s2,A1, sA1 ) − c( j3, s3,A2, sA2 ),

. . .

�k−1 = c( jk−1, sk−1,Ak−2, sAk−2 ) − c( jk, sk,Ak−1, sAk−1 ),

�k = �k+1 = c( jk, sk,Ak−1, sAk−1 ),

andU to have the following k + 1 components:

U1 = U2 = · · · = Uk = 0,

Uk+1 = M+
k

(
jk, sk, c( jk−1, sk−1,Ak−2, sAk−2 )

Ty
)
.

For testing the null hypothesis H0 : eTk X
+
Ak

θ = 0, the spacing
statistic Tk defined in (41), (42) serves as an exact p-value con-
ditional on �y ≥ U :

PeTk X
+
Ak

θ=0

(
Tk ≤ α

∣∣∣ �y ≥ U
)

= α,

for any 0 ≤ α ≤ 1.

Remark 3. The p-values from our polyhedral testing the-
ory depend on the truncation limits V lo,Vup, and in turn
these depend on the polyhedral representation. For the special
polyhedron {y : �y ≥ U } considered in the theorem, it turns
out that V lo = M+

k and Vup = λk−1, which is fortuitous, as it
means that no extra computation is needed to form V lo,Vup

(beyond that already needed for the path and M+
k ). Further-

more, for the contrast vector v in (40), it turns out that ‖v‖2 =
1/ωk. These two facts completely explain the spacing test statis-
tic (42), and the proof of Theorem 1, presented in Appendix A.3,
reduces to checking these facts.

Remark 4. The event �y ≥ U is not exactly equivalent to the
LAR selection event at the kth step. Recall that, as defined, this
only encapsulates the first part (34), (35) of a longer set of con-
ditions (34)–(38) that provides the exact characterization, as
explained in Lemma 5. However, in practice, we have found that
(34), (35) often provide a very reasonable approximation to the
LAR selection event. In most examples, the spacing p-values are
either close to those from the exact test for LAR, or exhibit even
better power.

Remark 5. A two-sided version of the spacing statistic in (42)
is given by T ′

k = 2 · min{Tk, 1 − Tk}. The result in Theorem 1
holds for this two-sided version, as well.

5.4. Conservative Spacing Test

The spacing statistic in (42) is very simple and concrete, but it
still does depend on the random variableM+

k . The quantityM
+
k
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Figure . Simulated data with n = 50, p = 100, and two true active variables. Shown are p-values from the first three steps of FS and LAR, computed using the TG tests of
Section , the spacing test of Section , and the covariance test of Lockhart et al. (), across  repetitions (draws of y from the simulation model).

is computable in O(p) operations (see Appendix A.1 for its def-
inition), but it is not an output of standard software for comput-
ing the LAR path (e.g., the R packagelars). To further simplify
matters, therefore, we might consider replacingM+

k by the next
knot in the LAR path, λk+1. The motivation is that sometimes,
but not always,M+

k and λk+1 will be equal. In fact, as argued in
Appendix A.4, it will always be true thatM+

k ≤ λk+1, leading us
to a conservative version of the spacing test.

Theorem 2 (Conservative spacing test). After k steps along the
LAR path, define the modified spacing test statistic

T̃k = �(λk−1
ωk
σ

) − �(λk
ωk
σ

)

�(λk−1
ωk
σ

) − �(λk+1
ωk
σ

)
. (43)

Here, ωk is as defined in (41), and λk−1, λk, λk+1 are the LAR
knots at steps k − 1, k, k + 1 of the path, respectively. Let �y ≥
U denote the compact polyhedral representation of the spacing
selection event step k of the LAR path, as described in Theorem
1. Then T̃k is conservative, when viewed as a conditional p-value
for testing the null hypothesis H0 : eTk X

+
Ak

θ = 0:

PeTk X
+
Ak

θ=0

(
T̃k ≤ α

∣∣∣�y ≥ U
)

≤ α,

for any 0 ≤ α ≤ 1.

Remark 6. It is not hard to verify that the modified statistic in
(43) is a monotone decreasing function of λk − λk+1, the spac-
ing between LAR knots at steps k and k + 1, hence the name
“spacing” test. Similarly, the exact spacing statistic in (42) mea-
sures the magnitude of the spacing λk − M+

k .

6. Empirical Examples

6.1. Conditional Size and Power of FS and LAR Tests

We examine the conditional Type I error and power properties
of the truncated Gaussian (TG) tests for FS and LAR, as well
as the spacing test for LAR, and the covariance test for LAR.
We generated iid standard Gaussian predictors X with n = 50,
p = 100, and then normalized each predictor (column of X)
to have unit norm. We fixed true regression coefficients β∗ =
(5,−5, 0, . . . , 0), and we set σ 2 = 1. For a total of 1000 repeti-
tions, we drew observations according to y ∼ N(Xβ∗, σ 2I), ran
FS and LAR, and computed p-values across the first three steps.

Figure 3 displays the results in the form of QQ plots. The first
plot in the figure shows the p-values at step 1, conditional on
the algorithm (FS or LAR) having made a correct selection (i.e.,
having selected one of the first two variables). The second plot
shows the same, but at step 2. The third plot shows p-values at
the step 3, conditional on the algorithm having made an incor-
rect selection.

At step 1, all p-values display very good power, about 73% at
a 10% nominal Type I error cutoff. There is an interesting depar-
ture between the tests at step 2: we see that the covariance and
spacing tests for LAR actually yield much better power than the
exact TG tests for FS and LAR: about 82% for the former versus
35% for the latter, again at a nominal 10% Type I error level. At
step 3, the TG and spacing tests produce uniform p-values, as
desired; the covariance test p-values are super-uniform, show-
ing the conservativeness of this method in the null regime.

Why do themethods display such differences in power at step
2? A rough explanation is as follows. The spacing test, recall, is
defined by removing a subset of the polyhedral constraints for
the conditioning event for LAR, thus its p-values are based on
less conditioning than the exact TG p-values for LAR. Because
it conditions on less, that is, it uses a larger portion of the sample
space, it can deliver better power; and though it (as well as the
covariance test) is not theoretically guaranteed to control Type I
error in finite samples, it certainly appears to do so empirically,
seen in the third panel of Figure 3. The covariance test is believed
to behave more like the spacing test than the exact TG test for
LAR; this is based on an asymptotic equivalence between the
covariance and spacing tests, given in Section 7, and it explains
their similarities in the plots.

6.2. Coverage of LAR Conditional Confidence Intervals

In the same setup as the previous subsection, we computed con-
ditional confidence intervals over the first three steps of LAR,
at a 90% coverage level. Figure 4 shows these intervals across
the first 100 repetitions. Each interval here is designed to cover
the partial regression coefficient of a particular variable, in a
population regression of the mean θ = Xβ∗ on the variables in
the current active set. These population coefficients are drawn
as black dots, and the colors of the intervals reflect the iden-
tities of the variables being tested: red for variable 1, green
for variable 2, and blue for all other variables. Circles around
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Figure . Using the same setup as in Figure , shown are % confidence intervals for the selections made over the first three steps of LAR, across  repetitions (draws
of y from the simulation model). The colors assigned to the intervals reflect the identities of the variables whose partial regression coefficients are being tested: red for
variable , green for variable , and blue for all others. The black dots are the true population coefficients, and circles around these dots denote miscoverages. The upper
confidence limits for some of the parameters exceed the range for the y-axes on the plots (especially at step ).

population coefficients indicate that these particular coefficients
are not covered by their corresponding intervals. The miscover-
age proportion is 12/100 in step 1, 11/100 in step 2, and 11/100
in step 3, all close to the nominal miscoverage level of 10%. An
important remark: here we are counting marginal coverage of
the intervals. Our theory actually further guarantees conditional
coverage, for each model selection event, for example, among
the red intervals at step 1, the miscoverage proportion is 7/52,
and among green intervals, it is 5/47, both close to the nominal
10% level.

6.3. Comparison to themax-|t|-Test
The last two subsections demonstrated the unique properties of
the exact TG tests for FS and LAR. For testing the significance of
variables entered by FS, Buja and Brown (2014) proposed what
they call themax-|t|-test. Here is a description. At the kth step of

FS, where Ak−1 is the current active list (with k − 1 active vari-
ables), let

tmax(y) = max
j/∈Ak−1

|XT
j P⊥

Ak−1
y|

σ‖P⊥
Ak−1

Xj‖2 .

As the distribution of tmax(y) is generally intractable, we simu-
late ε ∼ N(0, σ 2I), and use this to estimate null probability that
tmax(ε) > tmax(y), which forms our p-value.

We used the same setup as in the previous two subsections,
but with an entirely null signal, that is, we set the mean to be
θ = Xβ∗ = 0, to demonstrate the following point. As we step
farther into the null regime (as we take more and more steps
with FS), the max-|t|-test becomes increasingly conservative,
whereas the exact TG test for FS continues to produce uniform
p-values, as expected. The reason is that the TG test for FS at step
k properly accounts for all selection events up to and including
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step k, but the max-|t|-test at step k effectively ignores all selec-
tions occurring before this step, creating a conservative bias in
the p-value. See Appendix A.5 for the plots.

7. Relationship to the Covariance Test

There is an interesting connection between the LAR spacing test
and the covariance test of Lockhart et al. (2014). We first review
the covariance test and then discuss this connection.

After k steps of LAR, let Ak denote the list of active variables
and sAk denote the sign list, the same notation as we have been
using thus far. The covariance test provides a significance test
for the kth step of LAR.More precisely, it assumes an underlying
linear model θ = Xβ∗, and tests the null hypothesis

H0 : Ak−1 ⊇ supp(β∗),

where supp(β∗) denotes the support of set of β∗ (the true active
set). In words, this tests simultaneously the significance of any
variable entered at step k and later.

Though its original definition is motivated from a difference
in the (empirical) covariance between LAR-fitted values, the
covariance statistic can be written in an equivalent form that is
suggestive of a connection to the spacing test. This form, at step
k of the LAR path, is

Ck = ω2
k · λk(λk − λk+1)/σ

2, (44)

whereλk, λk+1 are the LARknots at steps k and k + 1 of the path,
and ωk is the weight in (41). (All proofs characterizing the null
distribution of the covariance statistic in Lockhart et al. (2014)
use this equivalent definition.) The main result (Theorem 3) in
Lockhart et al. (2014) is that, under correlation restrictions on
the predictors X and other conditions, the covariance statistic
(44) has a conservative Exp(1) limiting distribution under the
null hypothesis. Roughly, they show that

lim
n,p→∞PAk−1⊇supp(β∗)

(
Ck > t

∣∣∣ Âk(y) = Ak, ŝAk (y) = sAk

)
≤ e−t ,

for all t ≥ 0.
A surprising result, perhaps, is that the covariance test in (44)

and the spacing test in (43) are asymptotically equivalent. The
proof for this equivalence uses relatively straightforward calcu-
lations with Mills’ inequalities, and is deferred until Appendix
A.6.

Theorem 3 (Asymptotic equivalence between spacing and covari-
ance tests). After a fixed number k steps of LAR, the spacing
p-value in (43) and the covariance statistic in (44) are asymptot-
ically equivalent, in the following sense. Assume an asymptotic
regime in which

ωkλk+1
P→ ∞, and

ω2
k · λk−1(λk−1 − λk)

P→ ∞,

denoting convergence in probability. The spacing statistic, trans-
formed by the inverse Exp(1) survival function, satisfies

− log
(

�(λk−1
ωk
σ

) − �(λk
ωk
σ

)

�(λk−1
ωk
σ

) − �(λk+1
ωk
σ

)

)
= ω2

k

σ 2 λk(λk − λk+1)

+oP(1).

Said differently, the asymptotic p-value of the covariance statis-
tic, under the Exp(1) limit, satisfies

exp
(

− ω2
k

σ 2 λk(λk − λk+1)

)
=

(
�(λk−1

ωk
σ

) − �(λk
ωk
σ

)

�(λk−1
ωk
σ

) − �(λk+1
ωk
σ

)

)
(1 + oP(1)).

Above, we use oP(1) to denote terms converging to zero in
probability.

Remark 7. The asymptotic equivalence described in this the-
orem raises an interesting and unforeseen point about the
one-sided nature of the covariance test. That is, the covari-
ance statistic is seen to be asymptotically tied to the spac-
ing p-value in (43), which, recall, we can interpret as testing
the null H0 : eTk X

+
Ak

θ = 0 against the one-sided alternative H1 :
sign(eTk X

+
Ak
y) · eTk X+

Ak
θ > 0. The covariance test in (44) is hence

implicitly aligned to have powerwhen the selected variable at the
kth step has a sign that matches that of the projected population
effect of this variable.

8. Discussion

In a regression model with Gaussian errors, we have presented
a method for exact inference, conditional on a polyhedral
constraint on the observations y. Since the FS, LAR, and lasso
algorithms admit polyhedral representations for their model
selection events, our framework produces exact p-values and
confidence intervals post model selection for any of these adap-
tive regression procedures. One particularly special and simple
case arises when we use our framework to test the significance
of the projected regression coefficient, in the population, of
the latest selected variable at a given step of LAR. This leads
to the spacing test, which is asymptotically equivalent to the
covariance test of Lockhart et al. (2014). An R language package
selectiveInference, that implements the proposals in
this article, is freely available on the CRAN repository, as well
as https://github.com/selective-inference/R-software. A Python
implementation is also available at https://github.com/selective-
inference/Python-software.

Supplementary Materials

The supplementary materials contain additional proofs.

Acknowledgment

The authors thank Andreas Buja, Max Grazier G’Sell, Alessandro Rinaldo,
and Larry Wasserman for helpful comments and discussion. The authors
also thank the editors and referees whose comments led to a complete over-
haul of this article.

https://github.com/selective-inference/R-software
https://github.com/selective-inference/Python-software


614 L. D. BROWN AND K. D. JOHNSON

Funding

Richard Lockhart was supported by the Natural Sciences and Engineering
Research Council of Canada; Jonathan Taylor was supported by NSF grant
DMS 1208857 and AFOSR grant 113039; Ryan Tibshirani was supported
by NSF grant DMS-1309174; and Robert Tibshirani was supported by NSF
grant DMS-9971405 and NIH grant N01-HV-28183.

References

Berk, R., Brown, L., Buja, A., Zhang, K., and Zhao, L. (2013), “Valid Post-
Selection Inference,” Annals of Statistics, 41, 802–837. [601]

Buhlmann, P. (2013), “Statistical Significance in High-Dimensional Linear
Models,” Bernoulli, 19, 1212–1242. [601]

Buja, A., and Brown, L. (2014), “Discussion: A Significance Test for the
Lasso,” Annals of Statistics, 42, 509–517. [612]

Choi, Y., Taylor, J., andTibshirani, R. (2014), “Selecting theNumber of Prin-
cipal Components: Estimation of the True Rank of a Noisy Matrix,”
arXiv: 1410.8260. [601]

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004), “Least Angle
Regression,” Annals of Statistics, 32, 407–499. [606,607]

Fithian, W., Sun, D., and Taylor, J. (2014), “Optimal Inference After Model
Selection,” arXiv: 1410.2597. [601,604,608]

Fithian, W., Taylor, J., Tibshirani, R. J., and Tibshirani, R. (2016), “Selective
Sequential Model Selection,” arXiv:1512.02565. [608]

G’Sell,M.,Wager, S., Chouldechova, A., andTibshirani, R. (2016), “Sequen-
tial Selection Procedures and False Discovery Rate Control,” Journal of
the Royal Statistical Society, Series B, 78, 423–444. [603]

Javanmard, A., and Montanari, A. (2014a), “Confidence Intervals and
Hypothesis Testing for High-dimensional Regression,” Journal of
Machine Learning Research, 15, 2869–2909. [601]

——— (2014b), “Hypothesis Testing in High-dimensional Regression
Under the Gaussian Random Design Model: Asymptotic The-

ory,” IEEE Transactions on Information Theory, 60, 6522–6554.
[601]

Lee, J., Sun,D., Sun, Y., andTaylor, J. (2016), “Exact Post-Selection Inference
With the Lasso,” Annals of Statistics, 44, 907–927. [601,603,608]

Lee, J., and Taylor, J. (2014), “Exact Post Model Selection Inference for
Marginal Screening,” Advances in Neural Information Processing Sys-
tems, 27, 136–144. [601]

Lehmann, E., and Romano, J. (2005),Testing Statistical Hypotheses (3rd ed.),
New York: Springer. [604]

Lockhart, R., Taylor, J., Tibshirani, R. J., and Tibshirani, R. (2014), “A
Significance Test for the Lasso,” Annals of Statistics, 42, 413–468.
[600,609,613]

Loftus, J., and Taylor, J. (2014), “A Significance Test for Forward Stepwise
Model Selection,” arXiv: 1405.3920. [601]

Meinshausen, N., and Buhlmann, P. (2010), “Stability Selection,” Journal of
the Royal Statistical Society, Series B, 72, 417–473. [601]

Minnier, J., Tian, L., and Cai, T. (2011), “A Perturbation Method for Infer-
ence on Regularized Regression Estimates,” Journal of the American
Statistical Association, 106, 1371–1382. [601]

Reid, S., Taylor, J., andTibshirani, R. (2014), “Post-selection Point and Inter-
val Estimation of Signal Sizes in Gaussian Samples,” arXiv: 1405.3340.
[601,608]

Tibshirani, R. J. (2013), “The Lasso Problem and Uniqueness,” Electronic
Journal of Statistics, 7, 1456–1490. [605]

van de Geer, S., Buhlmann, P., Ritov, Y., and Dezeure, R. (2014), “On
Asymptotically Optimal Confidence Regions and Tests for High-
dimensional Models,” Annals of Statistics, 42, 1166–1201. [601]

Wasserman, L., and Roeder, K. (2009), “High-Dimensional Variable Selec-
tion,” Annals of Statistics, 37, 2178–2201. [601]

Zhang, C.-H., and Zhang, S. (2014), “Confidence Intervals for Low Dimen-
sional Parameters in High Dimensional Linear Models,” Journal of the
Royal Statistical Society, Series B, 76, 217–242. [601]

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, VOL. , NO. , Theory and Methods
http://dx.doi.org/./..

Comment

Lawrence D. Brown and Kory D. Johnson

1. Introduction

The authors provide a novel and exciting framework for ana-
lyzing conditional selection. Formalizing the steps of a selection
procedure as constraints on the response is applicable beyond
the linear models theory discussed here and involves a high
degree of technical accomplishment. It also raises interesting
questions about different approaches to conditional inference.
That being said, the usefulness of these tests appears limited in
practice.

For ease of exposition, we focus on the forward stepwise case,
though the arguments are also applicable to least angle regres-
sions (LARS). The authors’ propose an “Exact Forward Step-
wise” procedure (FS) that assigns new, “exact” p-values to the

CONTACT Lawrence D. Brown brown@wharton.upenn.edu The Wharton School, University of Pennsylvania, Philadelphia, PA .
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

variables in a standard forward selection algorithm based on the
usual analysis of variance (ANOVA) forward selection. At each
stage, the algorithm includes the variable that creates the largest
reduction in error sum of squares. After a variable is added, it is
assigned a “p-value” by this “exact” procedure. This is a numeri-
cal quantity that has aU(0,1) distribution conditional on the sign
of the selected variable and the variables that have been previ-
ously chosen.

This extends conditional inference ideas and calculations
from other recent articles so as to provide p-values for fea-
ture selection algorithms. As these algorithms are commonly
used to build multiple regression models, one might think that
improved p-values would lead to improved model selection,
at least in some circumstances; however, the formulation in
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this article involves a serious paradox. One needs to begin
with a well-specified model selection algorithm and construct
a model independent of the exact p-values described in the
article. The exact p-values can be constructed only after the
model has been chosen; they cannot validly be used to select
the model. If one tries to use them in this way, they become
invalid.

While forward stepwise and LARS operate independently of
these p-values, one would expect the modeler to want to use the
p-values to determine the step at which to “stop” the procedure
and provide a final model. Consider the authors’ Table 1 (recre-
ated below), which compares their FS p-values to naive forward
stepwise p-values. Identifying a final model using such a table
requires consideringmultiple p-values from separate steps of the
procedure. Therein lies the problem: the set of exact p-values
cannot be used to make decisions, else they are invalid. Even
using these p-values as input into a secondary FDR-controlling
procedure as in G’Sell et al. (2016) is inappropriate. Only one
exact p-value can validly be used, testing one step of a much
larger procedure. Similarly, if a model is selected through other
means such as cross-validation, the inferential guarantees of
related methods need not hold (Bachoc, Leeb, and Pötscher
2014).

It should be noted that the conventional p-values are single-
step values. They do not correct for the multiple testing nature
of a stepwise procedure. Later in this commentary we recom-
mend modified versions of the p-value calculations that can be
validly and directly used for stepwise selection. See procedures
(b) and (c) defined later. The procedure ES, defined later, is
built on conditional inference logic and could be used to replace
FS. For reasons discussed below, however, we do not favor its
use.

The columns inTable 1 labeled “JASA” are takendirectly from
the authors’ Table 1. The column labeled “Seq. p-value” con-
tains traditional two-sided p-values we calculated from our ver-
sion of the data. Further information on our computations is
in the appendix. Note that our p-values are two-sided, whereas
those in the article are one-sided. While providing one-sided p-
values may aid numerical comparison to the FS exact p-values,
we note that these are one-sided conditional on the sign of
the observed effect. Therefore, they are in effect two-sided p-
values and should be compared to ordinary two-sided p-values.
(We believe our “Seq. p-value” entries should be twice those in
the column “FS, naive (JASA).” They are not exactly so but are
numerically close to that.)

The paradox in using the FS p-values is rather subtle, and is
easiest to explain in the context of an example. Let Xi be inde-
pendently distributedN(θi, 1), for i ∈ {1, 2}. The forward selec-
tion problem is equivalent to determining an order for testing
H0,i: θi = 0, while controlling false rejections at level α. Since
we are performing model selection, a variable is “included” or
“added” to the model when the corresponding null hypothesis
is rejected. Allowing correlated variables does not change the
basic ideas in our discussion, though it does introduce further
complications mentioned in our final paragraph. Without loss
of generality, consider the case when X1 > X2 > 0.

The authors’ FS significance thresholds are given as “FS Step
1” and “FS Step 2” in Figure 1. The conditioning set for both
steps of the procedure is the same: {X1 > X2 > 0}. Values to

Table . Replicated stepwise table.

Step Parameter Seq. p-value FS, naive (JASA) FS, exact (JASA)

 lcavol . . .
 lweight . . .
 svi . . .
 lbph . . .
 ppg . . .
 lcp . . .
 age . . .
 gleason . . .

the right of the dashed curve “FS Step 1” yield p-values below
α when testing H0,1 while values between “FS Step 1” and
the 45◦ line yield p-values greater than α. Thus, values to the
right of FS Step 1 are those for which the statistician using FS
p-values would select X1 with a positive sign at the first step of
the selection process. During the second step, values above the
dash-dotted curve “FS Step 2” are significant at level α, while
values below are not. Note that the calculation at the second step
does not change depending on whether or notH0,1 was rejected.

In order to use the FS p-values as Table 1 would imply, testing
H0,2 must account for rejectingH0,1. Following themethodology
of the authors’ article, this requires updating the conditioning
set. We propose the following corrected procedure, “Exact Step-
wise” (ES), that terminates on the first step in which a corrected,
conditional p-values is aboveα. IfH0,2 is only testedwhenH0,1 is
rejected by FS, then the conditioning set is the region to the right
of FS Step 1. Those points to the right of FS Step 1 and outside the
convex, parabolic region whose boundary is the curve “ES Step
2” are those for which the new ES procedure selects X1 at the
first step (with a positive coefficient) and X2 at the second step
(with positive coefficient). It is clear that this correction does
not invalidate the authors’ methodology, but it does yield dif-
ferent p-values. Furthermore, the new conditioning sets are not
polyhedral and need not be convex. In spite of the authors’ indi-
rect implication, convex polyhedral conditioning regions are not

Figure . Stepwise rejection regions atα = 0.1. The full picture is symmetric around
the x- and y-axes. A corresponding image would be drawn if X2 > X1 > 0, in which
case the graph would be rotated ◦ and maintain its symmetries.
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required for theirmethodology, although computations are sim-
pler for such regions.

2. Stopping Procedures Using ES p-Values

We are also concerned with the counter-intuitive results given
when using conditional p-values, even when they are corrected
as already discussed. The problem has obvious symmetries such
as relabeling variables 1 and 2 or changing their signs. While
our new proposal, ES, preserves those symmetries, it does not
preserve the natural monotonicity of the problem. For exam-
ple, there exist values (x1, x2) and (x′

1, x′
2) for which x1 ≤ x′

1 and
x2 ≤ x′

2, but for which ES selects both variables at (x1, x2) and
no variables at (x′

1, x′
2). The authors’ FS procedure does not pro-

duce as extreme an example sinceH0,2 is tested regardless of the
result of testingH0,1; however, the significance of the test ofH0,1
depends on the value of X2. This is particularly troubling given
that X1 and X2 are independent.

It is also instructive to compare the rejection regions of the
FS and ES procedures to those of more traditional methods
(again, see Figure 1). The conventional procedure first adds X1
if |X1| > |X2| and |X1| > �−1(1 − α/2). It then adds X2 if, also,
|X2| > �−1(1 − α/2). If |X2| > |X1| and |X2| > �−1(1 − α/2)
the first step addsX2, etc. Relevant portions of the lines form the
boundaries of this region. There are multiple, classically con-
structed stepwise regions to control for selection and multiple
comparisons:

(a) The thin vertical lines are atX1 = 1.645 andX2 = 1.645.
To the right of the 45◦ line, they show regions where the
fully classical stepwise procedure would first choose X1
(to the right of X1 = 1.645) and then X2 (above X2 =
1.645). This region is not adjusted for multiple compar-
isons, and hence has an error probability of choosing
nonemptymodels under the null hypothesis that exceeds
the nominal level α.

(b) Similarly, the thick vertical lines at X1 = 1.96 and X2 =
1.96 bound regions that provide conservative multiple-
comparison adjustments based on conventional single-
coordinate p-values. This uses the Bonferroni approxi-
mation to control for multiple-comparisons. The exact
numerical value can be computed from a maximum
modulus calculation and is 1.948.

(c) A better stepwise procedure controlling for multiple
comparisons can be constructed as follows: at each step,
choose among the remaining k variables using a p-value
threshold such that the null probability of choosing any
model is less than or equal to α. As in (b), Bonferroni
yields the conservative threshold α/k, though an exact
calculation is possible when k is small. In the figure, one
would include X1 to the right of X1 = 1.96 (or 1.948 for
an exact calculation) and then would include X2 when
X2 is aboveX2 = 1.645. At each step of the procedure, the
conditional probability under the null hypothesis of con-
tinuing with an incorrect rejection is α. This type of pro-
cedure was briefly proposed in Buja and Brown (2014).
If the goal is to preserve FDR, then one can improve the
procedure, and we are currently working on an article to
explain how to do so. Johnson, Stine, and Foster (2015a)

provided a related procedure that controls mFDR with
much higher power.

Comparison of Procedures

Many interesting comparisons can bemade between FS, ES, and
the more conventionally motivated, multiplicity-corrected pro-
cedures (b) and (c). These regions are labeled (numerically) in
Figure 1.

1. Consider the triangular region to the right of FS Step 1
and to the left of X1 = 1.96. This is where the ES proce-
dure selects X1 and the conventionally motivated proce-
dures choose no variables. Heuristically, this seems to be
a success for the ES procedure.

2. Within the region described in 1, there is a sliver between
FS Step 1 and ES Step 2. Here, ES selects both X1 and X2,
while the conventional procedures select neither. While
this maintains a significance guarantee, this may not be
an advantage. These points do have conventional (two-
sided) p-values for X1 that are below α, but the conven-
tional p-value for X2 is quite large. Selecting X2 appears
to be a mistake.

3. There is a more noticeable triangular region bounded by
FS Step 1, ES Step 2, and X2 = 1.645. In this region, the
ES procedure selects bothX1 andX2 but (b) and (c) select
only X1. For reasons similar to those in 2, the second
step of ES appears undesirable. The disadvantage is not
as clear, however, since X2 can have a two-sided p-value
as small as α = 0.1 in this region. The uncorrected FS
p-value yields intuitively more satisfactory results in this
region.

4. Consider the region between X2 = 1.645 andX2 = 1.96,
and to the right of FS Step 1. ES and (c) select both vari-
ables, but the simpler, conservative procedure (b) does
not include X2. The advantage here goes to ES and (c).

5. The area between the 45◦ line and FS Step 1 and to the
right ofX1 = 1.96 iswhere (b) and (c) have a clear advan-
tage in power relative to ES or to a procedure based on
FS. In those regions, ES and FS have first step p-values
above α and hence do not select any variable, while (b)
and (c) always select X1 and often select X2.

6. In the region above FS Step 2 and below X2 = 1.645, X2
has a significant FS p-value even though its conventional
p-value can be close to 1 near the origin.

In summary, (b) or (c) seem preferable to the ES procedure.
The latter does better if the data fall in the small, but not neg-
ligible region 1; however, (b) and (c) produce much more rea-
sonable models in the more noticeable area 5. Procedure (c) is
preferred to (b) because of the difference noted in region 4. The
regions 2 and 3 are quite small and nearly negligible in probabil-
ity. While the ES procedure seems undesirable on these regions,
the concern is not important.

As a further comparison, consider the point (4, 3.8). The ES
p-values for Steps 1 and 2 are ≈ 0.44 and ≈ 0.0001, respec-
tively, while the naive p-values are approximately 0.0001 for both
variables. The decision of ES to stop at Step 1 and declare an
empty model might well be viewed as embarrassing and sub-
jectively undesirable. This is consistent with the claimed ES
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p-values though. Similarly, while methods of G’Sell et al. (2016)
are not required to stop at Step 1, the penalty for continuing is
extremely large given the unconventionally large p-value.

In the correlated setting, the interesting simulation in Section
6 strongly suggests that the p-values used in procedures (b) and
(c) can be extremely conservative. Hence, the naive scheme pre-
viously suggested must be modified to achieve desirable perfor-
mance. To decide whether such modification is possible needs
further research, and, if possible, further investigation of the
geometric structure and stochastic performance of the resulting
tests. One possibility for improved performance is to switch to
the sequential selection viewpoint of Johnson, Stine, and Foster
(2015a).

For all considered testing methods, when the regressors are
correlated, the values of regression coefficients depend onwhich
other coefficients are in the current model. Hence, a coefficient
may have a nonzero value within the currently active set of
variables; and so be correctly included into that model at that
step. Within a later active model it might then have a value of
0. Thus, a correct selection at a given step may become incor-
rect as the process proceeds, and vice-versa. The related phe-
nomenon of suppression can yield a series of insignificant steps
followed by highly significant steps (Johnson, Stine, and Foster
2015b). These issues have important consequences for interpre-
tation of p-values produced in a stepwise routine. Such issues do
not occur in the simple model at hand involving independent
variables with fixed mean values.

Appendix

The sequential p-values were constructed using data downloaded
fromRobert Tibshirani’s website. The p-values computed in Table 1
are computed from the standard F-test with 1 and 58 = 67 - 9
degrees of freedom. As some additional numerical details, note
that the mean squared error (MSE) from the full model is σ̂ 2 =
0.5074. Thus, for example, the sequential F-value for testing “svi”
is 2.1841/0.5074= 4.305 with a t-value of 2.075= √

4.305. This has
a p-value with 58 degrees of freedom of 0.0426.

FS Step 1 (dashed curve): If X1 is chosen before X2 with a
positive sign, the observation lies in the cone R1 = {X1 > X2 > 0}.
To have a level α test of H0: θ1 = 0 conditional on (x1, x2) ∈ R1,
one must have

θ = P(X1 > τ1|(x1, x2) ∈ R1,X2 = x2) ∀x2.

This entails choosing the point via

α = 1 − �(x1)
1 − �(|x2|) . (1)

This defines x1 = x1(x2) for the dashed curve.

FS Step 2 (dash-dotted curve): The conditioning region is the
same, so the level α test of H0: θ2 = 0 conditional on (x1, x2) ∈ R1
requires

θ = P(X2 > τ2|(x1, x2) ∈ R1,X1 = x1) ∀x1.

This entails choosing the point via

α = �(x1) − �(X2)

�(x1) − 1/2
. (2)

ES Step 2 (dotted curve): Given H0: θ1 = 0 has been rejected,
possible values of (X1,X2) lie to the right of FS Step 1. Denote this
region as R2. Now the test H0 : θ2 = 0 must satisfy

θ = P(X2 > τ2|(x1, x2) ∈ R2,X1 = x1)

for all x1 for which the conditioning region is nonempty. The only
change from FS Step 2 is that the conditioned region is a function
of x2. This entails choosing the point x2 = x2(x1) for which

α = �
(
x∗
2
) − �(X2)

�
(
x∗
2
) − 1/2

, (3)

where x∗
2 denotes the value forwhich x1(x∗

2 ) = x1. The computation
in Equation (3) is facilitated by noting that Equation (1) implies

�
(
x∗
2 (x1)

) = 1 + �(x1) − 1
θ

. (4)
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Rejoinder

Ryan J. Tibshirani, Jonathan Taylor, Richard Lockhart, and Robert Tibshirani

We thank Drs. Brown and Johnson for their detailed discussion.
We appreciate their comments, and it is helpful to hear honest
criticism. But in this case we think that much of the criticism
results from misinterpretations. As our thinking has evolved
since this article was written, we take the blame for much of
their confusion.

1. Usefulness of the Proposed Tools

The discussants say that the “usefulness of [the proposed] tests
appears limited in practice.” This seems because they believe we
are proposing purely sequential tests that should be used to select
a model (i.e., choose a stopping point) along the forward step-
wise or lasso paths. However, this is not the focus of our arti-
cle. Instead, we propose a much broader set of tools that can be
used to conduct inference on any variable, at any step along the
forward stepwise, LAR, or lasso paths. Here, we reiterate the dis-
cussion from Section 2.3 of our article, which describes different
ways of using these tools. We focus on forward stepwise regres-
sion (FS), although analogous points apply to the least angle
regression (LAR) and lasso paths.

(a) If the practitioner has a fixed step k in mind, then the
framework in our article allows him or her to build (say)
confidence intervals for each partial regression coeffi-
cient corresponding to an active variable in the k-step
model. These can be interpreted simultaneously, but one
must apply the usual Bonferroni correction, adjusting
here for k tests.
For example, with p = 200 variables, a practitioner
might decide to inspect the significance of no more
than k = 20 of these variables, but (of course) would
not specify a priori, which ones to inspect. The practi-
tioner would then run FS for 20 steps and examine the
resulting confidence intervals from our framework. To
adjust for multiplicity, he or she would compute confi-
dence intervals at the level 1 − α/20, and would declare
significance of a variable, in the context of the discov-
ered 20-step model, whenever its corresponding inter-
val excludes 0 (thus controlling the simultaneous Type
I error at the level α). In our selectiveInfer-
ence package, one would apply the fsInf function
with k=20 and type="all".

CONTACT Ryan J. Tibshirani ryantibs@cmu.edu Department of Statistics and Machine Learning Department, B Baker Hall, Carnegie Mellon University, Pitts-
burgh, PA .
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

(b) If instead the practitioner does not have a fixed step k
in mind, then he or she can use an AIC-like (or BIC-
like) stopping rule to choose a step k̂ adaptively from
the data. Consider the rule that chooses the smallest
step for which the Akaike information criterion (AIC) or
Bayesian information criterion (BIC) criterion rises (say)
twice in a row.We omit the details here, but it is straight-
forward to show that the event determining k̂ here can
also be phrased in terms of a polyhedral constraint on
y. This means that the practitioner can run this stop-
ping rule, select k̂, and then test the significance of all
variables in the k̂-step model. Conditioning both on k̂
and on the k̂-step model (which is possible because this
is just one large polyhedral constraint on y) yields valid
inferences. Again, these can be interpreted simultane-
ously, but one needs a Bonferroni correction, now for k̂
tests.
For example, with p = 200 variables, a practitioner
might run forward stepwise and use the modified AIC
or BIC rule described above to stop after k̂ = 26 steps.
He or she would then compute confidence intervals for
each partial regression coefficient in the 26-step model,
at the level 1 − α/26, to properly adjust for multiplicity.
In our selectiveInference package, this work-
flow is given by using thefsInf functionwithk=NULL
and type="aic".

(c) Finally, using our framework, it is possible to compute
a p-value or confidence interval for the variable that
enters the FS active model at each step. G’Sell et al.
(2015) developed a stopping rule “ForwardStop” that
can be applied to such a sequence of p-values, and this
rule is guaranteed to control the FDR as long as the p-
values are independent under the null. The sequential p-
values from our framework are not generally indepen-
dent, and so these guarantees do not apply, but the For-
wardStop rule can still be used as an approximation. In
ourselectiveInference package, this workflow is
given by using the fsInf function with k=NULL and
type="active", followed by a call to the function
forwardStop.
The discussants point out the shortcomings of this
approach, namely, that (i) this strategy can have low
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power (i.e., produce large p-values), for example, when
we have entered only the first of two strong variables;
and (ii) it is not possible to use these sequential p-values
to select a stopping point k̂ and then perform inference
(since in this case we must condition on the event deter-
mining k̂, whichmay be very complicated). Both of these
are valid criticisms. Indeed we have been aware of them
since the near-beginnings of our work. Section 4.3 of
Fithian, Sun, and Taylor (2014), for example, discusses
precisely the issue (i) above.

In our article, we did not intend to endorse the purely
sequential workflow—as described in point (c) above—as the
main use case of our tools, but in hindsight, we see that the
language may well have been confusing. We would now like
to make it clear that, given the framework in the article under
discussion, inspecting sequential p-values is not the ideal usage
for the reasons raised above, and points (a) and (b) describe
better strategies.

We would also like to point out that in Fithian et al. (2015),
we focus primarily on the sequential aspect of the FS, LAR,
and lasso procedures, and develop much improved sequential
hypothesis tests for their paths. The sequential p-values con-
structed in this new article are independent under the null, mean-
ing that ForwardStop can be applied to determine a stopping
point k̂, with guaranteed FDR control. Further, the sequential
p-values from this new article also havemuch better power, and
they circumvent the issue (i) above. See Section 5.3 of Fithian
et al. (2015) for a discussion.

Figure 1 shows the results of a simulation study with n = 40,
p = 8, and iid N(0, 1) errors. The data were generated from
a linear model with the first four coefficients being nonzero,
drawn from N(0, 1). We computed the p-values from this
article, called “saturated model p-values” in Fithian et al. (2015),
and those called “selective model p-values” in the same article.
We then applied the ForwardStop rule to estimate the stopping
point, that is, the number of predictors chosen by FS. The
target FDR was 0.1. The predictors were normally distributed
with equal pairwise correlation ρ from −0.1 to 0.8, indicated
along the horizontal axis of each panel. The left panel shows the
achieved FDR and the right panel depicts the average number
of predictors chosen, both computed over 2000 repetitions

from the described simulation setup. The standard errors are
about 0.003 on the left and 0.02 on the right. We see that both
procedures seem to control the FDR, while the selective model
p-values yield a larger model on average. As we said earlier, FDR
control can only be proven for the selective model p-values,
since they are independent under the null. On the other hand,
the selective model p-values require Markov chain Monte Carlo
(MCMC) sampling and for large problems, this could be a
limitation.

2. Comments on Their ES Procedure and Analysis

As explained above, the discussants have interpreted our frame-
work to be entirely sequential in nature, and their comments
and analysis are directed toward the sequential model selection
problem as a result. Though this is not truly the focus of our
work, we would still like to make several comments in reply to
their ES procedure and analysis.

� Their proposed ES procedure is interesting, but it does not
seem generally feasible computationally, as the condition-
ing regions appear to become quite complicated after sev-
eral steps.

� Wedid not intend to “indirectly” imply that our framework
is limited to polyhedral conditioning events; in Fithian,
Sun, and Taylor (2014), we consider very general selection
events, though polyhedral events are of course computa-
tionally convenient and make the computation feasible in
essentially arbitrary dimensions.

� The conditioning event used by the discussants in Figure 1
is not quite correct, that is, it is not what would be con-
structed out of our framework. In the “normal means”
problem they describe, with Xi ∼ N(θi, 1) for i = 1, 2, if
FSwere to selectX1 andX2, in that order, bothwith positive
signs, then the conditioning event at Step 1would be {X1 ≥
X2,X1 ≥ −X2}, and at Step 2 it would be {X1 ≥ X2 ≥ 0}.
The discussants merely consider the latter event for both
steps. This means that for step 1, the regions in their Fig-
ure 1 should have counterparts that are given by reflections
around the x-axis.

� The Bonferroni correction described in their point (b) in
Figure 1 would need to be applied, in general, across p

Figure . Results of a simulation study to assess p-value stopping rules. Details are in the text.
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tests. The discussants consider p = 2. In larger problems,
of course, such a Bonferroni correction will become very
conservative. This should be compared to the strategies we
described in the first two bullet points in the previous sec-
tion, which need only perform a Bonferroni correction at
the level k or k̂.

� The point (X1,X2) = (4, 3.8) in their Figure 1, which
results in a large p-value of about 0.44 at Step 1 of FS and
a small p-value of about 0.0001 at Step 2 (that the discus-
sants describe as “embarrassing and subjectively undesir-
able”) is simply due to using the saturated model p-values
in a sequential manner. As we explained at the end of the
previous section, the selected model p-values from Fithian
et al. (2015) are much better-suited to the sequential prob-
lem. In this instance (X1,X2) = (4, 3.8), for example, the
selected model p-values are each less than 0.0001 for both
FS steps.

3. Summary

To summarize, the best use of the tools developed in the dis-
cussed article is to compute p-values or confidence intervals for
all selected variables in the FS (or LAR or lasso) model after
some number of steps. We might write this number as k to indi-
cate that it has been fixed a priori, or as k̂ to indicate that it has
been chosen by a procedure akin to AIC or BIC. These strate-
gies were described in points (a) and (b) in Section 1. The strat-
egy described in point (c), in which we sequentially compute
p-values of the variable to enter the FS (or LAR or lasso) active

set, and use these p-values to determine a final model size k̂ of
interest, has its flaws, as pointed out by the discussants. First,
these p-values can be low-powered, and second, after they have
been used to select a stopping point k̂, it is unclear how to per-
form valid inference (since the conditioning event determin-
ing k̂ is itself very complicated). We should, however, emphasize
the fact that our newer work in Fithian et al. (2015) produces
sequential p-values that overcome the first problem: they display
much better power along the path. Using these p-values to deter-
mine a stopping point, and then performing valid inference (in
a computationally tractable manner), remains an open issue.

Finally, we remind the reader of our R language pack-
age selectiveInference, that implements the propos-
als in our article, is freely available on CRAN, as well
as https://github.com/selective-inference/R-software. A Python
implementation is also available, at https://github.com/selective-
inference/Python-software. We welcome feedback from users, to
help us improve this package. We plan to actively develop and
support it.
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