
Clustering
10/26-702 Spring 2017

1 The Clustering Problem

In a clustering problem we aim to find groups in the data. Unlike classification, the data
are not labeled, and so clustering is an example of unsupervised learning. We will study the
following approaches:

1. k-means

2. Mixture models

3. Density-based Clustering I: Level Sets and Trees

4. Density-based Clustering II: Modes

5. Hierarchical Clustering

6. Spectral Clustering

Some issues that we will address are:

1. Rates of convergence

2. Choosing tuning parameters

3. Variable selection

4. High Dimensional Clustering

Example 1 Figures 17 and 18 show some synthetic examples where the clusters are meant
to be intuitively clear. In Figure 17 there are two blob-like clusters. Identifying clusters like
this is easy. Figure 18 shows four clusters: a blob, two rings and a half ring. Identifying
clusters with unusual shapes like this is not quite as easy. In fact, finding clusters of this
type requires nonparametric methods.

2 k-means (Vector Quantization)

One of the oldest approaches to clustering is to find k representative points, called prototypes
or cluster centers, and then divide the data into groups based on which prototype they are
closest to. For now, we assume that k is given. Later we discuss how to choose k.

Warning! My view is that k is a tuning parameter; it is not the number of clusters. Usually
we want to choose k to be larger than the number of clusters.

1

Let X1, . . . , Xn ∼ P where Xi ∈ Rd. Let C = {c1, . . . , ck} where each cj ∈ Rd. We call C a
codebook. Let ΠC [X] be the projection of X onto C:

ΠC [X] = argminc∈C ||c−X||2. (1)

Define the empirical clustering risk of a codebook C by

Rn(C) =
1

n

n∑
i=1

∣∣∣∣Xi − ΠC [Xi]
∣∣∣∣2 =

1

n

n∑
i=1

min
1≤j≤k

||Xi − cj||2. (2)

Let Ck denote all codebooks of length k. The optimal codebook Ĉ = {ĉ1, . . . , ĉk} ∈ Ck
minimizes Rn(C):

Ĉ = argminC∈CkRn(C). (3)

The empirical risk is an estimate of the population clustering risk defined by

R(C) = E
∣∣∣∣∣∣X − ΠC [X]

∣∣∣∣∣∣2 = E min
1≤j≤k

||X − cj||2 (4)

where X ∼ P . The optimal population quantization C∗ = {c∗1, . . . , c∗k} ∈ Ck minimizes R(C).

We can think of Ĉ as an estimate of C∗. This method is called k-means clustering or vector
quantization.

A codebook C = {c1, . . . , ck} defines a set of cells known as a Voronoi tesselation. Let

Vj =
{
x : ||x− cj|| ≤ ||x− cs||, for all s 6= j

}
. (5)

The set Vj is known as a Voronoi cell and consists of all points closer to cj than any other
point in the codebook. See Figure 1.

The usual algorithm to minimize Rn(C) and find Ĉ is the k-means clustering algorithm—
also known as Lloyd’s algorithm— see Figure 2. The risk Rn(C) has multiple minima. The
algorithm will only find a local minimum and the solution depends on the starting values.
A common way to choose the starting values is to select k data points at random. We will
discuss better methods for choosing starting values in Section 2.1.

Example 2 Figure 3 shows synthetic data inspired by the Mickey Mouse example from
http: // en. wikipedia. org/ wiki/ K-means_ clustering . The data in the top left plot
form three clearly defined clusters. k-means easily finds in the clusters (top right). The
bottom shows the same example except that we now make the groups very unbalanced. The
lack of balance causes k-means to produce a poor clustering. But note that, if we “overfit
then merge” then there is no problem.

2

●

●

●
●

●

●

●

●

●

●

Figure 1: The Voronoi tesselation formed by 10 cluster centers c1, . . . , c10. The cluster centers
are indicated by dots. The corresponding Voronoi cells T1, . . . , T10 are defined as follows: a
point x is in Tj if x is closer to cj than ci for i 6= j.

1. Choose k centers c1, . . . , ck as starting values.

2. Form the clusters C1, . . . , Ck as follows. Let g = (g1, . . . , gn) where gi = argminj||Xi − cj||.
Then Cj = {Xi : gi = j}.

3. For j = 1, . . . , k, let nj denote the number of points in Cj and set

cj ←−
1

nj

∑
i: Xi∈Cj

Xi.

4. Repeat steps 2 and 3 until convergence.

5. Output: centers Ĉ = {c1, . . . , ck} and clusters C1, . . . , Ck.

Figure 2: The k-means (Lloyd’s) clustering algorithm.

3

●●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●●●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●

●● ●

●

● ●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●●

●

●

●

●

●

●●●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

● ●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

● ●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●● ●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●
●

●
●

●

●
●

●●●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●
●

● ●

●

●

●● ●

●

● ●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●
●

●●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●
●

●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●
● ●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●●
●●●

●

●
●

●

●

●

●

●
●

●

●

●
●
●●

●●

●●
●

●
●

●

●

●

●

●●
●

● ●
●
●●

●
●

●
●●

●
●

●
●●●

●
●

●

●●●●
●●●

●
●

●

●

●
● ●

●
●●
● ●●

●

●●
●

●●

●

●

●
●

●

●

●● ●●

●●

●

●
●

●

●●●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
● ● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

● ●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●●

●

●

●
●

●

●●

●

●

●
●

●●

●

●
●

● ●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

Figure 3: Synthetic data inspired by the “Mickey Mouse” example from wikipedia. Top
left: three balanced clusters. Top right: result from running k means with k = 3. Bottom
left: three unbalanced clusters. Bottom right: result from running k means with k = 3
on the unbalanced clusters. k-means does not work well here because the clusters are very
unbalanced.

Example 3 We applied k-means clustering to the Topex data with k = 9. (Topex is a
satellite.) The data are discretized so we treated each curve as one vector of length 70. The
resulting nine clusters are shown in Figure 4.

Example 4 (Supernova Clustering) Figure 5 shows supernova data where we apply k-
means clustering with k = 4. The type Ia supernovae get split into two groups although the
groups are very similar. The other type also gets split into two groups which look qualitatively
different.

Example 5 The top left plot of Figure 6 shows a dataset with two ring-shaped clusters. The
remaining plots show the clusters obtained using k-means clustering with k = 2, 3, 4. Clearly,
k-means does not capture the right structure in this case unless we overfit then merge.

2.1 Starting Values for k-means

Since R̂n(C) has multiple minima, Lloyd’s algorithm is not guaranteed to minimize Rn(C).
The clustering one obtains will depend on the starting values. The simplest way to choose
starting values is to use k randomly chosen points. But this often leads to poor clustering.

4

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

0 10 30 50 70

0
50

10
0

15
0

20
0

Figure 4: The nine clusters found in the Topex data using k-means clustering with k = 9.
Each plot show the curves in that cluster together with the mean of the curves in that cluster.

5

0 20 40 60 80 100

Cluster 1

0 20 40 60 80 100

Cluster 2

0 20 40 60 80 100

Cluster 3

0 20 40 60 80 100

Cluster 4

Figure 5: Clustering of the supernova light curves with k = 4.

●●●●
●●●●●●

●●●
●●●

●●●●●●●●●
●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●●●●● ●

●●
●

●●
●
●

●●
●●

●
●●●

●●●●●
●●●●●●●●●●●●●●

●●
●

●●
●

●●●
●

●●
●●

●
●
●
●●

●●
●●
●●

●●
●
●●●

●
●●● ●

●● ●●
●

●●
● ●●●

●●
●●●

●●
●
●

●●
●●
●
●●
●

●

●●●●●●●●●
●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●
●●●●●●●●●●●●●●

●●
●

●●
●

●●●
●

●●
●●

●
●
●
●●

●●
●●
●●

●●
●
●●●

●

●●●●
●●●●●●

●●●
●●●

●●●●●●●●●
●●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●
●●●●●●

●●●
●

●●● ●
●● ●●

●
●●

● ●●●
●●

●●●
●●

●
●

●●
●●
●

●
●●
●

●●
●
●

●●
●●

●
●●●

●

●●
●●●

●●
●
●

●●
●●
●
●●
●

●

Figure 6: Top left: a dataset with two ring-shaped clusters. Top right: k-means with k = 2.
Bottom left: k-means with k = 3. Bottom right: k-means with k = 4.

6

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

● ●
●

●
●

●

●

● ●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

● ●●

●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●
●

●

●
● ●

●
●

● ●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

● ●

●

●

●
●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●● ●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●

●

● ●

●

●
●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

● ●

●

●
●

●
●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

● ●

●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

● ●

●

●

● ●
●

●

●

●

●

●●

●

●●

●

●

●

●●

● ●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 7: An example with 9 clusters. Top left: data. Top right: k-means with random
starting values. Bottom left: k-means using starting values from hierarchical clustering.
Bottom right: the k-means++ algorithm.

Example 6 Figure 7 shows data from a distribution with nine clusters. The raw data are in
the top left plot. The top right plot shows the results of running the k-means algorithm with
k = 9 using random points as starting values. The clustering is quite poor. This is because
we have not found the global minimum of the empirical risk function. The two bottom plots
show better methods for selecting starting values that we will describe below.

Hierarchical Starting Values. Tseng and Wong (2005) suggest the following method for
choosing staring values for k-means. Run single-linkage hierarchical clustering (which we
describe in Section 6) to obtains p× k clusters. They suggest using p = 3 as a default. Now
take the centers of the k-largest of the p × k clusters and use these as starting values. See
the bottom left plot in Figure 7.

k-means++. Arthur and Vassilvitskii (2007) invented an algorithm called k-means++ to get
good starting values. They show that if the starting points are chosen in a certain way, then
we can get close to the minimum with high probability. In fact the starting points themselves
— which we call seed points — are already close to minimizing Rn(C). The algorithm is
described in Figure 8. See the bottom right plot in Figure 7 for an example.

Theorem 7 (Arthur and Vassilvitskii, 2007). Let C = {c1, . . . , ck} be the seed points from

7

1. Input: Data X = {X1, . . . , Xn} and an integer k.

2. Choose c1 randomly from X = {X1, . . . , Xn}. Let C = {c1}.

3. For j = 2, . . . , k:

(a) Compute D(Xi) = minc∈C ||Xi − c|| for each Xi.

(b) Choose a point Xi from X with probability

pi =
D2(Xi)∑n
j=1 D

2(Xj)
.

(c) Call this randomly chosen point cj. Update C ←− C ∪ {cj}.

4. Run Lloyd’s algorithm using the seed points C = {c1, . . . , ck} as starting points and output
the result.

Figure 8: The k-means++ algorithm.

the k-means++ algorithm. Then,

E
(
Rn(C)

)
≤ 8(log k + 2)

(
min
C
Rn(C)

)
(6)

where the expectation is over the randomness of the algorithm.

See Arthur and Vassilvitskii (2007) for a proof. They also show that the Euclidean distance
can be replaced with the `p norm in the algorithm. The result is the same except that the
constant 8 gets replaced by 2p+2. It is possible to improve the k-means++ algorithm. Ailon,
Jaiswal and Monteleoni (2009) showed that, by choosing 3 log k points instead of one point,
at each step of the algorithm, the log k term in (6) can be replaced by a constant. They call
the algorithm, k-means#.

2.2 Choosing k

In k-means clustering we must choose a value for k. This is still an active area of research
and there are no definitive answers. The problem is much different than choosing a tuning
parameter in regression or classification because there is no observable label to predict.
Indeed, for k-means clustering, both the true risk R and estimated risk Rn decrease to 0

8

as k increases. This is in contrast to classification where the true risk gets large for high
complexity classifiers even though the empirical risk decreases. Hence, minimizing risk does
not make sense. There are so many proposals for choosing tuning parameters in clustering
that we cannot possibly consider all of them here. Instead, we highlight a few methods.

Elbow Methods. One approach is to look for sharp drops in estimated risk. Let Rk denote
the minimal risk among all possible clusterings and let R̂k be the empirical risk. It is easy to
see that Rk is a nonincreasing function of k so minimizing Rk does not make sense. Instead,
we can look for the first k such that the improvement Rk −Rk+1 is small, sometimes called
an elbow. This can be done informally by looking at a plot of R̂k. We can try to make this
more formal by fixing a small number α > 0 and defining

kα = min

{
k :

Rk −Rk+1

σ2
≤ α

}
(7)

where σ2 = E(‖X − µ‖2) and µ = E(X). An estimate of kα is

k̂α = min

{
k :

R̂k − R̂k+1

σ̂2
≤ α

}
(8)

where σ̂2 = n−1
∑n

i=1 ‖Xi −X‖2.

Unfortunately, the elbow method often does not work well in practice because there may not
be a well-defined elbow.

Hypothesis Testing. A more formal way to choose k is by way of hypothesis testing. For
each k we test

Hk : the number of clusters is k versus Hk+1 : the number of clusters is > k.

We begin k = 1. If the test rejects, then we repeat the test for k = 2. We continue until the
first k that is not rejected. In summary, k̂ is the first k for which k is not rejected.

Currently, my favorite approach is the one in Liu, Hayes, Andrew Nobel and Marron (2012).
(JASA, 2102, 1281-1293). They simply test if the data are multivariate Normal. If this
rejects, they split into two clusters and repeat. The have an R package sigclust for this.
A similar procedure, called PG means is described in Feng and Hammerly (2007).

Example 8 Figure 9 shows a two-dimensional example. The top left plot shows a single
cluster. The p-values are shown as a function of k in the top right plot. The first k for which
the p-value is larger than α = .05 is k = 1. The bottom left plot shows a dataset with three
clusters. The p-values are shown as a function of k in the bottom right plot. The first k for
which the p-value is larger than α = .05 is k = 3.

9

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

−2 −1 0 1 2 3

−
2

−
1

0
1

2

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

p−
va

lu
e

●
●●

●

●
●

● ●

●
●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●
●●

●

●

●

●●

●

●

●● ●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●
●

●

●
●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●
●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●
●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●● ● ●

●

●
●

●

●

●

●
●

●

●

●
●

●● ●

●

●
●●

●

● ●●

●

●
●

●

●

●

●●

●

●
●

−6 −4 −2 0 2 4 6

−
5

0
5

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

p−
va

lu
e

Figure 9: Top left: a single cluster. Top right: p-values for various k. The first k for which
the p-value is larger than .05 is k = 1. Bottom left: three clusters. Bottom right: p-values
for various k. The first k for which the p-value is larger than .05 is k = 3.

10

Stability. Another class of methods are based on the idea of stability. The idea is to find
the largest number of clusters than can be estimated with low variability.

We start with a high level description of the idea and then we will discuss the details. Suppose
that Y = (Y1, . . . , Yn) and Z = (Z1, . . . , Zn) are two independent samples from P . Let Ak
be any clustering algorithm that takes the data as input and outputs k clusters. Define the
stability

Ω(k) = E [s(Ak(Y), Ak(Z))] (9)

where s(·, ·) is some measure of the similarity of two clusterings. To estimate Ω we use
random subsampling. Suppose that the original data are X = (X1, . . . , X2n). Randomly
split the data into two equal sets Y and Z of size n. This process if repeated N times.
Denote the random split obtained in the jth trial by Y j, Zj. Define

Ω̂(k) =
1

N

N∑
j=1

[
s(Ak(Y

j), Ak(Z
j))
]
.

For large N , Ω̂(k) will approximate Ω(k). There are two ways to choose k. We can choose a

small k with high stability. Alternatively, we can choose k to maximize Ω̂(k) if we somehow

standardize Ω̂(k).

Now we discuss the details. First, we need to define the similarity between two clusterings.
We face two problems. The first is that the cluster labels are arbitrary: the clustering
(1, 1, 1, 2, 2, 2) is the same as the clustering (4, 4, 4, 8, 8, 8). Second, the clusterings Ak(Y)
and Ak(Z) refer to different data sets.

The first problem is easily solved. We can insist the labels take values in {1, . . . , k} and then
we can maximize the similarity over all permutations of the labels. Another way to solve
the problem is the following. Any clustering method can be regarded as a function ψ that
takes two points x and y and outputs a 0 or a 1. The interpretation is that ψ(x, y) = 1 if x
and y are in the same cluster while ψ(x, y) = 0 if x and y are in a different cluster. Using
this representation of the clustering renders the particular choice of labels moot. This is the
approach we will take.

Let ψY and ψZ be clusterings derived from Y and Z. Let us think of Y as training data and
Z as test data. Now ψY returns a clustering for Y and ψZ returns a clustering for Z. We’d
like to somehow apply ψY to Z. Then we would have two clusterings for Z which we could
then compare. There is no unique way to do this. A simple and fairly general approach is
to define

ψY,Z(Zj, Zk) = ψY (Y ′j , Y
′
k) (10)

where Y ′j is the closest point in Y to Zj and Y ′k is the closest point in Y to Zk. (More
generally, we can use Y and the cluster assignment to Y as input to a classifier; see Lange
et al 2004). The notation ψY,Z indicates that ψ is trained on Y but returns a clustering for

11

Z. Define

s(ψY,Z , ψZ) =
1(
n
2

)∑
s 6=t

I (ψY,Z(Zs, Zt) = ψZ(Zs, Zt)) .

Thus s is the fraction of pairs of points in Z on which the two clusterings ψY,Z and ψZ agree.
Finally, we define

Ω̂(k) =
1

N

N∑
j=1

s(ψY j ,Zj , ψZj).

Now we need to decide how to use Ω̂(k) to choose k. The interpretation of Ω̂(k) requires

some care. First, note that 0 ≤ Ω̂(k) ≤ 1 and Ω̂(1) = Ω̂(n) = 1. So simply maximizing Ω̂(k)
does not make sense. One possibility is to look for a small k larger than k > 1 with a high
stability. Alternatively, we could try to normalize Ω̂(k). Lange et al (2004) suggest dividing

by the value of Ω̂(k) obtained when cluster labels are assigned randomly. The theoretical
justification for this choice is not clear. Tibshirani, Walther, Botstein and Brown (2001)
suggest that we should compute the stability separately over each cluster and then take the
minimum. However, this can sometimes lead to very low stability for all k > 1.

Many authors have considered schemes of this form, including Breckenridge (1989), Lange,
Roth, Braun and Buhmann (2004), Ben-Hur, Elisseeff and Guyron (2002), Dudoit and
Fridlyand (2002), Levine and Domany (2001), Buhmann (2010), Tibshirani, Walther, Bot-
stein and Brown (2001) and Rinaldo and Wasserman (2009).

It is important to interpret stability correctly. These methods choose the largest number
of stable clusters. That does not mean they choose “the true k.” Indeed, Ben-David, von
Luxburg and Pál (2006), Ben-David and von Luxburg Tübingen (2008) and Rakhlin (2007)
have shown that trying to use stability to choose “the true k” — even if that is well-defined
— will not work. To explain this point further, we consider some examples from Ben-David,
von Luxburg and Pál (2006). Figure 10 shows the four examples. The first example (top
left plot) shows a case where we fit k = 2 clusters. Here, stability analysis will correctly
show that k is too small. The top right plot has k = 3. Stability analysis will correctly show
that k is too large. The bottom two plots show potential failures of stability analysis. Both
cases are stable but k = 2 is too small in the bottom left plot and k = 3 is too big in the
bottom right plot. Stability is subtle. There is much potential for this approach but more
work needs to be done.

2.3 Theoretical Properties

A theoretical property of the k-means method is given in the following result. Recall that
C∗ = {c∗1, . . . , c∗k} minimizes R(C) = E||X − ΠC [X] ||2.

12

● ●
●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●
●●

●

●
●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●●●
●

●
●

●

●

●

●

●
●

●●

●
●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●● ●

●
● ●

●●●
●

●●

●

●

●●

● ●

●

● ●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●
● ●

●

●

● ●
●

●

●

●

●●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●
●●

●

●

●
●

●

●

●

●
●●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●●
● ●

●

●

●

●
● ●●

●

●

●
●

● ●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●●
●●

●

●
●

●
●

●

●

●

●

● ●
●

●
●

●

● ●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

● ●●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

● ●

●

●
●

● ●

●
●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●
●

●●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●
●

●●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●
●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●

●

●
●

● ●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●

● ●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●● ●●
●

●
●

●

●
●●

●
●

●
●

●●
●
●●

●●

●
●
●●●

●
●●●●●●●
●

●●
●

●

●●
● ●●●

●

●
●

●
●

●

●
●●
●

●●
●
●●●

●
● ●● ●

● ●
●

●
●

●
●

●
●●

●●
●

● ●

●
●

● ●●
●●

●
●

●
●●
●●●●

●
●

●●
●

●
●● ●●

●
●

●●
●
●

●●
●

●

●

●
●

●●
●●
●

●●
●

●
●●

●●●

●
●

●

●

●●● ●●
●

●●
●

●●
●

●
●

●
●

●●● ●

●

●

●● ●●●

●

●
●

●● ●●
●●●

●
●

●
●

●
●●●●
●

● ●●
●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●●

●
●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●●

●
●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●

● ●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●
●

●

●

●
●

Figure 10: Examples from Ben-David, von Luxburg and Pál (2006). The first example (top
left plot) shows a case where we fit k = 2 clusters. Stability analysis will correctly show that
k is too small. The top right plot has k = 3. Stability analysis will correctly show that k
is too large. The bottom two plots show potential failures of stability analysis. Both cases
are stable but k = 2 is too small in the bottom left plot and k = 3 is too big in the bottom
right plot.

Theorem 9 Suppose that P(||Xi||2 ≤ B) = 1 for some B <∞. Then

E(R(Ĉ))−R(C∗) ≤ c

√
k(d+ 1) log n

n
(11)

for some c > 0.

Warning! The fact that R(Ĉ) is close to R(C∗) does not imply that Ĉ is close to C∗.

This proof is due to Linder, Lugosi and Zeger (1994). The proof uses techniques from a later
lecture on VC theory so you may want to return to the proof later.

Proof. Note that R(Ĉ) − R(C∗) = R(Ĉ) − Rn(Ĉ) + Rn(Ĉ) − R(C∗) ≤ R(Ĉ) − Rn(Ĉ) +

Rn(C∗) − R(C∗) ≤ 2 supC∈Ck |R(Ĉ) − Rn(Ĉ)|. For each C define a function fC by fC(x) =
||x − ΠC [x]||2. Note that supx |fC(x)| ≤ 4B for all C. Now, using the fact that E(Y) =

13

∫∞
0

P(Y ≥ t)dt whenever Y ≥ 0, we have

2 sup
C∈Ck
|R(Ĉ)−Rn(Ĉ)| = 2 sup

C

∣∣∣∣∣ 1n
n∑
i=1

fC(Xi)− E(fC(X))

∣∣∣∣∣
= 2 sup

C

∣∣∣∣∣
∫ ∞

0

(
1

n

n∑
i=1

I(fC(Xi) > u)− P(fC(Z) > u)

)
du

∣∣∣∣∣
≤ 8B sup

C,u

∣∣∣∣∣ 1n
n∑
i=1

I(fC(Xi) > u)− P(fC(Z) > u)

∣∣∣∣∣
= 8B sup

A

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣
where A varies over all sets A of the form {fC(x) > u}. The shattering number of A is
s(A, n) ≤ nk(d+1). This follows since each set {fC(x) > u} is a union of the complements of
k spheres. By the VC Theorem,

P(R(Ĉ)−R(C∗) > ε) ≤ P

(
8B sup

A

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣ > ε

)

= P

(
sup
A

∣∣∣∣∣ 1n
n∑
i=1

I(Xi ∈ A)− P(A)

∣∣∣∣∣ > ε

8B

)
≤ 4(2n)k(d+1)e−nε

2/(512B2).

Now conclude that E(R(Ĉ)−R(C∗)) ≤ C
√
k(d+ 1)

√
logn
n
. �

A sharper result, together with a lower bound is the following.

Theorem 10 (Bartlett, Linder and Lugosi 1997) Suppose that P (‖X‖2 ≤ 1) = 1 and

that n ≥ k4/d,
√
dk1−2/d log n ≥ 15, kd ≥ 8, n ≥ 8d and n/ log n ≥ dk1+2/d. Then,

E(R(Ĉ))−R(C∗) ≤ 32

√
dk1−2/d log n

n
= O

(√
dk log n

n

)
.

Also, if k ≥ 3, n ≥ 16k/(2Φ2(−2)) then, for any method Ĉ that selects k centers, there exists
P such that

E(R(Ĉ))−R(C∗) ≥ c0

√
k1−4/d

n

where c0 = Φ4(−2)2−12/
√

6 and Φ is the standard Gaussian distribution function.

See Bartlett, Linder and Lugosi (1997) for a proof. It follows that k-means is risk consistent

in the sense that R(Ĉ) − R(C∗)
P→ 0, as long as k = o(n/(d3 log n)). Moreover, the lower

14

bound implies that we cannot find any other method that improves much over the k-means
approach, at least with respect to this loss function.

The k-means algorithm can be generalized in many ways. For example, if we replace the L2

norm with the L1 norm we get k-medians clustering. We will not discuss these extensions
here.

2.4 Overfitting and Merging

The best way to use k-means clustering is to “overfit then merge.” Don’t think of the k in
k-means as the number of clusters. Think of it as a tuning parameter. k-means clustering
works much better if we:

1. Choose k large

2. merge close clusters

This eliminates the sensitivity to the choice of k and it allows k-means to fit clusters with
arbitrary shapes. Currently, there is no definitive theory for this approach but in my view,
it is the right way to do k-means clustering.

3 Mixture Models

Simple cluster structure can be discovered using mixture models. We start with a simple
example. We flip a coin with success probability π. If heads, we draw X from a density
p1(x). If tails, we draw X from a density p0(x). Then the density of X is

p(x) = πp1(x) + (1− π)p0(x),

which is called a mixture of two densities p1 and p0. Figure 11 shows a mixture of two
Gaussians distribution.

Let Z ∼ Bernoulli(π) be the unobserved coin flip. Then we can also write p(x) as

p(x) =
∑
z=0,1

p(x, z) =
∑
z=0,1

p(x|z)p(z) (12)

where p(x|Z = 0) := p0(x), p(x|Z = 1) := p1(x) and p(z) = πz(1 − π)1−z. Equation (12) is
called the hidden variable representation. A more formal definition of finite mixture models
is as follows.

15

[Finite Mixture Models] Let {pθ(x) : θ ∈ Θ} be a parametric class of densities. Define the
mixture model

pψ(x) =
K−1∑
j=0

πjpθj(x),

where the mixing coefficients πj ≥ 0,
∑K−1

j=0 πj = 1 and ψ = (π0, . . . , πK−1, θ0, . . . , θK−1) are
the unknown parameters. We call pθ0 , . . . , pθK−1

the component densities.

Generally, even if {pθ(x) : θ ∈ Θ} is an exponential family model, the mixture may no
longer be an exponential family.

3.1 Mixture of Gaussians

Let φ(x;µj, σ
2
j) be the probability density function of a univariate Gaussian distribution with

mean µj and variance σ2
j . A typical finite mixture model is the mixture of Gaussians. In

one dimension, we have

pψ(x) =
K−1∑
j=0

πjφ(x;µj, σ
2
j),

which has 3K − 1 unknown parameters, due to the restriction
∑K−1

j=0 πj = 1.

A mixture of d-dimensional multivariate Gaussians is

p(x) =
K−1∑
j=0

πj
(2π)d/2|Σj|1/2

exp

{
−1

2
(x− uj)TΣ−1

j (x− uj)
}
.

There are in total

K

(
d(d+ 1)

2︸ ︷︷ ︸
of parameters in Σj

+ d︸︷︷︸
of parameters in uj

)
+ (K − 1)︸ ︷︷ ︸

of mixing coefficients

=
Kd(d+ 3)

2
+K − 1

parameters in the mixture of K multivariate Gausssians.

3.2 Maximum Likelihood Estimation

A finite mixture model pψ(x) has parameters ψ = (π0, . . . , πK−1, θ0, . . . , θK−1). The likelihood
of ψ based on the observations X1, . . . , Xn is

L(ψ) =
n∏
i=1

pψ(Xi) =
n∏
i=1

(K−1∑
j=0

πjpθj(Xi)

)

16

x

p(
x)

0.00

0.05

0.10

0.15

0.20

−4 −2 0 2 4 6

x

p
(x

)
Figure 11: A mixture of two Gaussians, p(x) = 2

5
φ(x;−1.25, 1) + 3

5
φ(x; 2.95, 1).

and, as usual, the maximum likelihood estimator is the value ψ̂ that maximizes L(ψ). Usually,
the likelihood is multimodal and one seeks a local maximum instead if a global maximum.

For fixed θ0, . . . , θK−1, the log-likelihood is often a concave function of the mixing parameters
πj. However, for fixed π0, . . . , πK−1, the log-likelihood is not generally concave with respect
to θ0, . . . , θK−1.

One way to find ψ̂ is to apply your favorite optimizer directly to the log-likelihood.

`(ψ) =
n∑
i=1

log

(K−1∑
j=0

πjpθj(Xi)

)
.

However, `(ψ) is not jointly convex with respect to ψ. It is not clear which algorithm is the
best to optimize such a nonconvex objective function.

A convenient and commonly used algorithm for finding the maximum likelihood estimates of
a mixture model (or the more general latent variable models) is the expectation-maximization
(EM) algorithm. The algorithm runs in an iterative fashion and alternates between the
“E-step” which computes conditional expectations with respect to the current parameter
estimate, and the “M-step” which adjusts the parameter to maximize a lower bound on
the likelihood. While the algorithm can be slow to converge, its simplicity and the fact
that it doesn’t require a choice of step size make it a convenient choice for many estimation
problems.

On the other hand, while simple and flexible, the EM algorithm is only one of many numerical
procedures for obtaining a (local) maximum likelihood estimate of the latent variable models.
In some cases procedures such as Newton’s method or conjugate gradient may be more
effective, and should be considered as alternatives to EM. In general the EM algorithm
converges linearly, and may be extremely slow when the amount of missing information is
large,

In principle, there are polynomial time algorithms for finding good estimates of ψ based on
spectral methods and the method of moments. It appears that, at least so far, these methods

17

are not yet practical enough to be used in routine data analysis.

Example. The data are measurements on duration and waiting time of eruptions of the
Old Faithful geyser from August 1 to August 15, 1985. There are two variables with 299 ob-
servations. The first variable ,“Duration”, represents the numeric eruption time in minutes.
The second variable, “waiting”, represents the waiting time to next eruption. This data is
believed to have two modes. We fit a mixture of two Gaussians using EM algorithm. To
illustrate the EM step, we purposely choose a bad starting point. The EM algorithm quickly
converges in six steps. Figure 12 illustrates the fitted densities for all the six steps. We see
that even though the starting density is unimodal, it quickly becomes bimodal.

Eruption tim
e (m

ins)

W
aiting tim

e (m
ins)

m
ixture density

Eruption tim
e (m

ins)

W
aiting tim

e (m
ins)

m
ixture density

Eruption tim
e (m

ins)

W
aiting tim

e (m
ins)

m
ixture density

Step 1 Step 2 Step 3

Eruption tim
e (m

ins)

W
aiting tim

e (m
ins)

m
ixture density

Eruption tim
e (m

ins)

W
aiting tim

e (m
ins)

m
ixture density

Eruption tim
e (m

ins)

W
aiting tim

e (m
ins)

m
ixture density

Step 4 Step 5 Step 6

Figure 12: Fitting a mixture of two Gaussians on the Old Faithful Geyser data. The initial
values are π0 = π1 = 0.5. u0 = (4, 70)T , u1 = (3, 60)T , Σ1 = Σ2 =

(
0.8 7
7 70

)
. We see that

even though the starting density is not bimodal, the EM algorithm converges quickly to a
bimodal density.

18

3.3 The Twilight Zone

Mixtures models are conceptually simple but they have some strange properties.

Computation. Finding the mle is NP-hard.

Infinite Likelihood. Let pψ(x) =
∑k

j=1 πjφ(x;µj, σ
2
j), be a mixture of Gaussians. Let

L(ψ) =
∏n

i=1 pψ(Xi) be the likelihood function based on a sample of size n. Then supψ L(ψ) =

∞. To see this, set µj = X1 for some j. Then φ(X1;µj, σ
2
j) = (

√
2πσj)

−1. Now let σj → 0.
We have φ(X1;µj, σ

2
j) → ∞. Therefore, the log-likelihood is unbounded. This behavior

is very different from a typical parametric model. Fortunately, if we define the maximum
likelihood estimate to be a mode of L(ψ) in the interior of the parameter space, we get a
well-defined estimator.

Multimodality of the Density. Consider the mixture of two Gaussians

p(x) = (1− π)φ(x;µ1, σ
2) + πφ(x;µ0, σ

2).

You would expect p(x) to be multimodal but this is not necessarily true. The density p(x)
is unimodal when |µ1 − µ2| ≤ 2σ and bimodal when |µ1 − µ2| > 2σ. One might expect that
the maximum number of modes of a mixture of k Gaussians would be k. However, there are
examples where a mixture of k Gaussians has more than k modes. In fact, Edelsbrunner,
Fasy and Rote (2012) show that the relationship between the number of modes of p and the
number of components in the mixture is very complex.

Nonidentifability. A model {pθ(x) : θ ∈ Θ} is identifiable if

θ1 6= θ2 implies Pθ1 6= Pθ2

where Pθ is the distribution corresponding to the density pθ. Mixture models are noniden-
tifiable in two different ways. First, there is nonidentifiability due to permutation of labels.
For example, consider a mixture of two univariate Gaussians,

pψ1(x) = 0.3φ(x; 0, 1) + 0.7φ(x; 2, 1)

and
pψ2(x) = 0.7φ(x; 2, 1) + 0.3φ(x; 0, 1),

then pψ1(x) = pψ2(x) even though ψ1 = (0.3, 0.7, 0, 2, 1)T 6= (0.7, 0.3, 2, 0, 1)T = ψ2. This is
not a serious problem although it does contribute to the multimodality of the likelihood.

A more serious problem is local nonidentifiability. Suppose that

p(x; π, µ1, µ2) = (1− π)φ(x;µ1, 1) + πφ(x;µ2, 1). (13)

When µ1 = µ2 = µ, we see that p(x; π, µ1, µ2) = φ(x;µ). The parameter π has disappeared.
Similarly, when π = 1, the parameter µ2 disappears. This means that there are subspaces of

19

the parameter space where the family is not identifiable. This local nonidentifiability causes
many of the usual theoretical properties— such as asymptotic Normality of the maximum
likelihood estimator and the limiting χ2 behavior of the likelihood ratio test— to break
down. For the model (13), there is no simple theory to describe the distribution of the
likelihood ratio test for H0 : µ1 = µ2 versus H1 : µ1 6= µ2. The best available theory is
very complicated. However, some progress has been made lately using ideas from algebraic
geometry (Yamazaki and Watanabe 2003, Watanabe 2010).

The lack of local identifiabilty causes other problems too. For example, we usually have that
the Fisher information is non-zero and that θ̂ − θ = OP (n−1/2) where θ̂ is the maximum
likelihood estimator. Mixture models are, in general, irregular: they do not satisfy the usual
regularity conditions that make parametric models so easy to deal with. Here is an example
from Chen (1995).

Consider a univariate mixture of two Gaussians distribution:

pθ(x) =
2

3
φ(x;−θ, 1) +

1

3
φ(x; 2θ, 1).

Then it is easy to check that I(0) = 0 where I(θ) is the Fisher information. Moreover, no
estimator of θ can converge faster than n−1/4 if the number of components is not known
in advance. Compare this to a Normal family φ(x; θ, 1) where the Fisher information is
I(θ) = n and the maximum likelihood estimator converges at rate n−1/2. Moreover, the
distribution of the mle is not even well understood for mixture models. The same applies to
the likelihood ratio test.

Nonintinuitive Group Membership. Our motivation for studying mixture modes in
this chapter was clustering. But one should be aware that mixtures can exhibit unexpected
behavior with respect to clustering. Let

p(x) = (1− π)φ(x;µ1, σ
2
1) + πφ(x;µ2, σ

2
2).

Suppose that µ1 < µ2. We can classify an observation as being from cluster 1 or cluster 2
by computing the probability of being from the first or second component, denoted Z = 0
and Z = 1. We get

P(Z = 0|X = x) =
(1− π)φ(x;µ1, σ

2
1)

(1− π)φ(x;µ1, σ2
1) + πφ(x;µ2, σ2

2)
.

Define Z(x) = 0 if P(Z = 0|X = x) > 1/2 and Z(x) = 1 otherwise. When σ1 is much
larger than σ2, Figure 13 shows Z(x). We end up classifying all the observations with large
Xi to the leftmost component. Technically this is correct, yet it seems to be an unintended
consequence of the model and does not capture what we mean by a cluster.

Improper Posteriors. Bayesian inference is based on the posterior distribution p(ψ|X1, . . . , Xn) ∝
L(ψ)π(ψ). Here, π(ψ) is the prior distribution that represents our knowledge of ψ before

20

p(x)

x

p
(x

)

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

x

h(
x)

−2 0 2 4 6

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

Z(
x)

Z(x) = 0 Z(x) = 1 Z(x) = 0

Figure 13: Mixtures are used as a parametric method for finding clusters. Observations with
x = 0 and x = 6 are both classified into the first component.

seeing the data. Often, the prior is improper, meaning that it does not have a finite integral.
For example, suppose that X1, . . . , Xn ∼ N(µ, 1). It is common to use an improper prior
π(µ) = 1. This is improper because ∫

π(µ)dµ =∞.

Nevertheless, the posterior p(µ|Dn) ∝ L(µ)π(µ) is a proper distribution, where L(µ) is the
data likelihood of µ. In fact, the posterior for µ is N(X, 1/

√
n) where x is the sample mean.

The posterior inferences in this case coincide exactly with the frequentist inferences. In many
parametric models, the posterior inferences are well defined even if the prior is improper and
usually they approximate the frequentist inferences. Not so with mixtures. Let

p(x;µ) =
1

2
φ(x; 0, 1) +

1

2
φ(x;µ, 1). (14)

If π(µ) is improper then so is the posterior. Moreover, Wasserman (2000) shows that the only
priors that yield posteriors in close agreement to frequentist methods are data-dependent
priors.

Use With Caution. Mixture models can have very unusual and unexpected behavior.
This does not mean that we should not use mixture modes. Indeed, mixture models are
extremely useful. However, when you use mixture models, it is important to keep in mind
that many of the properties of models that we often take for granted, may not hold.

What Does All This Mean? Mixture models can have very unusual and unexpected
behavior. This does not mean that we should not use mixture modes. Compare this to

21

kernel density estimators which are simple and very well understood. If you are going to use
mixture models, I advise you to remember the words of Rod Serling:

There is a fifth dimension beyond that which is known to man. It is a dimension
as vast as space and as timeless as infinity. It is the middle ground between light
and shadow, between science and superstition, and it lies between the pit of man’s
fears and the summit of his knowledge. This is the dimension of imagination. It
is an area which we call the Twilight Zone.

4 Density-Based Clustering I: Level Set Clustering

Let p be the density if the data. Let Lt = {x : ph(x) > t} denote an upper level set of p.
Suppose that Lt can be decomposed into finitely many disjoint sets: Lt = C1

⋃
· · ·
⋃
Ckt .

We call Ct = {C1, . . . , Ckt} the level set clusters at level t.

Let C =
⋃
t≥0 Ct. The clusters in C form a tree: if A,B ∈ C, the either (i) A ⊂ B or (ii)B ⊂ A

or (iii) A ∩B = ∅. We call C the level set cluster tree.

The level sets can be estimated in the obvious way: L̂t = {x : p̂h(x) > t}. How do we

decompose L̂t into its connected components? This can be done as follows. For each t let

Xt = {Xi : p̂h(Xi) > t}.

Now construct a graph Gt where each Xi ∈ Xt is a vertex and there is an edge between Xi

and Xj if and only if ||Xi − Xj|| ≤ ε where ε > 0 is a tuning parameter. Bobrowski et al
(2104) show that we can take ε = h. Gt is a called a Rips graphs. The clusters at level t are
estimated by taking the connected components of the graph Gt. In summary:

1. Compute p̂h.

2. For each t, let Xt = {Xi : p̂h(Xi) > t}.
3. Form a graph Gt for the points in Xt by connecting Xi and Xj if ||Xi −Xj|| ≤ h.

4. The clusters at level t are the connected components of Gt.

A Python package, called DeBaCl, written by Brian Kent, can be found at

http://www.brianpkent.com/projects.html.

Fabrizio Lecci has written an R implementation, include in his R package: TDA (topological
data analysis). You can get it at:

http://cran.r-project.org/web/packages/TDA/index.html

Two examples are shown in Figures 14 and 15.

22

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
02

0.
04

0.
06

la
m

bd
a ●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2 4 6 8

−
2

0
2

4
6

8

cluster labels

XX[,1]

X
X

[,2
] ●

●

●
●

●

●

●●●
●

●
●●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●
●●

●
●

●●

●

●
●

●

●

●

●●
●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●
●

●

●
●

●

●

●

●
●

●

●● ●●

●

●

●

●

●●
●

●

●

●
●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

● ●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●
●●

● ●

●

●
●

●●
●

● ● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●●
● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
● ●

●
●●
● ●

●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

●● ●
● ●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
● ●

●
●●●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

● ●
●

●
●

●

●

●

●
●

●
●

●

●
●

● ●

● ●
●

●

●
●● ●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
● ●

●
● ●

●●●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

● ●

●
●

●

●
●

●

●

●

●
●

●●●

● ●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

●
●

● ●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●●

●

●

●

●

●●

●

● ●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

● ●●

●
●

● ●

●
●

●

●

●

●

●
●

●

●
●

●

●

●
●●●
●

●

●
●● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●●
●● ●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●
● ●

●

●

●●

●

● ●

●
●●

●

●

●

●

●

●

●●●

●

●●

●

● ●
●

●

●●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●
●

●

● ●
●●

●

●

●

●
● ●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●●

●

●

●

●

●
●● ●

●
●

●
●

●

●

●

●

●

●

●●

● ●

●

●
● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
● ●

●

●●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●●

● ●

●
●

●

●

●●
●

●

●

● ● ●

●

●

●●
●●

●

●

●

●
●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
● ●●

●
●

●
●

●
●

●

● ●

●
●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●●
●

●
●●

●
●

●

●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
●

●●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●
●●

●
●

●●

●

●
●

●

●

●

●●

● ●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●● ●
●●

●
●

●

●

●
●

●

●● ●●

●

●

●

●

●●

●

●

●
●

●●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
● ●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●
● ●

●

●

●●
●●

●

●

●
●

●●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●●●

●●

●

●●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●

●
● ●

●
●●
● ●

●

●

●

●

●

●

●●
●

●
●

●

●

●● ●
● ●

●
●

●

●

● ●

●
●

●

●

●
●

●

●●
●

●

●● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●●

●
● ●

●
●●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

● ●
●

●

●●

●
●

●
●

●

●
●

● ●

● ●

●

●
●● ●

●

●●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●

●
● ●

●
● ●

●●●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

● ●

●
●

●
●

●

●

●

●
●

●●●

● ●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●
●

●

●

●

●
●

● ●

●●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

● ●

●

●●

●

●

●

●●

●

● ●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●

●

●

● ●●
● ●

●●

●

●● ●

●

●

●

●

●●

●
●

●
●

●

●
●

●

● ●●

●
●

● ●

●
●

●

●

●

●
●

●

●
●

●

●

●
●●●
●

●
●● ●

●

●

●

●

●
●

●

●

●
●

● ●
●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●
●

●
●

●●

● ●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●●

●

●
● ●

●

●●

● ●

●
●●

●

●

●

●●● ●●

●

●
●

●

●●
●

●

●

●

● ●

●
●

●

●

●

●

●●

●

● ●
●● ●●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●●

●

●

●

●

●
●● ●

●
●

●
●

●

●

●
●●

● ●

●

●
● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

●●

● ●

●

●

●●
●

●● ● ●

●

●

●●
●●

●

●
●

●

●

●

● ●
●

●

●

●

● ●
●

●

● ●

●
●

●

●

●
●

●●

● ●
● ●

●
●

●
●

●

●

● ●

●
●

● ●

● ●
●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●●●
●

●
●

●
●

●
●●●●

●
●

●
●●● ●●●

●
●

●
●

●

●●●

●

●
●●●

●●
●

●
●

● ●●
● ●●●●● ●

●
● ●● ●

●

●

●
●●●●●●

●●

●●●●
●

●●●● ●● ●●●● ●●
●
●

●
●

●
●

●
●
●

●
●
● ●●

●
●●

●●
●

●
● ●
●

●● ●
●●● ●
●●

●
● ●●

●●● ●
● ●●
●

●●●
●

Figure 14: DeBaClR in two dimensions.

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

01
0

0.
02

0

la
m

bd
a

cluster labels

−4 −2 0 2 4 6 8 10

1
2

3
4

5
6

7
8

−4
−2

 0
 2

 4
 6

 8
10

XX[,1]

X
X

[,2
]

X
X

[,3
]

●
●

●
●●

●

●
●

●
●
●●

●

●

●

●

●

●

●●●
●
●

●●
●

●

●

●

●● ●

●

●

●

●

●

●●
●

●

●

●
●

●●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●●●

●

●●●
●

●●
●●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●●● ●●●●

●

●
●

●

●

●●
●

●

●●

●

●

●

●●
●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●●

●
●

●
●
●

●

●●

●

●

●

●

●

●●●

●

●●
●

●

●

●

● ●
●●

●

●
●

●

●

●

● ●

●

●
●
●

●

●

●

●

●
●
●●●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●
●●

●●

●

●

●

●

● ●
● ●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

● ●
●●

●

●

●

●

●
●

●●
●

● ●

●

●●

●

●●

●

●

●

●

●●
●●●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●● ●

●

●

●
●●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●●

●

●

●
●

●

●

● ●

● ●
●

●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●
●

●

●
●
●●

●●
●

●

●
●

●●●

●

●

●

●
●

●●

●

●

●●

●

● ●

●
●

●
●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●
●

● ●
●

●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●●

●

●

●

●●

●●

●

●
●

●

●

●●

●●
●

●●

●

●

●●●
●

●
●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●
●

●●●

●●

●●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
● ●

●
●
●

●
●●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
● ●

●
●

●

● ●

●
●

●●
●

●
●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●

●
●

●

●
●●

●
●

● ●

●

●●

●

●

●

●
●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●●

●
●

●

●

●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●●●

●●● ●
●

●

●

●

●●

●

●●

●
●
●
●●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●●
●●

●
●

●

●
●

●

●

●

●

●
●
●

●
●

●

●●● ●

●

●

●
●

●

●

●
●

●

●●
●

●●●

●

●

●●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●
● ●●

●
●

●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●●●
●
●

●●

●

● ●

●●●●●
●
●

● ●

●
●●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

● ●●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●● ●
●
●

●

●

●
●

●
●●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●

●

●
●

●
●

●
●
●

●●

●

● ●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●●●

●●
●

●

●●

● ●
●●

●●

●

●

●

●

●
●

●

●

●

●●

●●●
●

●
●

●
●

●

●

●●

●
●●

●●
●

●

●

●

●

●

●

●
●

●
●●
●

●● ●

●

●

●
●

●
●●

●

●

● ●
● ●●

● ●

●

●●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●
●●

●

●

●●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●
●

●

●

●
●
●

●

●

● ●
● ●

●

●

●

●

●

●
●●

● ●

●●●

●
●●

●

●

●

●●
●

●

●

● ●

●

●

●
●

● ●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●●
●

●●
●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●
●

●
●

●

●

●● ●
●

●

●
●●

●

●

●●

●

●●

●●
●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●●
● ●●

●

●

●

●

●

●

●●
●
●●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●●

●

●●

●

●●
●

●●●

●
●

●
●

●

●
● ●

●
●
● ●●

●
●

●
●
●

●

●●

●
●

● ●

●

●

●
●●

●

●

●

●●

●
●

●
●

●
●●●

●

●●
●● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●●

●
● ●

●
●

●●
●

●

●

●

●

●●

●

●

●●●●

●

●

●

●
●

●●

●
● ●

●

●

● ●●
●

●
●

●●

●
●

●

●

●

●

●
●●

●●●

●

●
●

●
●

●

●●

●

●

●●

● ●

●

●

●

●●
●

●●
●●●●●●

●●●

●

●●●
● ●●●●

●
●

●

●

●

●●

●
●

●

● ●●
●

●
●

●

●●

●

●
●

●
●

●
●

●
●●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●
●

●

●
● ●

●

●
●

● ●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●
●

●

●
●

● ●●● ●

● ●●●
●

●

●

●

● ●
●●

●

●

●●
●●

●

●

●

●●

●

●●●

●

●●

●
●
●

●●

●

●

●

●
●

●●

●

●

●●

● ●
●
●
●

●

●
●

●
●

●●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●
● ●

●
●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●● ●●
●●

●●
●

●
●

●

●

●
●●

●●

●●
●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●●●

●

●
●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●
● ●●

●● ●
●

●

●
●

●●
●

●

●

●

● ●

●

●

●● ●●
●

●

●

●
●

●

●
●
●●

●

●
●

●

●
●

●
●

●

●●●

●

●

●●●
●

●

●●●

●

●

●
●
● ●●

●

●●●●●
● ●●

●

●●
●
●
●

●●●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●
●● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●
●

●

● ●
●

● ●●
●

●
●

●
●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●
●●

●
●
●

●
●

●

●

●

●

● ●

●

●
●● ●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

● ●

●●
●●●

●
●●

●●

●
●
●

●
● ●●

●

●
●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

● ●●

●

●●
●

●
●● ●

●

●
●

●
●
●●●●●●●

●●

●●

●●
●
●

●●●●
●●

●

●

●
●
●●●

●
● ●
● ●●

●
●●●

●
●

●●
●●

● ●
●

●

●
●

●
●

●
●

● ●

●

●●
●●
●

● ●

●

●●
●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●
●

●

●●

●
●● ●

●
●

●
● ●●

●●
●

●

●

●

●●

●●

●

●

●●
●

●●
●●●●

●

●

●
●

●●●
●
●

●●
●●

●

●
●●●

●

●
●

●●
●●

●●

●●
●●
●

●

●●
●

●

●

●
●●

●
●
●

●● ●●●
●●●●

●●
●●

●
●●●●
●
●●●●

●●
●

●
●●●● ●●●●●

●

●●●
● ●

●
●●
● ●
●
●●

●

●
●
●
●

●

●

●
●
●
●

●●●
●

●
●●

● ●
●●●

●

●●

●
●● ●

●
●

●
●●●
●

●

●
●

●●●●
●●

●

●

●●●

●●

●

●

●●●●
●

●●
●

●
●
●

●

●

●●
●
●

●●
●●●
●

●●
● ●

●
●● ●

●●
●●●●●
●

●
●

●

●
●

●●
●

●
●

●

●
●

●●
●
●

●●●●●●
●●
●
●

●
●
●
●
●
●●●●●
●

●
●●●

Figure 15: DeBaClR in three dimensions.

23

4.1 Theory

How well does this work? Define the Hausdorff distance between two sets by

H(U, V) = inf

{
ε : U ⊂ V ⊕ ε and V ⊂ U ⊕ ε

}

where
V ⊕ ε =

⋃
x∈V

B(x, ε)

and B(x, ε) denotes a ball of radius ε centered at x. We would like to say that Lt and L̂t are
close. In general this is not true. Sometimes Lt and Lt+δ are drastically different even for
small δ. (Think of the case where a mode has height t.) But we can estimate stable level
sets. Let us say that Lt is stable if there exists a > 0 and C > 0 such that, for all δ < a,

H(Lt−δ, Lt+δ) ≤ Cδ.

Theorem 11 Suppose that Lt is stable. Then H(L̂t, Lt) = OP (
√

log n/(nhd)).

Proof. Let rn =
√

log n/(nhd)). We need to show two things: (i) for every x ∈ Lt there

exists y ∈ L̂t such that ||x− y|| = OP (rn) and (ii) for every x ∈ L̂t there exists y ∈ Lt such
that ||x − y|| = OP (rn). First, we note that, by earlier results, ||p̂h − ph||∞ = OP (rn). To
show (i), suppose that x ∈ Lt. By the stability assumption, there exists y ∈ Lt+rn such that

||x − y|| ≤ Crn. Then ph(y) > t + rn which implies that p̂h(y) > t and so y ∈ L̂t. To show

(ii), let x ∈ L̂t so that p̂h(x) > t. Thus ph(x) > t − rn. By stability, there is a y ∈ Lt such
that ||x− y|| ≤ Crn. �

4.2 Persistence

Consider a smooth density p with M = supx p(x) < ∞. The t-level set clusters are the
connected components of the set Lt = {x : p(x) ≥ t}. Suppose we find the upper level
sets Lt = {x : p(x) ≥ t} as we vary t from M to 0. Persistent homology measures how
the topology of Lt varies as we decrease t. In our case, we are only interested in the modes,
which correspond to the zeroth order homology. (Higher order homology refers to holes,
tunnels etc.) The idea of using persistence to study clustering was introduced by Chazal,
Guibas, Oudot and Skraba (2013).

Imagine setting t = M and then gradually decreasing t. Whenever we hit a mode, a new
level set cluster is born. As we decrease t further, some clusters may merge and we say that
one of the clusters (the one born most recently) has died. See Figure 16.

24

−5 0 5

b1

d1

b2

d2

b3

d3

b4
d4

●

●

●

●

death

bi
rt

h

d3 d1 d4 d2

b 4
b 2

b 1
b 3

Figure 16: Starting at the top of the density and moving down, each mode has a birth time
b and a death time d. The persistence diagram (right) plots the points (d1, b1), . . . , (d4, b4).
Modes with a long lifetime are far from the diagonal.

In summary, each mode mj has a death time and a birth time denoted by (dj, bj). (Note that
the birth time is larger than the death time because we start at high density and move to
lower density.) The modes can be summarized with a persistence diagram where we plot the
points (d1, b1), . . . , (dk, bk) in the plane. See Figure 16. Points near the diagonal correspond
to modes with short lifetimes. We might kill modes with lifetimes smaller than the bootstrap
quantile εα defined by

εα = inf

{
z :

1

B

B∑
b=1

I
(
||p̂∗bh − p̂h||∞ > z

)
≤ α

}
. (15)

Here, p̂∗bh is the density estimator based on the bth bootstrap sample. This corresponds
to killing a mode if it is in a 2εα band around the diagonal. See Fasy, Lecci, Rinaldo,
Wasserman, Balakrishnan and Singh (2014). Note that the starting and ending points of the
vertical bars on the level set tree are precisely the coordinates of the persistence diagram.
(A more precise bootstrap approach was introduced in Chazal, Fasy, Lecci, Michel, Rinaldo
and Wasserman (2104).)

5 Density-Based Clustering II: Modes

Let p be the density of X ∈ Rd. Assume that p has modes m1, . . . ,mk0 and that p is a Morse
function, which means that the Hessian of p at each stationary point is non-degenerate. We

25

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

● ●●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●●

● ●

●

●

●

●
●

●

●

● ●●

●●

● ●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●
●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●
●

●

●

● ●
●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

● ●
● ●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●
●●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

● ●

●

Figure 17: A synthetic example with two “blob-like” clusters.

●●●
●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●●●●
●●●
●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●
●●●● ●

●
●
●

●
●

●●●●●●●●●●●●●●
●

●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●

●
●
●
●
●
●

●
●●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●●
●

● ●

●

● ●●
●

● ●
● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●
●●●●●●●●●●●

●●●●
●●●
●●
●●

●
●●●

●
●●●●●●

●●
●
●
●

●●
●● ●●●●

Figure 18: A synthetic example with four clusters with a variety of different shapes.

can use the modes to define clusters as follows.

5.1 Mode Clustering

Given any point x ∈ Rd, there is a unique gradient ascent path, or integral curve, passing
through x that eventually leads to one of the modes. We define the clusters to be the “basins
of attraction” of the modes, the equivalence classes of points whose ascent paths lead to the
same mode. Formally, an integral curve through x is a path πx : R→ Rd such that πx(0) = x
and

π′x(t) = ∇p(πx(t)). (16)

Integral curves never intersect (except at stationary points) and they partition the space.

Equation (16) means that the path π follows the direction of steepest ascent of p through x.
The destination of the integral curve π through a (non-mode) point x is defined by

dest(x) = lim
t→∞

πx(t). (17)

It can then be shown that for all x, dest(x) = mj for some mode mj. That is: all integral
curves lead to modes. For each mode mj, define the sets

Aj =
{
x : dest(x) = mj

}
. (18)

These sets are known as the ascending manifolds, and also known as the cluster associated
with mj, or the basin of attraction of mj. The Aj’s partition the space. See Figure 19. The
collection of ascending manifolds is called the Morse complex.

26

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●

● ●

Figure 19: The left plot shows a function with four modes. The right plot shows the ascending
manifolds (basins of attraction) corresponding to the four modes.

Given data X1, . . . , Xn we construct an estimate p̂ of the density. Let m̂1, . . . , m̂k be the
estimated modes and let Â1, . . . , Âk be the corresponding ascending manifolds derived from
p̂. The sample clusters C1, . . . , Ck are defined to be Cj =

{
Xi : Xi ∈ Âj

}
.

Recall that the kernel density estimator is

p̂(x) ≡ p̂h(x) =
1

n

n∑
i=1

1

hd
K

(
||x−Xi||

h

)
(19)

where K is a smooth, symmetric kernel and h > 0 is the bandwidth.1 The mean of the
estimator is

ph(x) = E[p̂h(x)] =

∫
K(t)p(x+ th)dt. (20)

To locate the modes of p̂h we use the mean shift algorithm which finds modes by approxi-
mating the steepest ascent paths. The algorithm is given in Figure 20. The result of this
process is the set of estimated modes M̂ = {m̂1, . . . , m̂k}. We also get the clustering for
free: the mean shift algorithm shows us what mode each point is attracted to. See Figure
21.

A modified version of the algorithm is the blurred mean-shift algorithm (Carreira-Perpinan,
2006). Here, we use the data as the mesh and we replace the data with the mean-shifted data
at each step. This converges very quickly but must be stopped before everything converges
to a single point; see Figures 22 and 23.

1In general, we can use a bandwidth matrix H in the estimator, with p̂(x) ≡ p̂H(x) = 1
n

∑n
i=1KH(x−Xi)

where KH(x) = |H|− 1
2K(H−

1
2x).

27

Mean Shift Algorithm

1. Input: p̂(x) and a mesh of points A = {a1, . . . , aN} (often taken to be the data
points).

2. For each mesh point aj, set a
(0)
j = aj and iterate the following equation until

convergence:

a
(s+1)
j ←−

∑n
i=1 XiK

(
||a(s)j −Xi||

h

)
∑n

i=1K

(
||a(s)j −Xi||

h

) .

3. Let M̂ be the unique values of the set {a(∞)
1 , . . . , a

(∞)
N }.

4. Output: M̂.

Figure 20: The Mean Shift Algorithm.

What we are doing is tracing out the gradient flow. The flow lines lead to the modes and
they define the clusters. In general, a flow is a map φ : Rd × R→ Rd such that φ(x, 0) = x
and φ(φ(x, t), s) = φ(x, s+ t). The latter is called the semi-group property.

5.2 Choosing the Bandwidth

As usual, choosing a good bandwidth is crucial. You might wonder if increasing the band-
width, decreases the number of modes. Silverman (1981) showed that the answer is yes if
you use a Normal kernel.

●
●

●

●

●

●

●

●

● ●
●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

Figure 21: A simple example of the mean shift algorithm.

28

●●

●

●
●

●

●

●

●

●●
●

● ●● ●
● ●

●
●

●

●

●
●●●

●
●●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●

● ● ●
●

●

●

● ●
●●

● ●

●

● ●
●●

●

● ●

●
●●

●●

●●

● ● ●

●

●

●

●

●●
●●●

●

●

●
●

●
●

●

●
●

●● ●
●

●
●

●

●
●

●

● ●●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●
●

●

●●
●●

●
●

● ●
●

●

●

●

● ●

●

●●

● ●

●

●

●
●

●●

●

●
●

●
● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

● ●

●
●● ●

●

●

●

●

●

●

●

●●
●

●
●

● ●

●
●

●

● ●● ●
●

● ●●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●
● ●● ●

●
●

●

●

●

●

●
●

● ●
●

●

●
●

●

● ●
●●●

●

●

●

●

● ●

●
●

● ●
●

● ●
●

●●

●

●

● ●●

●

●

●
●

●

●
●

●
●

●
●

●

●
●
●

●

●

●●
●

●

●
●●

●
●

●

●

●
●●

●
●●

●
●

●

●

●

●

● ●

●

●●

● ●●

●

●
●

●
●●

● ●

● ●

●

●
●

●●

● ●
●●

●
●

●
●●●

●

●
●

●●●

●

●

●

●● ●
●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●●●

●

●
●●

●

●
●

●
●

●● ●

●
●

● ●●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
● ●●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●●

●

●

●

●
●

●

●
● ● ● ●

●

●
●
●

● ●

●

●

●

●

●

●

●
●●

●
●●

●

●

●

●

●●

●
●●

● ●
● ●

●

●

●

●●
●●

●
●

●

●

●

●

● ●●
●●

●
●●

●

●● ●

●

●

●

●
●

●
●

●

●

●
●

●

● ●
●

●
●

●

●
●

●●
● ●

●

●

●

●●
●●●
●

●
●

● ●

●●
●

●

●
●

●

●●

● ●

●
● ●

●
●

●
●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●●

● ●
●

●

● ●

●

●

●
●

●

●

●

●
●

●
●●
● ●●

●
● ●

●

●

● ●
●

●

● ●●

●●
●
●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●● ●

●

● ●

●

●

●

●
●

●
●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●● ●

●

●

●●●
●

●
● ●

●

●
●
●

●

● ●
●●

● ● ●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●
●●● ● ●

●

●

●●
●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●
●●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●●
●

●●
●

●

●

●● ●
●

●

●●●
●●●

●●●
●●●

●

●● ●

● ●●

●● ●●
●●

●●

●
●●●

●
●

●
●●

●● ●●

●

●

●

●

● ●

●

●

●

●●
●

●

●● ●● ●● ●●●

●

●

●
● ●

●
● ●

●
●

●
●

●

●

●
● ●●●●●

●
●● ●●

●

●
●

●

●

●● ●●
●

●
●

●

●●
●

●

●
●● ●

●
●

● ●● ●
●● ●●

●●
●
● ●●●●●

●

●
●

●

●
● ●

●●

●

●

●●

●

●

●
●

● ●

● ●

● ● ●
●

●
●

●
●● ●● ●

●
●

●

●●

●

●●
● ●

●

●●
●

●●

●
●

●
● ●●

●

●
●●

● ●
●

●
●
●●

●●●

●

●

●

● ●
●● ●●●

●
●● ●

●

●●●
●

● ●●
●●

●●●●
●

●

●●
●

●● ●●
●

●
●

●

●

●●
●

●
●

● ● ●●●●

●

●

●
●

●

●●

●
●

●
●

●●

●

●

●

●
●

●

●● ● ●

●
●●● ●

●
●●

●

●

● ●
●

●
● ●

●
●

●
●

●
●

●

●
● ●●

●
●

● ●
● ● ●

●

●

●

●●

●

●●
●

●●

●

●●
● ●

●

● ●

●

●
●

●
●

●
● ●●● ●

●

●●
●

●
●

●
●

●●

●

●
● ●

●

●●

●
●

●

●

●

●

● ●

●

●
●

●●●

●

●
●

●●
●●●

●
●
●

●●
●●●●●

●

● ●
●

●●
● ●

●

● ●

●

●

●

●
●

●

●

●

●●●●● ●●● ●●●●●
●● ●●

●

●

●●●●
●●

●
●

●
●

●
●●

●

●●●

●

●

●

●

●
●

●● ●
●

●●

●●● ●

●

● ●
●●

●

●●
●

●
● ●

●

●
●●

●
●

●
●●

●

●

● ●●

●

●
●●

● ●

●

●●● ●●●●
●

●

●

●●
●●

●
●

●
●●

●

●

●

●

●
●●

●
●● ●●

●

●
●●

●
●

●
● ●

●
● ● ●

●

●
●●●

●
● ●● ●

●
●

●
●

● ●●

●
●●●

●

●●● ●

●

●
● ●● ●●

●

●
●●

●

●●
●

●● ●● ●
● ●

●
●

● ●●● ●

●

●

●

●
● ●

●●
● ●●

●
●

●

●● ●●

●
● ●● ●●

●
●

●

● ●●

●

●●
●

●● ●

●

●
●

● ●

●

●
●

●
●

●
●

●
●●

●

●

●●● ●

●

●●
●

●
●

●

● ●●● ●
●

●
●

●●
● ●●

● ●
●

●

●●●
●

●
● ●●

●
●

●

●● ●
●

●
●●

●
●

●●

●

●
● ●

●

●● ●

●

●●
●

●

●
● ●●● ●●●● ●●

●

●
●

●● ●

●

●
●

●
●

●

●●
●●

● ●●

●
●

●
●● ●● ●●●●

●

●
●

●
●

●
●

●
●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

a

b

●●

●
●

●

●

●

●

●

●●
● ● ●● ●

● ●
●

●

●

●

●
●●●

●
●●

●
●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●
●

●
● ● ●

● ●

●

● ●
●●

● ●

●

● ●
●●

●

● ●

●
●●

●●
●●

● ● ●

●

●

●

●

●●
●●●

●

●

●
●

●
●

●

●
●

●● ●
●

●
●

●

●
●

●

● ●●

●

●
●

● ●
●

●

●
●

●

●
● ●

●

●●

●

●●
●●

●
●

● ●
●

●

●

●

● ●

●

●●

● ●

●
●

●
●

●●

●
●

●

●
● ●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●

● ●

●
●● ●

●

●

●

●

●

●

●

●●
●

●
●

● ●

●●

●
● ●● ●

●
● ●●

●
●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●●
●

● ●●●
●
●

●

●

●

●

●
●● ●

●

●

●
●●

● ●
●●●

●
●

●

●

● ●

●
●

● ●
●

● ●
●

●●

●

●

● ●●

●

●

●●

●

●●
●

●
●

●

●

●
●
●

●

●

●●
●

●

●
●● ●

●

●

●

●
●●

●
●●

●●

●

●

●

●

● ●

●

●●

● ●●

●

●
●

●
●●

● ●

● ●

●

●●

●●

● ●
●●

●
● ●

●●●

●

●
●

●●●

●

●
●

●● ●
●

●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●●●

●

●
●●

●

● ●

●
●

●● ●

●●

● ●●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

● ●●
●

●

●
●

● ●
●

●

●●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●●

●

●

●

●
●

●

●
● ● ● ●

●

●
●●

● ●

●
●

●

●

●

●

●●●
●
●●
●

●

●

●

●●

●
●●

● ●● ●

●
●

●

●●
●●

●
● ●

●

●

●

● ●●
●●

●
●●

●

●● ●

●
●

●

●
●

●
●

●

●

●
●

●

● ●
●

●●

●

●
●

●●
● ●

●

●

●
●●

●●●
●

●
●
● ●

●●
●

●

●
●

●

●●

● ●
●● ● ●

●
●

●

●

●

●

●

●
●

●

● ● ●

●

●
●

●

●●

● ●
●

●

● ●

●

●

●
●●

●

●

●
●

● ●●
● ●●

●
● ●

●

●

● ●
●

●

● ●●

●●
●
●

●●

●
●

●

●

●

●
●

●●

●

●

●

●●

●●●●

●

● ●

●
●

●

●
●

●
●

●

●● ●
●

●

●

●

●
●

●
●

●
●

●

●●

●
●

●● ●

●

●

●●●
●

●
● ●

●

●
●
●

●

● ●
●●● ● ●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

● ●●

●
●

●
●

●
●

●

●

●

●●

●

●
●

●●
● ●●● ● ●

●

●

●●
●

●

●

●
●

●

●●

●

● ●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●
●
●●

●
●●

●

●

●
●

● ●

●

●●

●
●

●
●

●

●

●
●

●●

●

●
●●
●

●●
●

●

●

●● ●
●

●

●●● ●●●
●●●

●●●

●
●● ●

● ●●
●● ●●
●●

●●
●

●●●
●

●
●

●● ●● ●●

●

●

●

●

●●

●

●

●

●●
●

●

●● ●●●● ●●●
●

●

●
●●

●
● ●

●
●

●
●

●

●

●
●●●●●●

●
●● ●●

●

●
●

●

●

●● ●●
●

●●

●
●●

●
●

●
●●● ●
●

● ●● ●
●●●●

●●
●
● ●●●●●

●

●
●

●

●
● ●

●●
●

●
●●

●

●

● ●
● ●

● ●
● ● ●●

●
●

●
●● ●●●

●
●

●

●●

●

●●
● ●

●

●● ●
●●

●
●

●
● ●●

●

●
●●

● ●●
●

●
●●
●●●

●

●

●

● ●
●● ●●●

●
●● ●

●

●●●
●

● ●●
●●

●●●●
●

●

●●
● ●● ●●

●

●
●

●

●

●●
●

● ●
● ●●●●●

●

●
●●

●

●●
●●

●
●

●●

●

●

●

●
●

●

●●● ●
● ●●● ●●●●

●

●

● ●
●

●
● ●

●
●

●
●

●
●

●

●
● ●●

●
●

● ●
● ● ●●

●

●

●●

●

●●
●

●●

●

●●● ●

●

● ●

●

●
●

●
●

●
● ●●● ●

●

●●
●

●
●

●
●

●●
●

●
● ●

●

●●

●
●

●

●

●

●

● ●

●

●
●

●●●

●

● ●

●●
●●● ●

●
●●● ●●●●●

●

● ●
● ●●

● ●
●

●●

●

●

●
●

●

●

●

●

●●●●● ●●● ●●●●● ●● ●●

●

●

●●●●
●●

● ●
●

●
●

●●

●

●●●

●

●

●

●

●
●

●● ●
●

●●

●●● ●

●

●●
●●

●

●●
● ●●●

●

●
●● ●

●
●

●●
●

●

● ●●

●

●
●●

● ●

●

●●●●●●●
●●

●

●●
●●

●
●

●
●●

●
●

●

●

●
●●

●
●● ●●

●

●
●●
●●●

● ●
●● ● ●

●

●
●●●

●● ●● ● ●
●

●
●

●●●

●
●●●

●

●●● ●

●

●
● ●● ●●

●
●

●●

●

●●
●

●● ●● ●
●●

●
●

● ●●●●

●

●

●

●
● ●

●●
● ●●●

●

●

●● ●●

●
● ●● ●●

●
●

●
●●●

●

●●
●

●● ●

●

●
●

●●

●
●

●
●●

● ●
●

●●
●

●

●●● ●
●

●●
●

●
●

●
● ●●● ●

●
●

●●●
● ●●

●●
●

●

●●●●
●

● ●●
●

●

●
●● ●

●
●

●●
●

●
●●

●

●
● ●

●
●● ●

●

●●
●

●

●
● ●●● ●●●● ●●

●

●
●

●● ●

●

●
●

●
●

●
●●

●●
● ●●

●
●

●
●● ●● ●●●●

●

●
●● ●

●
●

●
●

●
●● ●

●

●

●
●

●

●

●●

●

● ●

●

●

● ●
●

●

●● ●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●●●

●

●

●

●
●

●

●

●●●

●
●

●

●
●

●
●●

●

●
●

●●

●●

●●

●
● ●

●

●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●
●

● ●
●

●
●

●

●

●

●

● ●●

●

● ●

●

●

●
●

●●
●

● ●
●●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●●

●●

●●

●

●● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●●

●

●

●

●

●

● ●●

● ●

●

●

●
●●

●

●

●

●

●●●

●●
●

●

●
●

●

●
●

●

●

●

● ●

●

●

● ●●
●

●

●

●● ●●●

●

●

●

●

●
●

●

● ●

●

●●●

● ●

●
●●

●
●

●

●

● ●●

●

● ●

●

●

●
●

●

●

●
●

● ●
●

●

●

●
●

●

●●

●

●●●

●

●●● ●

●

●● ●

●

●
● ●

●●

●

●

● ●

●

●●
●

●●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

● ●●

●
●

●
●

●

●
●

●

●

●
● ●●

●
● ●

●

●●

●

●

● ●●

●●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●●●

●

●
●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●● ●●●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

● ●●
●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●
●

●●●● ●

●

●●

●

●

●●
●

●

●

●

● ●

●

●

●
●●

●

●

●●

●

●

●

●

●●
●

●●●●

●

●

●

●●
●

●
●

●
●

● ●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●●●● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●●
●

●

● ●●

●
●

●

●

●

●
●

●

●●●

●●

●

●
●

● ●

●

●

●
●

●

●

●●●

●

●

●●

● ●
●

●
●

●● ●●

●

●

●
●

●

●

● ●

●

●●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●● ●

●

● ●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●●●● ●●●

●

●●●

●

●

●

●
●●

● ●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●●

● ●●
●

●
●

●

●

●●

● ●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

● ●
● ●●●● ●● ●

●

●●● ●● ●● ●●● ●

●
●

●

● ●●

●

● ●● ●●● ●●
●

●● ●●● ●●● ●●● ●●● ●●●
● ●●●
● ●● ●● ●●●● ●●
● ●●●● ● ●●● ●● ●●
●

●

●● ●●
●

●
●

●●●
●

●● ●●●● ●●● ● ●● ●●●● ●●● ● ●●●● ●●●●●●●●● ●●

●

● ●
●

●

●● ●● ● ●●
● ●● ●

●
●●●● ●●● ●● ●●●●● ●●●● ●●●●●

●
●●●

●● ● ●●● ●●● ●
●

● ●● ●●●●● ●● ● ●●●●●●● ●● ●●●
●

●●● ●
●

●● ● ●●
● ●●

● ●●

●

●●●
● ●● ●●●●●●●

●
●

●
● ●●● ●●●● ●●●● ●●● ●● ●● ●●●●●● ●● ●● ● ●● ●●● ● ●●

●

●●● ● ●● ●●●●●
●

●●● ●●●●●
●

●●●
●

●

●

●●

●

●●● ●● ●●● ●●●● ●
●

● ●● ●●●● ●● ●

●

●●

●● ●●● ●● ●●● ●●

●

●

●●
●

●● ● ●●

●
●●● ●

●

● ●
●

● ●● ●●● ●●● ●

●

●● ●● ●
●● ●● ●●● ●

●

●●● ●

●

●

●

●

● ● ●●● ●●●
●● ●●● ●●●● ●●●● ●●●●●

●

● ●● ●●● ●● ●● ●
●

● ●●
●

●

●

●●●●● ●●● ●●●●●●● ●●
●●●●●● ●●● ●●●● ●● ●●●●

●

● ●

●

● ●●● ●●●● ●●● ●
●

●● ●● ●●●●●●● ●●●● ●●●●● ● ●● ●● ●● ●●●● ●●●●●●●● ●●

●

●● ●●●● ●●● ●● ●
●

●●●●●● ●●● ●●● ●●●● ●●● ● ●● ●●●● ●● ●● ● ●●● ●● ●●● ●●● ●●●● ●
●

●● ●● ●●● ● ●● ●●● ●●●●● ●●● ●●●●●●●● ●

●

●●● ●●● ●●● ●
● ●● ●●●● ●● ●● ●●● ●●●

●

●●● ●● ● ●● ●●●● ● ●●●● ●● ●● ● ●●●● ●● ●●● ●●●● ●●● ●●●●●● ● ●●●● ●
●

●●●●●● ●●●● ●●●● ●● ●● ●●●●● ●● ● ●●● ●● ●●● ●●● ●●● ●●●● ●●● ●●●● ● ●● ●● ●●●●●●● ●●● ●● ●● ●● ●●●● ●● ●● ●● ● ●●●

●●●
● ●●●● ●

●●
●

●●
● ●

●●
● ●

●●●

●

●●

●●● ●●

●
●●

●

●

●● ●●●
●●

●●

●●●
● ●●●

●
●

●

●●●

●

●

●

●
●

●●●● ●● ●●

●●
●●●

●●
●

●

●● ●●
●●

●●

●

●● ●●

●

●
●●

● ●●●
●

●●
●

●

●●●

●

●●
●

●
●●●●●

●●●
●

●●

●

●
● ●

●

●●
●

●

●

●● ●

●●

●

●●
● ●●●

●●

●●

●●
●

●●●

●

●

●

●

●

●●●
●

●
●

●
●

●

●

●●

●

●

●

●●

●●

●

●●●

●

●
●

●
● ●●

●●

●

●

●●●
●

●
●

●
●●●

●● ●● ●●

●

●●
●

●●● ●

●

●

●●●●

●●
●●●●●

●

●
●●● ●●

●●

●

●●●

●●

●●●● ●●

●

●●●

●

●

●

●

● ●●
●

●
●

●

●

●

●

●

●

●
●●

●●
●

●●●

●

●●●●
●

●●●

●●●●
●●

●

●

●●
●

●●
●●●

●

●

●
● ●●

●

●●

●●●

●

● ●

●●
●● ●● ●

●

●●

●
●●

●●●

●● ●

●
●● ●

●
● ●●

●●

●●
●

●
●●●

●●● ●● ●

●

●

●● ●●●

●

●●●● ●●●● ●●●
●

●

●
● ●

●

●

●●●●
●

●

●

●
●

●

●●

●●

●
●

●

●

●●●●●●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●●●
●●

●
●

●

●
●

●

●●●

●
●

●

●

● ●

●
●

●
●●●●

●

●●

●

●

●●●
●

●
●

●

●●

●
●

●●
●

●

●●

● ●
●

●

●●
●

●●●●

●

●

●

●
●●

●
●

●

●

●●

●●●

●●

●●

●
●

●●

●

●
●

●
●

●●●●●

●●

●●

● ●●●●
●

● ●●
●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●●

●
●●

●

●●●

●●● ●●

●●
●

●●

●

●

●●

●●

●●●
●

●● ●●
●

●
●

●●●
●●

●●●

●●
●

●

● ●

●

●

●●
●

●

●

●●

●●
●

●

●

●●●●

●●
●

●
●

●
●

●

●

●●

●●

●●
●

●
●

●

●

● ●

●●

●

●

●●●

●●●●

●

●●
●

●

●

●●
●●

●

●
●

●

●

●

●●
●

●●●

●●

●
●●●●

●
●●

● ●

●●●
●

●●●

●

●●●

●
●

●

●
●●●

●

●●
●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

●

●●●●● ●●

●
●

●

● ●● ●

●●
●

●
●

●

●
●●●

●
●● ●●

●
●●

●
●

●●

●

●●
●

●

●

●
●

●●●

●
●

●
●●

●

●

● ●

●
●

●
●●●

●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●●

●

●●

●

●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●

●

●

●●●

●

●●

●

●●

●

●

●●

●

●

●●●

●

●●

●

●●

●●

●

●●

●

●

●

●

●

●●

●●

●●

●●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●●

●●

●●●

●●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●●●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●

●●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●●●●●

●

●

●●●

●

●

●●

●

●●●

●●

●

●●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●●●●

●

●●●

●

●●●

●●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●●●●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●●●

●●

●●

●

●

●●

●

●

●

●

●

●●●●●

●●

●●

●
●●●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●
●

●
●

●●

●

●
●

●

●

●●

●●

●●●

●

●
●

●●

●

●

●

●●●

●●

●●
●

●●

●

●

●
●

●

●

●●

●

●

●

●●

●●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●
●

●●

●

●

●●
●

●●●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●●●
●

●

●●

●
●

●●●

●

●●●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●●●

●

●
●

●●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●

●

●●

●

●●

●

●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

Figure 22: The crescent data example. Top left: data. Top right: a few steps of mean-shift.
Bottom left: a few steps of blurred mean-shift.

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u1

u2

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●●
●

●

●

●● ●

●

●

●

●

●●●●
●

●

●

●

●

●
●● ●

●

● ●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

● ●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●
●●●

●●

●

●

●●

●
●

●

●
●

●

●

●●

●

● ●

●

●
●●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●●

●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●
●

●

●

●●

●
●

●
●

●

● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●●●

●

●
●

●
●

●●

●●

●

●●●
● ●●
●

●●

●
●●

●●

●

●
●

●●

●
● ●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●●
●

●

●●

●

●
●

●
●
●

●

●

●
●●●

●

●

●

●

●●●
●

●

●●●

●●

●

●

●●

●

●●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●●
●

●
●
●

●
●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●●
●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●●●

●●●●

●

●●
●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●●

●

●

●

●●

●●

●
●

●

●●

●

●●●

●

●●●

●

●

●●●

●

●●●

●
●

●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●●●●●

●

●

●

●●●●●●
●●●●●●●

●
●

●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●●
●

●

●●

●
●

●●

●

●●

●●

●

●●

●

●

●
●

●
●●

●

●

●

●

●●

●●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●

●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●●●●

●

●● ●●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●

●
●

●
●●

●
●●●●●●●●●●●

●
●●●

●
●●●●●●

●●
●

●
●

●
●●

●
●

●●
●

●
●●

●●●
●●●

●●●●●
●

●
●

●
●●

●
●●

●
●

●●
●

●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●●●●

●

●●
●●●

Figure 23: The Broken Ring example. Top left: data. Top right: a few steps of mean-shift.
Bottom left: a few steps of blurred mean-shift.

29

Theorem 12 (Silverman 1981) Let p̂h be a kernel density estimator using a Gaussian
kernel in one dimension. Then the number of modes of p̂h is a non-increasing function of h.
The Gaussian kernel is the unique kernel with this property.

We still need a way to pick h. We can use cross-validation as before. One could argue that
we should choose h so that we estimate the gradient g(x) = ∇p(x) well since the clustering
is based on the gradient flow.

How can we estimate the loss of the gradient? Consider, first the scalar case. Note that∫
(p̂′ − p′)2 =

∫
(p̂′)2 − 2

∫
p̂p′ +

∫
(p′)2.

We can ignore the last term. The first term is known. To estimate the middle term, we use
integration by parts to get ∫

p̂p′ = −
∫
p′′p

suggesting the cross-validation estimator∫
(p̂′(x))2dx+

2

n

∑
i

p̂′′i (Xi)

where p̂′′i is the leave-one-out second derivative. More generally, by repeated integration by
parts, we can estimate the loss for the rth derivative by

CVr(h) =

∫
(p̂(r)(x))2dx− 2

n
(−1)r

∑
i

p̂
(2r)
i (Xi).

Let’s now discuss estimating derivatives more generally following Chacon and Duong (2013).
Let

p̂H(x) =
1

n

n∑
i=1

KH(x−Xi)

where KH(x) = |H|−1/2K(H−1/2x). Let D = ∂/∂x = (∂/∂x1, . . . , ∂/∂xd) be the gradient
operator. Let H(x) be the Hessian of p(x) whose entries are ∂2p/(∂xj∂xk). Let

D⊗rp = (Dp)⊗r = ∂rp/∂x⊗r ∈ Rdr

denote the rth derivatives, organized into a vector. Thus

D⊗0p = p, D⊗1p = Dp, D⊗2p = vec(H)

where vec takes a matrix and stacks the columns into a vector.

30

The estimate of D⊗rp is

p̂(r)(x) = D⊗rp̂H(x) =
1

n

n∑
i=1

D⊗rKH(x−Xi) =
1

n

n∑
i=1

|H|−1/2(H−1/2)⊗rD⊗rK(H−1/2(x−Xi).

The integrated squared error is

L =

∫
||D⊗rp̂H(x)−D⊗rp(x)||2dx.

Chacon, Duong and Wand shows that E[L] is minimized by choosing H so that each entry
has order n−2/(d+2r+4) leading to a risk of order O(n−4/(d+2r+4)). In fact, it may be shown
that

E[L] =
1

n
|H|−1/2tr((H−1)⊗rR(D⊗rK))− 1

n
trR∗(KH ? KH , D

⊗rp)

+ trR∗(KH ? KH , D
⊗rp)− 2trR∗(KH , D

⊗rp) + trR(D⊗rp)

where

R(g) =

∫
g(x)gT (x)dx

R∗(a, g) =

∫
(a ? g)(x)gT (x)dx

and (a ? g) is componentwise convolution.

To estimate the loss, we expand L as

L =

∫
||D⊗rp̂H(x)||2dx− 2

∫
〈D⊗rp̂H(x), D⊗rp(x)〉dx+ constant.

Using some high-voltage calculations, Chacon and Duong (2013) derived the following leave-
one-out approximation to the first two terms:

CVr(H) = (−1)r|H|−1/2(vec(H−1)⊗r)TB(H)

where

B(H) =
1

n2

∑
i,j

D⊗2rK(H−1/2(Xi −Xj))−
2

n(n− 1)

∑
i 6=j

D⊗2rK(H−1/2(Xi −Xj))

and K = K ? K In practice, the minimization is easy if we restrict to matrices of the form
H = h2I.

A better idea is to used fixed (non-decreasing h). We don’t need h to go to 0 to find the
clusters. More on this when we discuss persistence.

31

5.3 Theoretical Analysis

How well can we estimate the modes?

Theorem 13 Assume that p is Morse with finitely many modes m1, . . . ,mk. Then for h > 0
and not too large, ph is Morse with modes mh1, . . . ,mhk and (possibly after relabelling),

max
j
||mj −mjh|| = O(h2).

With probability tending to 1, p̂h has the same number of modes which we denote by m̂h1, . . . , m̂hk.
Furthermore,

max
j
||m̂jh −mjh|| = OP

(√
1

nhd+2

)
and

max
j
||m̂jh −mj|| = O(h2) +OP

(√
1

nhd+2

)
.

Remark: Setting h � n−1/(d+6) gives the rate n−2/(d+6) which is minimax (Tsyabkov 1990)
under smoothness assumptions. See also Romano (1988). However, if we take the fixed h
point if view, then we have a n−1/2 rate.

Proof Outline. But a small ball Bj around each mjh. We will skip the first step, which is
to show that there is one (and only one) local mode in Bj. Let’s focus on showing

max
j
||m̂jh −mjh|| = OP

(√
1

nhd+2

)
.

For simplicity, write m = mjh and x = m̂jh. Let g(x) and H(x) be the gradient and Hessian

of ph(x) and let ĝ(x) and Ĥ(x) be the gradient Hessian of p̂h(x). Then

(0, . . . , 0)T = ĝ(x) = ĝ(m) + (x−m)T
∫ 1

0

Ĥ(m+ u(x−m))du

and so

(x−m)T
∫ 1

0

Ĥ(m+ u(x−m))du = (g(m)− ĝ(m))

where we used the fact that 0 = g(m). Multiplying on the right by x−m we have

(x−m)T
∫ 1

0

Ĥ(m+ u(x−m))(x−m)du = (ĝ(m)− ĝ(m))T (x−m).

32

Let λ = inf0≤u≤1 λmin(H(m+ u(x−m))). Then λ = λmin(H(m)) + oP (1) and

(x−m)T
∫ 1

0

Ĥ(x+ u(m− x))(x−m)du ≥ λ||x−m||2.

Hence, using Cauchy-Schwartz,

λ||x−m||2 ≤ ||ĝ(m)−g(m)|| ||x−m|| ≤ ||x−m|| sup
y
||ĝ(y)−ĝ(y)|| ≤ ||x−m||OP

(√
1

nhd+2

)

and so ||x−m|| = OP

(√
1

nhd+2

)
. �

Remark: If we treat h as fixed (not decreasing) then the rate is OP (
√

1/n) independent of
dimension.

6 Hierarchical Clustering

Hierarchical clustering methods build a set of nested clusters at different resolutions. The
are two types of hierarchical clustering: agglomerative (bottom-up) and divisive (top-down).
With agglomerative clustering we start with some distance or dissimilarity d(x, y) between
points. We then extend this distance so that we can compute the distance d(A,B) between
to sets of points A and B.

The three most common ways of extending the distance are:

Single Linkage d(A,B) = min
x∈A,y∈B

d(x, y)

Average Linkage d(A,B) = 1
NANB

∑
x∈A,y∈B

d(x, y)

Complete Linkage d(A,B) = max
x∈A,y∈B

d(x, y)

The algorithm is:

1. Input: data X = {X1, . . . , Xn} and metric d giving distance between clusters.

2. Let Tn = {C1, C2, . . . , Cn} where Ci = {Xi}.

3. For j = n− 1 to 1:

33

●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
● ●

●●
● ●

●
●

●

●●

●

●

●

●

●
●

● ●
●●●

●●
●●

●●

●● ●●
●

●
●

●
●

●

●
●●

● ●●
●

●

●●●

●

●
● ●

●●●

●

●

●

●●
●

●
●

●

●●
●

●

●

●
●●

● ● ●

●

●

●

●

●
● ●

●

●

●● ●

●●
●

●●
●
●

●
●

●
●

●

●
●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
●

●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
●

●●●
●●

●●

●●

●● ●●
●

●
●

●
●

●

●
●●

● ●●
●

●

●●●

●

●
● ●

●●●

●

●

●

●●
●

●
●

●

●●
●

●

●

●
●●

● ● ●

●

●

●

●

●
● ●

●

●

●●

●

●

●●
●
●

●
●

●

●
●

●●
●● ●●●● ●

●

●

●
●

●

●●
● ●

●●
●

●●●●●● ●
●

●

●
●●

●
●

●
●●

●●

●

●●
●

●

●

●

● ●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●●

●
●●
●

●

●
●

●
●

●

●● ●
●●●

●
●

●●●
●●

●●

●●

●● ●●
●

●
●

●
●

●

●
●●

● ●●
●

●

●●●

●

●
● ●

●●●

●

●

●

●●
●

●
●

●

Figure 24: Hierarchical clustering applied to two noisy rings. Top left: the data. Top right:
two clusters from hierarchical clustering using single linkage. Bottom left: average linkage.
Bottom right: complete linkage.

(a) Find j, k to minimize d(Cj, Ck) over all Cj, Ck ∈ Tj+1.

(b) Let Tj be the same as Tj+1 except that Cj and Ck are replaced with Cj ∪ Ck.

4. Return the sets of clusters T1, . . . , Tn.

The result can be represented as a tree, called a dendogram. We can then cut the tree at
different places to yield any number of clusters ranging from 1 to n. Single linkage often
produces thin clusters while complete linkage is better at rounder clusters. Average linkage
is in between.

Example 14 Figure 24 shows agglomerative clustering applied to data generated from two
rings plus noise. The noise is large enough so that the smaller ring looks like a blob. The
data are show in the top left plot. The top right plot shows hierarchical clustering using single
linkage. (The tree is cut to obtain two clusters.) The bottom left plot shows average linkage
and the bottom right plot shows complete linkage. Single linkage works well while average
and complete linkage do poorly.

Let us now mention some theoretical properties of hierarchical clustering. Suppose that
X1, . . . , Xn is a sample from a distribution P on Rd with density p. A high density cluster is
a maximal connected component of a set of the form {x : p(x) ≥ λ}. One might expect that
single linkage clusters would correspond to high density clusters. This turns out not quite
to be the case. See Hartigan (1981) for details. DasGupta (2010) has a modified version

34

of hierarchical clustering that attempts to fix this problem. His method is very similar to
density clustering.

Single linkage hierarchical clustering is the same as geometric graph clustering. Let G =
(V,E) be a graph where V = {X1, . . . , Xn} and Eij = 1 if ||Xi − Xj|| ≤ ε and Eij = 0 if
||Xi −Xj|| > ε. Let C1, . . . , Ck denote the connected components of the graph. As we vary
ε we get exactly the hierarchical clustering tree.

Finally, we let us mention divisive clustering. This is a form of hierarchical clustering where
we start with one large cluster and then break the cluster recursively into smaller and smaller
pieces.

7 Spectral Clustering

Spectral clustering refers to a class of clustering methods that use ideas related to eigenvector.
An excellent tutorial on spectral clustering is von Luxburg (2006) and some of this section
relies heavily on that paper. More detail can be found in Chung (1997).

Let G be an undirected graph with n vertices. Typically these vertices correspond to obser-
vations X1, . . . , Xn. Let W be an n× n symmetric weight matrix. Say that Xi and Xj are
connected if Wij > 0. The simplest type of weight matrix has entries that are either 0 or 1.
For example, we could define

Wij = I(||Xi −Xj|| ≤ ε).

An example of a more general weight matrix is Wij = e−||Xi−Xj ||2/(2h2).

The degree matrix D is the n×n diagonal matrix with Dii =
∑n

j=1Wij. The graph Laplacian
is

L = D −W. (21)

The graph Laplacian has many interesting properties which we list in the following result.
Recall that a vector v is an eigenvector of L if there is a scalar λ such that Lv = λv in which
case we say that λ is the eigenvalue corresponding to v. Let L(v) = {cv : c ∈ R, c 6= 0} be
the linear space generated by v. If v is an eigenvector with eigenvalue λ and c is any nonzero
constant, then cv is an eigenvector with eigenvalue cλ. These eigenvectors are considered
equivalent. In other words, L(v) is the set of vectors that are equivalent to v.

Theorem 15 The graph Laplacian L has the following properties:

35

1. For any vector f = (f1, . . . , fn)T ,

fTLf =
1

2

n∑
i=1

n∑
j=1

Wij(fi − fj)2.

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0. The corresponding eigenvector is (1, 1, . . . , 1)T .

4. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λk.

5. The number of eigenvalues that are equal to 0 is equal to the number of connected
components of G. That is, 0 = λ1 = . . . = λk where k is the number of connected
components of G. The corresponding eigenvectors v1, . . . , vk are orthogonal and each
is constant over one of the connected components of the graph.

Part 1 of the theorem says that L is like a derivative operator. The last part shows that we
can use the graph Laplacian to find the connected components of the graph.

Proof.

(1) This follows from direct algebra.

(2) Since W and D are symmetric, it follow that L is symmetric. The fact that L is positive
semi-definite folows from part (1).

(3) Let v = (1, . . . , 1)T . Then

Lv = Dv −Wv =

 D11
...

Dnn

−
 D11

...
Dnn

 =

 0
...
0

which equals 0× v.

(4) This follows from parts (1)-(3).

(5) First suppose that k = 1 and thus that the graph is fully connected. We already know
that λ1 = 0 and v1 = (1, . . . , 1)T . Suppose there were another eigenvector v with eigenvalue
0. Then

0 = vTLv =
n∑
i=1

n∑
j=1

Wij(v(i)− v(j))2.

36

It follows that Wij(v(i)− v(j))2 = 0 for all i and j. Since G is fully connected, all Wij > 0.
Hence, v(i) = v(j) for all i, j and so v is constant and thus v ∈ L(v1).

Now suppose that K has k components. Let nj be the number of nodes in components
j. We can reliable the vertices so that the first n1 nodes correspond to the first connected
component, the second n2 nodes correspond to the second connected component and so
on. Let v1 = (1, . . . , 1, 0, . . . , 0) where the 1’s correspond to the first component. Let Let
v2 = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) where the 1’s correspond to the second component. Define
v3, . . . , vk similarly. Due to the re-ordering of the vertices, L has block diagonal form:

L =

L1

L2

. . .

Lk

 .

Here, each Li corresponds to one of th connected components of the graph. It is easy to see
that LV − j = 0 for j = 1, . . . , k. Thus, each vj, for j = 1, . . . , k is an eigenvector with zero
eigenvalue. Suppose that v is any eigenvector with 0 eigenvalue. Arguing as before, v must
be constant over some component and 0 elsewhere. Hence, v ∈ L(vj) for some 1 ≤ j ≤ k. �

Example 16 Consider the graph

X1 X2 X3 X4 X5

and suppose that Wij = 1 if and only if there is an edge between Xi and Xj. Then

W =

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 0 1 0

 D =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1

and the Laplacian is

L = D −W =

1 −1 0 0 0
−1 1 0 0 0
0 0 1 −1 0
0 0 −1 2 −1
0 0 0 −1 0

 .

The eigenvalues of W , from smallest to largest are 0, 0, 1, 2, 3. The eigenvectors are

v1 =

1
1
0
0
0

 v2 =

0
0
1
1
1

 v3 =

0
0
−.71

0
.71

 v4 =

−.71
.71
0
0
0

 v5 =

0
0
−.41
.82
−.41

Note that the first two eigenvectors correspond to the connected components of the graph.

37

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 25: The top shows a simple graph. The remaining plots are the eigenvectors of
the graph Laplacian. Note that the first two eigenvectors correspond to the two connected
components of the graph.

Note fTLf measures the smoothness of f relative to the graph. This means that the higher
order eigenvectors generate a basis where the first few basis elements are smooth (with
respect to the graph) and the later basis elements become more wiggly.

Example 17 Figure 25 shows a graph and the corresponding eigenvectors. The two eigen-
vectors correspond two the connected components of the graph. The other eignvectors can be
thought of as forming bases vectors within the connected components.

One approach to spectral clustering is to set

Wij = I(||Xi −Xj|| ≤ ε)

for some ε > 0 and then take the clusters to be the connected components of the graph which
can be found by getting the eigenvectors of the Laplacian L. This is exactly equivalent to
geometric graph clustering from Section ??. In this case we have gained nothing except that
we have a new algorithm to find the connected components of the graph. However, there
are other ways to use spectral methods for clustering as we now explain.

The idea underlying the other spectral methods is to use the Laplacian to transform the
data into a new coordinate system in which clusters are easier to find. For this purpose, one

38

typically uses a modified form of the graph Laplacian. The most commonly used weights for
this purpose are

Wij = e−||Xi−Xj ||2/(2h2).

Other kernels Kh(Xi, Xj) can be used as well. We define the symmetrized Laplacian L =
D−1/2WD−1/2 and the random walk Laplacian L = D−1W. (We will explain the name
shortly.) These are very similar and we will focus on the latter. Some authors define the
random walk Laplacian to be I−D−1W . We prefer to use the definition L = D−1W because,
as we shall see, it has a nice interpretation. The eigenvectors of I −D−1W and D−1W are
the same so it makes little difference which definition is used. The main difference is that
the connected components have eigenvalues 1 instead of 0.

Lemma 18 Let L be the graph Laplacian of a graph G and let L be the random walk Lapla-
cian.

1. λ is an eigenvalue of L with eigenvector v if and only if Lv = (1− λ)Dv.

2. 1 is an eigenvalue of L with eigenvector (1, . . . , 1)T .

3. L is positive semidefinite with n non-negative real-valued eigenvalues.

4. The number of eigenvalues of L equal to 1 equals the number of connected components of
G. Let v1, . . . , vk denote the eigenvectors with eigenvalues equal to 1. The linear space
spanned by v1, . . . , vk is spanned by the indicator functions of the connected components.

Proof. HHomework. �

Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of L with eigenvectors v1, . . . , vn. Define

Zi ≡ T (Xi) =
r∑
j=1

√
λj vj(i).

The mapping T : X → Z transforms the data into a new coordinate system. The numbers
h and r are tuning parameters. The hope is that clusters are easier to find in the new
parameterization.

To get some intuition for this, note that L has a nice probabilistic interpretation (Coifman,
Lafon, Lee 2006). Consider a Markov chain on X1, . . . , Xn where we jump from Xi to Xj

with probability

P(Xi −→ Xj) = L(i, j) =
Kh(Xi, Xj)∑
sKh(Xs, Xj)

.

The Laplacian L(i, j) captures how easy it is to move from Xi to Xj. If Zi and Zj are close
in Euclidean distance, then they are connected by many high density paths through the

39

data. This Markov chain is a discrete version of a continuous Markov chain with transition
probability:

P (x→ A) =

∫
A
Kh(x, y)dP (y)∫
Kh(x, y)dP (y)

.

The corresponding averaging operator Â : f → f̃ is

(Âf)(i) =

∑
j f(j)Kh(Xi, Xj)∑
jKh(Xi, Xj)

which is an estimate of A : f → f̃ where

Af =

∫
A
f(y)Kh(x, y)dP (y)∫
Kh(x, y)dP (y)

.

The lower order eigenvectors of L are vectors that are smooth relative to P . Thus, project-
ing onto the first few eigenvectors parameterizes in terms of closeness with respect to the
underlying density.

The steps are:

Input: n× n similarity matrix W .

1. Let D be the n× n diagonal matrix with Dii =
∑

jWij.

2. Compute the Laplacian L = D−1W.

3. Find first k eigenvectors v1, . . . , vk of L.

4. Project each Xi onto the eigenvectors to get new points X̂i.

5. Cluster the points X̂1, . . . , X̂n using any standard clustering algorithm.

There is another way to think about spectral clustering. Spectral methods are similar to
multidimensional scaling. However, multidimensional scaling attempts to reduce dimension
while preserving all pairwise distances. Spectral methods attempt instead to preserve local
distances.

Example 19 Figure 26 shows a simple synthetic example. The top left plot shows the data.
We apply spectral clustering with Gaussian weights and bandwidth h = 3. The top middle
plot shows the first 20 eigenvalues. The top right plot shows the the first versus the second
eigenvector. The two clusters are clearly separated. (Because the clusters are so separated,
the graph is essentially disconnected and the first eigenvector is not constant. For large h,
the graph becomes fully connected and v1 is then constant.) The remaining six plots show
the first six eigenvectors. We see that they form a Fourier-like basis within each cluster.
Of course, single linkage clustering would work just as well with the original data as in the
transformed data. The real advantage would come if the original data were high dimensional.

40

●●
●●●●●
●●●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●
●●●●●
●●●●

●●
●
●●

●
●

●
●●

●●
●●

●
●●●

●
●

●●
●●●●●●●●●●●●

●●●
●●

●
●

●●
●
●

●●

●●
●
●●●
●

●
●●
●●
●

●
●
●●

● ●
●●● ●

●●●● ● ●● ●●
●

●
●●●

●●
●
●●

●●
●

●
●●

●●
●●

●

5 10 15 20

0.
0

0.
4

0.
8

λ
●●●●●●●
●
●●●
●
●
●●●
●●●●
●●●
●●●●
●●●
●●
●●●●
●●●●●●
●
●●●●
●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●
●
●●●

●●●●●
●●●
●●
●●
●●
●
●●●
●●
●●
●
●●
●●
●●
●
●●
●
●
●●●
●●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●
●●
●●●
●
●●●
●●
●●●●●
●●●●●●●●●

v1

v 2

v1 v2 v3

v4 v5 v6

Figure 26: Top left: data. Top middle: eigenvalues. Top right: second versus third eigen-
vectors. Remaining plots: first six eigenvectors.

41

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●

●

●
●

●

●

● ●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

● ●
●

●

●

●
●

●

●●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

v2

v 3

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

●

●
●●
●
●

●
●●

●
●
●
●

●●●
●

●

●●

●

●
●

●●
●

●●

●
●
●
●●

●●●●

●
●
●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●●

●●

●●●
●●
●
●
●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●
●

●
●

●

●

●

●

●

●●●●●

●●

●

●
●

●

●
●●●

●

●

●●

●●
●

●
●

●●

●

●●

●●
●●

●●●●

●

●
●

●

●

●●
●

●
●

●●

●●

●

●

●

●

●●

●
●●●

●

●●

●

●●
●●●
●

●
●
●

●

●

●

●

●
●●●

●●

●

●

●

●●●
●●

●
●●

●●

●●●

●

●
●

●●

●

●●

●

●
●

●

●●

●
●

●●

●

●

●●

●

●

●

●●
●●

●●

●●●

●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●●
●

●

●

●●

●

●

●

●●●

●●●
●

●

●
●
●●

●

●●

●

●

●
●●
●
●
●

●

●●●

●●

●
●

●

●●●
●

●

●
●
●
●●

●

●●

●●
●
●●

●

●●

●

●●
●

●●

●

●

●

●
●●●●●●
●

●●

●●

●

●

●●

●

●
●●●
●●
●

●
●
●
●

●

●

●

●
●

●●●

●

●●
●
●

●
●

●
●●

●

●●●
●
●●
●

●●●
●●
●
●
●

●●

●●
●

●

●

●

●●●●

●●

●

●
●
●
●
●●●●
●
●
●●

●

●●

●
●●●

●●

●●●
●

●

●●

●

●●

●●

●

●●●

●●

●
●

●

●

●

●

●

●

●
●●

●●●●

●

●
●●●

●

●
●
●
●
●
●●

●

●

●●

●

●

●

●●
●●

●
●

v2

v 3

Figure 27: Spectral analysis of some zipcode data. Top: h = 6. Bottom: h = 4. The plots
on the right show the second versus third eigenvector. The three colors correspond to the
three digits 1, 2 and 3.

Example 20 Figure 27 shows a spectral analysis of some zipcode data. Each datapoint is a
16 x 16 image of a handwritten number. We restrict ourselves to the digits 1, 2 and 3. We
use Gaussian weights and the top plots correspond to h = 6 while the bottom plots correspond
to h = 4. The left plots show the first 20 eigenvalues. The right plots show a scatterplot of
the second versus the third eigenvector. The three colors correspond to the three digits. We
see that with a good choice of h, namely h = 6, we can clearly see the digits in the plot. The
original dimension of the problem is 16 x 16 =256. That is, each image can be represented by
a point in R256. However, the spectral method shows that most of the information is captured
by two eignvectors so the effective dimension is 2. This example also shows that the choice
of h is crucial.

Spectral methods are interesting. However, there are some open questions:

1. There are tuning parameters (such as h) and the results are sensitive to these param-
eters. How do we choose these tuning parameters?

2. Does spectral clustering perform better than density clustering?

42

8 High-Dimensional Clustering

As usual, interesting and unexpected things happen in high dimensions. The usual methods
may break down and even the meaning of a cluster may not be clear.

8.1 High Dimensional Behavior

I’ll begin by discussing some recent results from Sarkar and Ghosh (arXiv:1612.09121). Sup-
pose we have data coming from k distributions P1, . . . , Pk. Let µr be the mean of Pr and
Σr be the covariance matrix. Most clustering methods depend on the pairwise distances
||Xi −Xj||2. Now,

||Xi −Xj||2 =
d∑
a=1

δ(a)

where δa = (Xi(a) − Xj(a))2. This is a sum. As d increases, by the law of large numbers
we might expect this sum to converge to a number (assuming the features are not too
dependent). Indeed, suppose that X is from Pr and Y is from Ps then

1√
d
||X − Y || P→

√
σ2
r + σ2

s + νrs

where

νrs = lim
d→∞

1

d

d∑
a=1

||µr(a)− µs(a)||2

and

σ2
r = lim

d→∞

1

d
trace(Σr).

Note that νrr = 0.

Consider two clusters, C1 and C2:

X Y ||X − Y ||
X ∈ C1 Y ∈ C1 ||X − Y || = 2σ2

1

X ∈ C2 Y ∈ C2 ||X − Y || = 2σ2
2

X ∈ C1 Y ∈ C2 ||X − Y || = σ2
1 + σ2

2 + ν12

If
σ2

1 + ν12 < σ2
2

then every point in cluster 2 is closer to a point in cluster 1 than to other points
in cluster 2. Indeed, if you simulate high dimensional Gaussians, you will see that all the
standard clustering methods fail terribly.

43

What’s really going on is that high dimensional data tend to cluster on rings. Pairwise
distance methods don’t respect rings.

An interesting fix suggested by Sarkar and Ghosh is to use the mean absolute difference
distance (MADD) defined by

ρ(x, y) =
1

n− 2

∑
z 6=x,y

∣∣∣∣∣ ||x− z|| − ||y − z||
∣∣∣∣∣.

Suppose that X ∼ Pr and Y ∼ Ps. They show that ρ(X, Y)
P→ crs where crs ≥ 0 and crs = 0

if and only if σ2
r = σ2

s and νbr = νbs for all b. What this means is that pairwise distance
methods only work if νrs > |σ2

r − σ2
s | but MADD works if either νrs 6= 0 or σr 6= σs.

Pairwise distances only use information about two moments and they combine this moment
information in a particular way. MADD combines the moment information in a different and
more effective way. One could also invent other measures that separate mean and variance
information or that use higher moment information.

8.2 Variable Selection

If X ∈ Rd is high dimensional, then it makes sense to do variable selection before clustering.
There are a number of methods for doing this. But, frankly, none are very convincing. This
is, in my opinion, an open problem. Here are a couple of possibilities.

Marginal Selection (Screening). In marginal selection, we look for variables that marginally
look ‘clustery.” This idea was used in Chan and Hall (2010) and Wasserman, Azizyan and
Singh (2014). We proceed as follows:

Test For Multi-Modality

1. Fix 0 < α < 1. Let α̃ = α/(nd).

2. For each 1 ≤ j ≤ d, compute Tj = Dip(Fnj) where Fnj is the empirical
distribution function of the jth feature and Dip(F) is defined in (22).

3. Reject the null hypothesis that feature j is not multimodal if Tj > cn,α̃
where cn,α̃ is the critical value for the dip test.

Any test of multimodality may be used. Here we describe the dip test (Hartigan and Har-
tigan, 1985). Let Z1, . . . , Zn ∈ [0, 1] be a sample from a distribution F . We want to test
“H0 : F is unimodal” versus “H1 : F is not unimodal.” Let U be the set of unimodal

44

distributions. Hartigan and Hartigan (1985) define

Dip(F) = inf
G∈U

sup
x
|F (x)−G(x)|. (22)

If F has a density p we also write Dip(F) as Dip(p). Let Fn be the empirical distribution
function. The dip statistic is Tn = Dip(Fn). The dip test rejects H0 if Tn > cn,α where the
critical value cn,α is chosen so that, under H0, P(Tn > cn,α) ≤ α.2

Since we are conducting multiple tests, we cannot test at a fixed error rate α. Instead, we
replace α with α̃ = α/(nd). That is, we test each marginal and we reject H0 if Tn > cn,α̃.
By the union bound, the chance of at least one false rejection of H0 is at most dα̃ = α/n.

There are more refined tests such as the excess mass test given in Chan and Hall (2010),
building on work by Muller and Sawitzki (1991). For simplicity, we use the dip test in this
paper; a fast implementation of the test is available in R.

Marginal selection can obviously fail. See Figure 28 taken from Wasserman, Azizyan and
Singh (2014).

Sparse k-means. Here we discuss the approach in Witten and Tibshirani (2010). Recall
that in k-means clustering we choose C = {c1, . . . , ck} to minimize

Rn(C) =
1

n

n∑
i=1

||Xi − ΠC [Xi]||2 =
1

n

n∑
i=1

min
1≤j≤k

||Xi − cj||2. (23)

This is equivalent to minimizing the within sums of squares

k∑
j=1

1

nj

∑
s,t∈Aj

d2(Xs, Xt) (24)

where Aj is the jth cluster and d2(x, y) =
∑d

r=1(x(r)− y(r))2 is squared Euclidean distance.
Further, this is equivalent to maximizing the between sums of squares

B =
1

n

∑
s,t

d2(Xs, Xt)−
k∑
j=1

1

nj

∑
s,t∈Aj

d2(Xs, Xt). (25)

Witten and Tibshirani propose replace the Euclidean norm with the weighted norm d2
w(x, y) =∑d

r=1wr(x(r)− y(r))2. Then they propose to maximize

B =
1

n

∑
s,t

d2
w(Xs, Xt)−

k∑
j=1

1

nj

∑
s,t∈Aj

d2
w(Xs, Xt) (26)

2Specifically, cn,α can be defined by supG∈U PG(Tn > cn,α) = α. In practice, cn,α can be defined
by PU (Tn > cn,α) = α where U is Unif(0,1). Hartigan and Hartigan (1985) suggest that this suffices
asymptotically.

45

Figure 28: Three examples, each showing two clusters and two features X(1) and X(2). The
top plots show the clusters. The bottom plots show the marginal density of X(1). Left: The
marginal fails to reveal any clustering structure. This example violates the marginal signature
assumption. Middle: The marginal is multimodal and hence correctly identifies X(1) as a
relevant feature. This example satisfies the marginal signature assumption. Right: In this
case, X(1) is relevant but X(2) is not. Despite the fact that the clusters are close together,
the marginal is multimodal and hence correctly identifies X(1) as a relevant feature. This
example satisfies the marginal signature assumption. (Figure from Wasserman, Azizyan and
Singh, 2014).

over C and w subject to the constraints

||w||2 ≤ 1, ||w||1 ≤ s, wj ≥ 0

where w = (w1, . . . , wd). The optimization is done iteratively by optimizing over C, opti-
mizing over w and repeating. See Figure 29.

The `1 norm on the weights causes some of the components of w to be 0 which results in
variable selection. There is no theory that shows that this method works.

Sparse Alternate Sum Clustering. Arais-Castro and Pu (arXiv:1602.07277) introduced
a method called SAS (Sparse Alternate Sum) clustering. It is very simple and intuitively
appealing.

Recall that k-means minimizes ∑
j

1

|Cj|
∑
i,j∈Cj

||Xi −Xj||2.

Suppose we want a clustering based on a subset of features S such that |S| = L. Let
δa(i, j) = (Xi(a) − Xj(a))2 be the pairwise distance for the ath feature. Assume that each

46

1. Input X1, . . . , Xn and k.

2. Set w = (w1, . . . , wd) where w1 = . . . = wd = 1/
√
d.

3. Iterate until convergence:

(a) Optimize (25) over C holding w fixed. Find c1, . . . , ck from the k-means algorithm using
distance dw(Xi, Xj). Let Aj denote the jth cluster.

(b) Optimize (25) over w holding c1, . . . , ck fixed. The solution is

wr =
sr√∑d
t=1 s

2
t

where
sr = (ar −∆)+,

ar =

 1

n

∑
s,t

wr(Xs(r)−Xt(r))
2 −

k∑
j=1

1

nj

∑
s,t∈Aj

wr(Xs(r)−Xt(r))
2

+

and ∆ = 0 if ||w||1 < s otherwise ∆ > 0 is chosen to that ||w||1 = s.

Figure 29: The Witten-Tibshirani Sparse k-means Method

47

feature has been standardized so that ∑
i,j

δa(i, j) = 1

for all a. Define δS(i, j) =
∑

a∈S δa(i, j). Then we can say that the goal of sparse clustering
is to minimize ∑

j

1

|Cj|
∑
i,j∈Cj

δS(i, j)

over clusterings and subsets. They propose to minimize by alternating between finding clus-
ters and finding subsets. The former is the usual k-means. The latter is trivial because
δS decomposes into maginal components. Arias-Castro and Pu also suggest a permuta-
tion method for choosing the size of S. Their numerical experiments are very promising.
Currently, no theory has been developed for this approach.

8.3 Mosaics

A different idea is to create a partition of features and observations which I like to call a
mosaic. There are papers that cluster features and observations simultaneously but clear
theory is still lacking.

9 Examples

Example 21 Figures 17 and 18 shows some synthetic examples where the clusters are meant
to be intuitively clear. In Figure 17 there are two blob-like clusters. Identifying clusters like
this is easy. Figure 18 shows four clusters: a blob, two rings and a half ring. Identifying
clusters with unusual shapes like this is not quite as easy. To the human eye, these certainly
look like clusters. But what makes them clusters?

Example 22 (Gene Clustering) In genomic studies, it is common to measure the expres-
sion levels of d genes on n people using microarrays (or gene chips). The data (after much
simplification) can be represented as an n × d matrix X where Xij is the expression level
of gene j for subject i. Typically d is much larger than n. For example, we might have
d ≈ 5, 000 and n ≈ 50. Clustering can be done on genes or subjects. To find groups of
similar people, regard each row as a data vector so we have n vectors X1, . . . , Xn each of
length d. Clustering can then be used to place the subjects into similar groups.

Example 23 (Curve Clustering) Sometimes the data consist of a set of curves f1, . . . , fn
and the goal is to cluster similarly shaped clusters together. For example, Figure 30 shows a

48

0 10 20 30 40 50 60 70

0
50

10
0

15
0

20
0

Figure 30: Some curves from a dataset of 472 curves. Each curve is a radar waveform from
the Topex/Poseidon satellite.

small sample of curves a from a dataset of 472 curves from Frappart (2003). Each curve is a
radar waveform from the Topex/Poseidon satellite which used to map the surface topography
of the oceans.3 One question is whether the 472 curves can be put into groups of similar
shape.

Example 24 (Supernova Clustering) Figure 31 shows another example of curve cluster-
ing. Briefly, each data point is a light curve, essentially brightness versus time. The top two
plots show the light curves for two types of supernovae called “Type Ia” and “other.” The
bottom two plots show what happens if we throw away the labels (“Type Ia” and “other”)
and apply a clustering algorithm (k-means clustering). We see that the clustering algorithm
almost completely recovers the two types of supernovae.

3See http://topex-www.jpl.nasa.gov/overview/overview.html. The data are available at “Work-
ing Group on Functional and Operator-based Statistics” a web site run by Frederic Ferrarty
and Philippe Vieu. The address is http://www.math.univ-toulouse.fr/staph/npfda/. See also
http://podaac.jpl.nasa.gov/DATA CATALOG/topexPoseidoninfo.html.

49

0 20 40 60 80 100

Type Ia

0 20 40 60 80 100

Other

0 20 40 60 80 100

Cluster 1

0 20 40 60 80 100

Cluster 2

Figure 31: Light curves for supernovae. The top two plots show the light curves for two
types of supernovae. The bottom two plots show the results of clustering the curves into two
groups, without using knowledge of their labels.

10 Bibliographic Remarks

k-means clustering goes back to Stuart Lloyd who apparently came up with the algorithm in
1957 although he did not publish it until 1982. See [?]. Another key reference is [?]. Similar
ideas appear in [?]. The related area of mixture models is discussed at length in McLachlan
and Basford (1988). k-means is actually related to principal components analysis; see Ding
and He (2004) and Zha, He, Ding, Simon and Gu (2001). The probabilistic behavior of
random geometric graphs is discussed in detail in [?].

50

