
10/36-702: Minimax Theory

1 Introduction

When solving a statistical learning problem, there are often many procedures to choose from.
This leads to the following question: how can we tell if one statistical learning procedure is
better than another? One answer is provided by minimax theory which is a set of techniques
for finding the minimum, worst case behavior of a procedure.

2 Definitions and Notation

Let P be a set of distributions and let X1, . . . , Xn be a sample from some distribution P ∈ P .
Let θ(P ) be some function of P . For example, θ(P ) could be the mean of P , the variance

of P or the density of P . Let θ̂ = θ̂(X1, . . . , Xn) denote an estimator. Given a metric d, the
minimax risk is

Rn ≡ Rn(P) = inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] (1)

where the infimum is over all estimators. The sample complexity is

n(ε,P) = min
{
n : Rn(P) ≤ ε

}
. (2)

Example 1 Suppose that P = {N(θ, 1) : θ ∈ R} where N(θ, 1) denotes a Gaussian with
mean θ and variance 1. Consider estimating θ with the metric d(a, b) = (a − b)2. The
minimax risk is

Rn = inf
θ̂

sup
P∈P

EP [(θ̂ − θ)2]. (3)

In this example, θ is a scalar.

Example 2 Let (X1, Y1), . . . , (Xn, Yn) be a sample from a distribution P . Let m(x) =
EP (Y |X = x) =

∫
y dP (y|X = x) be the regression function. In this case, we might use

the metric d(m1,m2) =
∫

(m1(x)−m2(x))2dx in which case the minimax risk is

Rn = inf
m̂

sup
P∈P

EP
[∫

(m̂(x)−m(x))2

]
. (4)

In this example, θ is a function.
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Notation. Recall that the Kullback-Leibler distance between two distributions P0 and P1

with densities p0 and p1 is defined to be

KL(P0, P1) =

∫
log

(
dP0

dP1

)
dP0

∫
log

(
p0(x)

p1(x)

)
p0(x)dx.

The appendix defines several other distances between probability distributions and explains
how these distances are related. We write a ∧ b = min{a, b} and a ∨ b = max{a, b}. If P
is a distribution with density p, the product distribution for n iid observations is P n with
density pn(x) =

∏n
i=1 p(xi). It is easy to check that KL(P n

0 , P
n
1 ) = nKL(P0, P1). For positive

sequences an and bn we write an = Ω(bn) to mean that there exists C > 0 such that an ≥ Cbn
for all large n. an � bn if an/bn is strictly bounded away from zero and infinity for all large
n; that is, an = O(bn) and bn = O(an).

3 Bounding the Minimax Risk

Usually, we do not find Rn directly. Instead, we find an upper bound Un and a lower bound
Ln on Rn. To find an upper bound, let θ̂ be any estimator. Then

Rn = inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≤ sup
P∈P

EP [d(θ̂, θ(P ))] ≡ Un. (5)

So the maximum risk of any estimator provides an upper bound Un. Finding a lower bound
Ln is harder. We will consider three methods: the Le Cam method, the Fano method and
Tsybakov’s bound. If the lower and upper bound are close, then we have succeeded. For
example, if Ln = cn−α and Un = Cn−α for some positive constants c, C and α, then we have
established that the minimax rate of convergence is n−α.

All the lower bound methods involve a the following trick: we reduce the problem to a
hypothesis testing problem. It works like this. First, we will choose a finite set of distributions
M = {P1, . . . , PN} ⊂ P . Then

Rn = inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ inf
θ̂

max
Pj∈M

Ej[d(θ̂, θj)] (6)

where θj = θ(Pj) and Ej is the expectation under Pj. Let s = minj 6=k d(θj, θk). By Markov’s
inequality,

P (d(θ̂, θ) > t) ≤ E[d(θ̂, θ)]

t
and so

E[d(θ̂, θ)] ≥ tP (d(θ̂, θ) > t).

Setting t = s/2, and using (6), we have

Rn ≥
s

2
inf
θ̂

max
Pj∈M

Pj(d(θ̂, θj) > s/2). (7)
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Given any estimator θ̂, define
ψ∗ = argmin

j
d(θ̂, θj).

Now, if ψ∗ 6= j then, letting k = ψ∗,

s ≤ d(θj, θk) ≤ d(θj, θ̂) + d(θk, θ̂)

≤ d(θj, θ̂) + d(θj, θ̂) since ψ∗ 6= j implies that d(θ̂, θk) ≤ d(θ̂, θj)

= 2d(θj, θ̂).

So ψ∗ 6= j implies that d(θj, θ̂) ≥ s/2. Thus

Pj(d(θ̂, θj) > s/2) ≥ Pj(ψ
∗ 6= j) ≥ inf

ψ
Pj(ψ 6= j)

where the infimum is over all maps ψ form the data to {1, . . . , N}. (We can think of ψ is a
multiple hypothesis test.) Thus we have

Rn ≥
s

2
inf
ψ

max
Pj∈M

Pj(ψ 6= j).

We can summarize this as a theorem:

Theorem 3 Let M = {P1, . . . , PN} ⊂ P and let s = minj 6=k d(θj, θk). Then

Rn = inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

2
inf
ψ

max
Pj∈M

Pj(ψ 6= j). (8)

Getting a good lower bound involves carefully selecting M = {P1, . . . , PN}. If M is too big,
s will be small. If M is too small, then maxPj∈M Pj(ψ 6= j) will be small.

4 Distances

We will need some distances between distributions. Specifically,

Total Variation TV(P,Q) = supA |P (A)−Q(A)|
L1 ||P −Q||1 =

∫
|p− q|

Kullback-Leibler KL(P,Q) =
∫
p log(p/q)

χ2 χ2(P,Q) =
∫ (

p
q
− 1
)2

dQ =
∫

p2

q
− 1

Hellinger H(P,Q) =
√∫

(
√
p−√q)2.

We also define the affinity between P and q by

a(p, q) =

∫
(p ∧ q).
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We then have

TV(P,Q) =
1

2
||P −Q||1 = 1− a(p, q)

and
1

2
H2(P,Q) ≤ TV(P,Q) ≤

√
KL(P,Q) ≤

√
χ2(P,Q).

The appendix contains more information about these distances.

5 Lower Bound Method 1: Le Cam

Theorem 4 Let P be a set of distributions. For any pair P0, P1 ∈ P,

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

4

∫
[pn0 (x) ∧ pn1 (x)]dx =

s

4

[
1− TV(P n

0 , P
n
1 )
]

(9)

where s = d(θ(P0), θ(P1)). We also have:

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

8
e−nKL(P0,P1) ≥ s

8
e−nχ

2(P0,P1) (10)

and

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

8

(
1− 1

2

∫
|p0 − p1|

)2n

. (11)

Corollary 5 Suppose there exist P0, P1 ∈ P such that KL(P0, P1) ≤ log 2/n. Then

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

16
(12)

where s = d(θ(P0), θ(P1)).

Proof. Let θ0 = θ(P0), θ1 = θ(P1) and s = d(θ0, θ1). First suppose that n = 1 so that we
have a single observation X. From Theorem 3,

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

2
π

where
π = inf

ψ
max
j=0,1

Pj(ψ 6= j). (13)
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Since a maximum is larger than an average,

π = inf
ψ

max
j=0,1

Pj(ψ 6= j) ≥ inf
ψ

P0(ψ 6= 0) + P1(ψ 6= 1)

2
.

Define the Neyman-Pearson test

ψ∗(x) =

{
0 if p0(x) ≥ p1(x)
1 if p0(x) < p1(x).

In Lemma 7 below, we show that the sum of the errors P0(ψ 6= 0) + P1(ψ 6= 1) is minimized
by ψ∗. Now

P0(ψ∗ 6= 0) + P1(ψ∗ 6= 1) =

∫
p1>p0

p0(x)dx+

∫
p0>p1

p1(x)dx

=

∫
p1>p0

[p0(x) ∧ p1(x)]dx+

∫
p0>p1

[p0(x) ∧ p1(x)]dx =

∫
[p0(x) ∧ p1(x)]dx.

Thus,
P0(ψ∗ 6= 0) + P1(ψ∗ 6= 1)

2
=

1

2

∫
[p0(x) ∧ p1(x)]dx.

Thus we have shown that

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

4

∫
[p0(x) ∧ p1(x)]dx.

Now suppose we have n observations. Then, replacing p0 and p1 with pn0 (x) =
∏n

i=1 p0(xi)
and pn1 (x) =

∏n
i=1 p1(xi), we have

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

4

∫
[pn0 (x) ∧ pn1 (x)]dx.

In Lemma 7 below, we show that
∫
p ∧ q ≥ 1

2
e−KL(P,Q). Since KL(P n

0 , P
n
1 ) = nKL(P0, P1), we

have
inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

8
e−nKL(P0,P1).

The other results follow from the inequalities on the distances. �

Lemma 6 Let ψ∗ be the Neyman-Pearson test. For any test ψ,

P0(ψ = 1) + P1(ψ = 0) ≥ P0(ψ∗ = 1) + P1(ψ∗ = 0).
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Proof. Recall that p0 > p1 when ψ∗ = 0 and that p0 < p1 when ψ∗ = 1. So

P0(ψ = 1) + P1(ψ = 0) =

∫
ψ=1

p0(x)dx+

∫
ψ=0

p1(x)dx

=

∫
ψ=1,ψ∗=1

p0(x)dx+

∫
ψ=1,ψ∗=0

p0(x)dx+

∫
ψ=0,ψ∗=0

p1(x)dx+

∫
ψ=0,ψ∗=1

p1(x)dx

≥
∫
ψ=1,ψ∗=1

p0(x)dx+

∫
ψ=1,ψ∗=0

p1(x)dx+

∫
ψ=0,ψ∗=0

p1(x)dx+

∫
ψ=0,ψ∗=1

p0(x)dx

=

∫
ψ∗=1

p0(x)dx+

∫
ψ∗=0

p1(x)dx

= P0(ψ∗ = 1) + P1(ψ∗ = 0).

�

Lemma 7 For any P and Q,
∫
p ∧ q ≥ 1

2
e−KL(P,Q).

Proof. First note that, since (a ∨ b) + (a ∧ b) = a+ b, we have∫
(p ∨ q) +

∫
(p ∧ q) = 2. (14)

Hence

2

∫
p ∧ q ≥ 2

∫
p ∧ q −

(∫
p ∧ q

)2

=
(∫

p ∧ q
) [

2−
∫
p ∧ q

]
=
(∫

p ∧ q
) (∫

p ∨ q
)

from (14)

≥
(∫ √

(p ∧ q) (p ∨ q)
)2

Cauchy − Schwartz

=

(∫
√
pq

)2

= exp

(
2 log

∫
√
pq

)
= exp

(
2 log

∫
p
√
q/p

)
≥ exp

(
2

∫
p log

√
q

p

)
= e−KL(P,Q)

where we used Jensen’s inequality in the last inequality. �

Example 8 Consider data (X1, Y1), . . . , (Xn, Yn) where Xi ∼ Uniform(0, 1), Yi = m(Xi)+εi
and εi ∼ N(0, 1). Assume that

m ∈M =

{
m : |m(y)−m(x)| ≤ L|x− y|, for all x, y ∈ [0, 1]

}
.
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So P is the set of distributions of the form p(x, y) = p(x)p(y|x) = φ(y−m(x)) where m ∈M.

How well can we estimate m(x) at some point x? Without loss of generality, let’s take x = 0
so the parameter of interest is θ = m(0). Let d(θ0, θ1) = |θ0 − θ1|. Let m0(x) = 0 for all x.
Let 0 ≤ ε ≤ 1 and define

m1(x) =

{
L(ε− x) 0 ≤ x ≤ ε
0 x ≥ ε.

Then m0,m1 ∈M and s = |m1(0)−m0(0)| = Lε. The KL distance is

KL(P0, P1) =

∫ 1

0

∫
p0(x, y) log

(
p0(x, y)

p1(x, y)

)
dydx

=

∫ 1

0

∫
p0(x)p0(y|x) log

(
p0(x)p0(y|x)

p1(x)p1(y|x)

)
dydx

=

∫ 1

0

∫
φ(y) log

(
φ(y)

φ(y −m1(x))

)
dydx

=

∫ ε

0

∫
φ(y) log

(
φ(y)

φ(y −m1(x))

)
dydx

=

∫ ε

0

KL(N(0, 1), N(m1(x), 1))dx.

Now, KL(N(µ1, 1), N(µ2, 1)) = (µ1 − µ2)2/2. So

KL(P0, P1) =
L2

2

∫ ε

0

(ε− x)2dx =
L2ε3

6
.

Let ε = (6 log 2/(L2n))1/3. Then, KL(P0, P1) = log 2/n and hence, by Corollary 5,

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

16
=
Lε

16
=

L

16

(
6 log 2

L2n

)1/3

=
( c
n

)1/3

. (15)

It is easy to show that the regressogram (regression histogram) θ̂ = m̂(0) has risk

EP [d(θ̂, θ(P ))] ≤
(
C

n

)1/3

.

Thus we have proved that
inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] � n−
1
3 . (16)

The same calculations in d dimensions yield

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] � n−
1
d+2 . (17)
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On the squared scale we have

inf
θ̂

sup
P∈P

EP [d2(θ̂, θ(P ))] � n−
2
d+2 . (18)

Similar rates hold in density estimation.

There is a more general version of Le Cam’s lemma that is sometimes useful.

Lemma 9 Let P,Q1, . . . , QN be distributions such that d(θ(P ), θ(Qj)) ≥ s for all j. Then

inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

4

∫
(pn ∧ qn)

where q = 1
N

∑
j qj.

Example 10 Let

Yi = θi +
1√
n
Zi, i = 1, . . . , d

where Z1, Z2, . . . , Zd ∼ N(0, 1) and θ = (θ1, . . . , θd) ∈ Θ where Θ = {θ ∈ Rd : ||θ||0 ≤ 1}.
Let P = N(0, n−1I). Let Qj have mean 0 expect that jth coordinate has mean

√
a log d/n

where 0 < a < 1. Let q = 1
N

∑
j qj. Some algebra (good homework question!) shows that

χ2(q, p) → 0 as d → ∞. By the generalized Le Cam lemma, Rn ≥ a log d/n using squared
error loss. We can estimate θ by thresholding (Bonferroni). This gives a matching upper
bound.

6 Lower Bound Method II: Fano

For metrics like d(f, g) =
∫

(f − g)2, Le Cam’s method will usually not give a tight bound.
Instead, we use Fano’s method. Instead of choosing two distributions P0, P1, we choose a
finite set of distributions P1, . . . , PN ∈ P .

We start with Fano’s lemma.

Lemma 11 (Fano) Let X1, . . . , Xn ∼ P where P ∈ {P1, . . . , PN}. Let ψ be any function
of X1, . . . , Xn taking values in {1, . . . , N}. Let β = maxj 6=k KL(Pj, Pk). Then

1

N

N∑
j=1

Pj(ψ 6= j) ≥
(

1− nβ + log 2

logN

)
.
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Proof: See Lemma 28 in the appendix. �.

Now we can state and prove the Fano minimax bound.

Theorem 12 Let F = {P1, . . . , PN} ⊂ P. Let θ(P ) be a parameter taking values in a metric
space with metric d. Then

inf
θ̂

sup
P∈P

EP
(
d
(
θ̂, θ(P )

))
≥ s

2

(
1− nβ + log 2

logN

)
(19)

where
s = min

j 6=k
d (θ(Pj), θ(Pk)) , (20)

and
β = max

j 6=k
KL(Pj, Pk). (21)

Corollary 13 (Fano Minimax Bound) Suppose there exists F = {P1, . . . , PN} ⊂ P such
that N ≥ 16 and

β = max
j 6=k

KL(Pj, Pk) ≤
logN

4n
. (22)

Then
inf
θ̂

max
P∈P

EP
[
d
(
θ̂, θ(P )

)]
≥ s

4
. (23)

Proof. From Theorem 3,

Rn ≥
s

2
inf
ψ

max
Pj∈F

Pj(ψ 6= j) ≥ s

2

1

N

N∑
j=1

Pj(ψ 6= j)

where the latter is due to the fact that a max is larger than an average. By Fano’s lemma,

1

N

N∑
j=1

Pj(ψ 6= j) ≥
(

1− nβ + log 2

logN

)
.

Thus,

inf
θ̂

sup
P∈P

EP
(
d
(
θ̂, θ(P )

))
≥ inf

θ̂
max
P∈F

EP
(
d
(
θ̂, θ(P )

))
≥ s

2

(
1− nβ + log 2

logN

)
. (24)

�
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7 Lower Bound Method III: Tsybakov’s Bound

This approach is due to Tsybakov (2009). The proof of the following theorem is in the
appendix.

Theorem 14 (Tsybakov 2009) Let X1, . . . , Xn ∼ P ∈ P. Let {P0, P1, . . . , PN} ⊂ P
where N ≥ 3. Assume that P0 is absolutely continuous with respect to each Pj. Suppose that

1

N

N∑
j=1

KL(Pj, P0) ≤ logN

16
.

Then
inf
θ̂

sup
P∈P

EP [d(θ̂, θ(P ))] ≥ s

16

where
s = max

0≤j<k≤N
d(θ(Pj), θ(Pk)).

8 Hypercubes

To use Fano’s method or Tsybakov’s method, we need to construct a finite class of distribu-
tions F . Sometimes we use a set of the form

F =
{
Pω : ω ∈ Ω

}
where

Ω =
{
ω = (ω1, . . . , ωm) : ωi ∈ {0, 1}, i = 1, . . . ,m

}
which is called a hypercube. There are N = 2m distributions in F . For ω, ν ∈ Ω, define the
Hamming distance H(ω, ν) =

∑m
j=1 I(ωk 6= νk).

One problem with a hypercube is that some pairs P,Q ∈ F might be very close together
which will make s = minj 6=k d (θ(Pj), θ(Pk)) small. This will result in a poor lower bound.
We can fix this problem by pruning the hypercube. That is, we can find a subset Ω′ ⊂ Ω
which has nearly the same number of elements as Ω but such that each pair P,Q ∈ F ′ ={
Pω : ω ∈ Ω′

}
is far apart. We call Ω′ a pruned hypercube. The technique for constructing

Ω′ is the Varshamov-Gilbert lemma.

Lemma 15 (Varshamov-Gilbert) Let Ω =
{
ω = (ω1, . . . , ωN) : ωj ∈ {0, 1}

}
. Suppose that

N ≥ 8. There exists ω0, ω1, . . . , ωM ∈ Ω such that (i) ω0 = (0, . . . , 0), (ii) M ≥ 2N/8 and
(iii) H(ω(j), ω(k)) ≥ N/8 for 0 ≤ j < k ≤ M . We call Ω′ = {ω0, ω1, . . . , ωM} a pruned
hypercube.
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Proof. Let D = bN/8c. Set ω0 = (0, . . . , 0). Define Ω0 = Ω and Ω1 = {ω ∈ Ω : H(ω, ω0) >
D}. Let ω1 be any element in Ω1. Thus we have eliminated {ω ∈ Ω : H(ω, ω0) ≤ D}.
Continue this way recursively and at the jth step define Ωj = {ω ∈ Ωj−1 : H(ω, ωj−1) > D}
where j = 1, . . . ,M . Let nj be the number of elements eliminated at step j, that is, the
number of elements in Aj = {ω ∈ Ωj : H(ω, ω(j)) ≤ D}. It follows that

nj ≤
D∑
i=0

(
N
i

)
.

The sets A0, . . . , AM partition Ω and so n0 + n1 + · · ·+ nM = 2N . Thus,

(M + 1)
D∑
i=0

(
N
i

)
≥ 2N .

Thus

M + 1 ≥ 1∑D
i=0 2−N

(
N
i

) =
1

P
(∑N

i=1 Zi ≤ bm/8c
)

where Z1, . . . , ZN are iid Bernoulli (1/2) random variables. By Hoeffding’s inequaity,

P

(
N∑
i=1

Zi ≤ bm/8c

)
≤ e−9N/32 < 2−N/4.

Therefore, M ≥ 2N/8 as long as N ≥ 8. Finally, note that, by construction, H(ωj, ωk) ≥
D + 1 ≥ N/8. �

Example 16 Consider data (X1, Y1), . . . , (Xn, Yn) where Xi ∼ Uniform(0, 1), Yi = f(Xi) +
εi and εi ∼ N(0, 1). (The assumption that X is uniform is not crucial.) Assume that f is
in the Holder class F defined by

F =

{
f : |f (`)(y)− f (`)(x)| ≤ L|x− y|β−`, for all x, y ∈ [0, 1]

}
where ` = bβc. P is the set of distributions of the form p(x, y) = p(x)p(y|x) = φ(y −m(x))
where f ∈ F . Let Ω′ be a pruned hypercube and let

F ′ =

{
fω(x) =

m∑
j=1

ωjφj(x) : ω ∈ Ω′

}

where m = dcn
1

2β+1 e, φj(x) = LhβK((x−Xj)/h), and h = 1/m. Here, K is any sufficiently
smooth function supported on (−1/2, 1/2). Let d2(f, g) =

∫
(f −g)2. Some calculations show

that, for ω, ν ∈ Ω′,

d(fω, fν) =
√
H(ω, ν)Lhβ+ 1

2

∫
K2 ≥

√
m

8
Lhβ+ 1

2

∫
K2 ≥ c1h

β.
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We used the Varshamov-Gilbert result which implies that H(ω, ν) ≥ m/8. Furthermore,

KL(Pω, Pν) ≤ c2h
2β.

To apply Corollary 13, we need to have

KL(Pω, Pν) ≤
logN

4n
.

Now
logN

4n
=

log 2m/8

4n
=

m

32n
=

1

32nh
.

So we set h = (c/n)1/(2β+1). In that case, d(fω, fν) ≥ c1h
β = c1(c/n)β/(2β+1). Corollary 13

implies that

inf
f̂

sup
P∈P

EP [d(f̂ , f)] ≥ n−
β

2β+1 .

It follows that

inf
f̂

sup
P∈P

EP
∫

(f − f̂)2 ≥ n−
2β

2β+1 .

It can be shown that there are kernel estimators that achieve this rate of convergence. (The
kernel has to be chosen carefully to take advantage of the degree of smoothness β.) A similar
calculation in d dimensions shows that

inf
f̂

sup
P∈P

EP
∫

(f − f̂)2 ≥ n−
2β

2β+d .

9 Further Examples

9.1 Parametric Maximum Likelihood

For parametric models that satisfy weak regularity conditions, the maximum likelihood es-
timator is approximately minimax. Consider squared error loss which is squared bias plus
variance. In parametric models with large samples, it can be shown that the variance term
dominates the bias so the risk of the mle θ̂ roughly equals the variance:1

R(θ, θ̂) = Varθ(θ̂) + bias2 ≈ Varθ(θ̂). (25)

The variance of the mle is approximately Var(θ̂) ≈ 1
nI(θ)

where I(θ) is the Fisher information.
Hence,

nR(θ, θ̂) ≈ 1

I(θ)
. (26)

1Typically, the squared bias is order O(n−2) while the variance is of order O(n−1).
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For any other estimator θ′, it can be shown that for large n, R(θ, θ′) ≥ R(θ, θ̂). For d-

dimensional vectors we have R(θ, θ̂) ≈ |I(θ)|−1/n = O(d/n).

Here is a more precise statement, due to Hájek and Le Cam. The family of distributions
(Pθ : θ ∈ Θ) with densities (Pθ : θ ∈ Θ) is differentiable in quadratic mean if there exists `′θ
such that ∫ (

√
pθ+h −

√
pθ −

1

2
hT `′θ
√
pθ

)2

dµ = o(‖h‖2). (27)

Theorem 17 (Hájek and Le Cam) Suppose that (Pθ : θ ∈ Θ) is differentiable in quadratic
mean where Θ ⊂ Rk and that the Fisher information Iθ is nonsingular. Let ψ be differen-
tiable. Then ψ(θ̂n), where θ̂n is the mle, is asymptotically, locally, uniformly minimax in the
sense that, for any estimator Tn, and any bowl-shaped `,

sup
I∈I

lim inf
n→∞

sup
h∈I

Eθ+h/√n`
(√

n

(
Tn − ψ

(
θ +

h√
n

)))
≥ E(`(U)) (28)

where I is the class of all finite subsets of Rk and U ∼ N(0, ψ′θI
−1
θ (ψ′θ)

T ).

For a proof, see van der Vaart (1998). Note that the right hand side of the displayed formula
is the risk of the mle. In summary: in well-behaved parametric models, with large samples,
the mle is approximately minimax.

9.2 Estimating a Smooth Density

Here we use the general strategy to derive the minimax rate of convergence for estimating a
smooth density. (See Yu (2008) for more details.)

Let F be all probability densities f on [0, 1] such that

0 < c0 ≤ f(x) ≤ c1 <∞, |f ′′(x)| ≤ c2 <∞.

We observe X1, . . . , Xn ∼ P where P has density f ∈ F . We will use the squared Hellinger
distance d2(f, g) =

∫ 1

0
(
√
f(x)−

√
g(x))2dx as a loss function.

Upper Bound. Let f̂n be the kernel estimator with bandwidth h = n−1/5. Then, using
bias-variance calculations, we have that

sup
f∈F

Ef

(∫
(f̂(x)− f(x))2dx

)
≤ Cn−4/5

13



for some C. But∫
(
√
f(x)−

√
g(x))2dx =

∫ (
f(x)− g(x)√
f(x) +

√
g(x)

)2

dx ≤ C ′
∫

(f(x)− g(x))2dx (29)

for some C ′. Hence supf Ef (d2(f, f̂n)) ≤ Cn−4/5 which gives us an upper bound.

Lower Bound. For the lower bound we use Fano’s inequality. Let g be a bounded, twice
differentiable function on [−1/2, 1/2] such that∫ 1/2

−1/2

g(x)dx = 0,

∫ 1/2

−1/2

g2(x)dx = a > 0,

∫ 1/2

−1/2

(g′(x))2dx = b > 0.

Fix an integer m and for j = 1, . . . ,m define xj = (j − (1/2))/m and

gj(x) =
c

m2
g(m(x− xj))

for x ∈ [0, 1] where c is a small positive constant. Let M denote the Varshamov-Gilbert
pruned version of the set{

fτ = 1 +
m∑
j=1

τjgj(x) : τ = (τ1, . . . , τm) ∈ {−1,+1}m
}
.

For fτ ∈M, let fnτ denote the product density for n observations and letMn =
{
fnτ : fτ ∈

M
}
. Some calculations show that, for all τ, τ ′,

KL(fnτ , f
n
τ ′) = nKL(fτ , fτ ′) ≤

C1n

m4
≡ β. (30)

By Lemma 15, we can choose a subset F of M with N = ec0m elements (where c0 is a
constant) and such that

d2(fτ , fτ ′) ≥
C2

m4
≡ α (31)

for all pairs in F . Choosing m = cn1/5 gives β ≤ logN/4 and d2(fτ , fτ ′) ≥ C2

n4/5 . Fano’s
lemma implies that

max
j

Ejd2(f̂ , fj) ≥
C

n4/5
.

Hence the minimax rate is n−4/5 which is achieved by the kernel estimator. Thus we have
shown that Rn(P) � n−4/5.

This result can be generalized to higher dimensions and to more general measures of smooth-
ness. Since the proof is similar to the one dimensional case, we state the result without proof.
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Theorem 18 Let Z be a compact subset of Rd. Let F(p, C) denote all probability density
functions on Z such that ∫ ∑∣∣∣∣ ∂p

∂zp11 · · · ∂z
pd
d

f(z)

∣∣∣∣2 dz ≤ C

where the sum is over al p1, . . . , pd such that
∑

j pj = p. Then there exists a constant D > 0
such that

inf
f̂

sup
f∈F(p,C)

Ef
∫

(f̂n(z)− f(z))2dz ≥ D

(
1

n

) 2p
2p+1

. (32)

The kernel estimator (with an appropriate kernel) with bandwidth hn = n−1/(2p+d) achieves
this rate of convergence.

9.3 Minimax Classification

Let us now turn to classification. We focus on some results of Yang (1999), Tsybakov (2004),
Mammen and Tsybakov (1999), Audibert and Tsybakov (2005) and Tsybakov and van de
Geer (2005).

The data are Z = (X1, Y1), . . . , (Xn, Yn) where Yi ∈ {0, 1}. Recall that a classifier is a
function of the form h(x) = I(x ∈ G) for some set G. The classification risk is

R(G) = P(Y 6= h(X)) = P(Y 6= I(X ∈ G)) = E(Y − I(X ∈ G))2. (33)

The optimal classifier is h∗(x) = I(x ∈ G∗) where G∗ = {x : m(x) ≥ 1/2} and m(x) =
E(Y |X = x). We are interested in how close R(G) is to R(G∗). Following Tsybakov (2004)
we define

d(G,G∗) = R(G)−R(G∗) = 2

∫
G∆G∗

∣∣∣∣m(x)− 1

2

∣∣∣∣ dPX(x) (34)

where A∆B = (A ∩Bc) ∪ (Ac ∪B) and PX is the marginal distribution of X.

There are two common types of classifiers. The first type are plug-in classifiers of the form
ĥ(x) = I(m̂(x) ≥ 1/2) where m̂ is an estimate of the regression function. The second type

are empirical risk minimizers where ĥ is taken to be the h that minimizes the observed error
rate n−1

∑n
i=1(Yi 6= h(Xi)) as h varies over a set of classifiers H. Sometimes one minimizes

the error rate plus a penalty term.

According to Yang (1999), the classification problem has, under weak conditions, the same
order of difficulty (in terms of minimax rates) as estimating the regression function m(x).
Therefore the rates are given in Example 39. According to Tsybakov (2004) and Mammen
and Tsybakov (1999), classification is easier than regression. The apparent discrepancy is
due to differing assumptions.
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To see that classification error cannot be harder than regression, note that for any m̂ and
corresponding Ĝ

d(G, Ĝ) = 2

∫
G∆Ĝ

∣∣m(x)− 1
2

∣∣ dPX(x) (35)

≤ 2

∫
|m̂(x)−m(x)|dPX(x) ≤ 2

√∫
(m̂(x)−m(x))2dPX(x) (36)

so the rate of convergence of d(G,G∗) is at least as fast as the regression function.

Instead of putting assumptions on the regression function m, Mammen and Tsybakov (1999)
put an entropy assumption on the set of decision sets G. They assume

logN(ε,G, d) ≤ Aε−ρ (37)

where N(ε,G, d) is the smallest number of balls of radius ε required to cover G. They show
that , if 0 < ρ < 1, then there are classifiers with rate

sup
P

E(d(Ĝ, G∗)) = O(n−1/2) (38)

independent of dimension d. Moreover, if we add the margin (or low noise) assumption

PX
(
0 <

∣∣m(X)− 1
2

∣∣ ≤ t
)
≤ Ctα for all t > 0 (39)

we get
sup
P

E(d(Ĝ, G∗)) = O
(
n−(1+α)/(2+α+αρ)

)
(40)

which can be nearly 1/n for large α and small ρ. The classifiers can be taken to be plug-in
estimators using local polynomial regression. Moreover, they show that this rate is minimax.
We will discuss classification in the low noise setting in more detail in another chapter.

9.4 Estimating a Large Covariance Matrix

Let X1, . . . , Xn be iid Gaussian vectors of dimension d. Let Σ = (σij)1≤i,j≤d be the d × d
covariance matrix for Xi. Estimating Σ when d is large is very challenging. Sometimes we
can take advantage of special structure. Bickel and Levina (2008) considered the class of
covariance matrices Σ whose entries have polynomial decay. Specifically, Θ = Θ(α, ε,M) is
all covariance matrices Σ such that 0 < ε ≤ λmin(Σ) ≤ λmax(Σ) ≤ 1/ε and such that

max
j

∑
i

{
|σij| : |i− j| > k

}
≤Mk−α
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for all k. The loss function is ‖Σ̂− Σ‖ where ‖ · ‖ is the operator norm

‖A‖ = sup
x: ‖x‖2=1

‖Ax‖2.

Bickel and Levina (2008) constructed an estimator that that converges at rate (log d/n)α/(α+1).
Cai, Zhang and Zhou (2009) showed that the minimax rate is

min

{
n−2α/(2α+1) +

log d

n
,
d

n

}
so the Bickel-Levina estimator is not rate minimax. Cai, Zhang and Zhou then constructed
an estimator that is rate minimax.

9.5 Semisupervised Prediction

Suppose we have data (X1, Y1), . . . , (Xn, Yn) for a classification or regression problem. In
addition, suppose we have extra unlabelled data Xn+1, . . . , XN . Methods that make use
of the unlabeled are called semisupervised methods. We discuss semisupervised methods in
another Chapter.

When do the unlabeled data help? Two minimax analyses have been carried out to answer
that question, namely, Lafferty and Wasserman (2007) and Singh, Nowak and Zhu (2008).
Here we briefly summarize the results of the latter.

Suppose we want to estimate m(x) = E(Y |X = x) where x ∈ Rd and y ∈ R. Let p be
the density of X. To use the unlabelled data we need to link m and p in some way. A
common assumption is the cluster assumption: m is smooth over clusters of the marginal
p(x). Suppose that p has clusters separated by a amount γ and that m is α smooth over
each cluster. Singh, Nowak and Zhu (2008) obtained the following upper and lower minimax
bounds as γ varies in 6 zones which we label I to VI. These zones relate the size of γ and
the number of unlabeled points:

γ semisupervised supervised unlabelled data help?
upper bound lower bound

I n−2α/(2α+d) n−2α/(2α+d) NO
II n−2α/(2α+d) n−2α/(2α+d) NO
III n−2α/(2α+d) n−1/d YES
IV n−1/d n−1/d NO
V n−2α/(2α+d) n−1/d YES
VI n−2α/(2α+d) n−1/d YES

The important message is that there are precise conditions when the unlabeled data help
and conditions when the unlabeled data do not help. These conditions arise from computing
the minimax bounds.
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9.6 Graphical Models

Elsewhere in the book, we discuss the problem of estimating graphical models. Here, we
shall briefly mention some minimax results for this problem. Let X be a random vector
from a multivariate Normal distribution P with mean vector µ and covariance matrix Σ.
Note that X is a random vector of length d, that is, X = (X1, . . . , Xd)

T . The d× d matrix
Ω = Σ−1 is called the precision matrix. There is one node for each component of X. The
undirected graph associated with P has no edge between Xj and Xj if and only if Ωjk = 0.
The edge set is E = {(j, k) : Ωjk 6= 0}. The graph is G = (V,E) where V = {1, . . . , d} and
E is the edge set. Given a random sample of vectors X1, . . . , Xn ∼ P we want to estimate
G. (Only the edge set needs to be estimated; the nodes are known.)

Wang, Wainwright and Ramchandran (2010) found the minimax risk for estimating G under
zero-one loss. Let Gd,r(λ) denote all the multivariate Normals whose graphs have edge sets
with degree at most r and such that

min
(i,j)∈E

|Ωjk|√
ΩjjΩkk

≥ λ.

The sample complexity n(d, r, λ) is the smallest sample size n needed to recover the true
graph with high probability. They show that for any λ ∈ [0, 1/2],

n(d, r, λ) > max

 log
(
d−r

2

)
− 1

4λ2
,

log
(
d
r

)
− 1

1
2

(
log
(
1 + rλ

1−λ

)
− rλ

1+(r−1)λ

)
 . (41)

Thus, assuming λ ≈ 1/r, we get that n ≥ Cr2 log(d− r).

9.7 Deconvolution and Measurement Error

A problem has seems to have received little attention in the machine learning literature is
deconvolution. Suppose that X1, . . . , Xn ∼ P where P has density p. We have seen that the

minimax rate for estimating p in squared error loss is n−
2β

2β+1 where β is the assumed amount
of smoothness. Suppose we cannot observe Xi directly but instead we observe Xi with error.
Thus, we observe Y1, . . . , Yn where

Yi = Xi + εi, i = 1, . . . , n. (42)

The minimax rates for estimating p change drastically. A good account is given in Fan
(1991). As an example, if the noise εi is Gaussian, then Fan shows that the minimax risk
satisfies

Rn ≥ C

(
1

log n

)β
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which means that the problem is essentially hopeless.

Similar results hold for nonparametric regression. In the usual nonparametric regression
problem we observe Yi = m(Xi) + εi and we want to estimate the function m. If we observe
X∗i = Xi + δi instead of Xi then again the minimax rates change drastically and are loga-
rithmic of the δi’s are Normal (Fan and Truong 1993). This is known as measurement error
or errors in variables.

This is an interesting example where minimax theory reveals surprising and important in-
sight.

9.8 Normal Means

Perhaps the best understood cases in minimax theory involve normal means. First suppose
that X1, . . . , Xn ∼ N(θ, σ2) where σ2 is known. A function g is bowl-shaped if the sets
{x : g(x) ≤ c} are convex and symmetric about the origin. We will say that a loss function

` is bowl-shaped if `(θ, θ̂) = g(θ − θ̂) for some bowl-shaped function g.

Theorem 19 The unique2 estimator that is minimax for every bowl-shaped loss function is
the sample mean Xn.

For a proof, see Wolfowitz (1950).

Now consider estimating several normal means. Let Xj = θj + εj/
√
n for j = 1, . . . , n and

suppose we and to estimate θ = (θ1, . . . , θn) with loss function `(θ̂, θ) =
∑n

j=1(θ̂j − θj)
2.

Here, ε1, . . . , εn ∼ N(0, σ2). This is called the normal means problem.

There are strong connections between the normal means problem and nonparametric learn-
ing. For example, suppose we want to estimate a regression function f(x) and we observe data
Zi = f(i/n)+δi where δi ∼ N(0, σ2). Expand f in an othonormal basis: f(x) =

∑
j θjψj(x).

An estimate of θj is Xj = 1
n

∑n
i=1 Zi ψj(i/n). It follows that Xj ≈ N(θj, σ

2/n). This con-
nection can be made very rigorous; see Brown and Low (1996).

The minimax risk depends on the assumptions about θ.

Theorem 20 (Pinsker) 1. If Θn = Rn then Rn = σ2 and θ̂ = X = (X1, . . . , Xn) is
minimax.

2. If Θn = {θ :
∑n

j θ
2
j ≤ C2} then

lim inf
n→∞

inf
θ̂

sup
θ∈Θn

R(θ̂, θ) =
σ2C2

σ2 + C2
. (43)

2Up to sets of measure 0.
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Define the James-Stein estimator

θ̂JS =

(
1− (n− 2)σ2

1
n

∑n
j=1X

2
j

)
X. (44)

Then

lim
n→∞

sup
θ∈Θn

R(θ̂JS, θ) =
σ2C2

σ2 + C2
. (45)

Hence, θ̂JS is asymptotically minimax.

3. Let Xj = θj + εj for j = 1, 2, . . . , where εj ∼ N(0, σ2/n).

Θ =

{
θ :

∞∑
j=1

θ2
ja

2
j ≤ C2

}
(46)

where a2
j = (πj)2p. Let Rn denote the minimax risk. Then

min
n→∞

n
2p

2p+1Rn =
(σ
π

) 2p
2p+1

C
2

2p+1

(
p

p+ 1

) 2p
2p+1

(2p+ 1)
1

2p+1 . (47)

Hence, Rn � n−
2p

2p+1 . An asymptotically minimax estimator is the Pinsker estimator
defined by θ̂ = (w1X1, w2X2, . . . , ) where wj = [1− (aj/µ)]+ and µ is determined by the
equation

σ2

n

∑
j

aj(µ− aj)+ = C2.

The set Θ in (46) is called a Sobolev ellipsoid. This set corresponds to smooth functions in
the function estimation problem. The Pinsker estimator corresponds to estimating a function
by smoothing. The main message to take away from all of this is that minimax estimation
under smoothness assumptions requires shrinking the data appropriately.

10 Adaptation

The results in this chapter provide minimax rates of convergence and estimators that achieve
these rates. However, the estimators depend on the assumed parameter space. For example,
estimating a β-times differential regression function requires using an estimator tailored to

the assumed amount of smoothness to achieve the minimax rate n−
2β

2β+1 . There are estimators
that are adaptive, meaning that they achieve the minimax rate without the user having to
know the amount of smoothness. See, for example, Chapter 9 of Wasserman (2006) and the
references therein.
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11 Minimax Hypothesis Testing

Let Y1, . . . , Yn ∼ P where P ∈ P and let P0 ∈ P . We want to test

H0 : P = P0 versus H1 : P 6= P0.

Recall that a size α test is a function φ of (y1, . . . , yn) such that φ(y1, . . . , yn) ∈ {0, 1} and
P n

0 (φ = 1) ≤ α. Let Φn be the set level α tests based on n observations where 0 < α < 1 is
fixed. We want to find the minimax type II error

βn(ε) = inf
φ∈Φn

sup
P∈P(ε)

P n(φ = 0) (48)

where
P(ε) =

{
P ∈ P : d(P0, Q) > ε

}
and d is some metric. The minimax testing rate is

εn = inf
{
ε : βn(ε) ≤ δ

}
.

Lower Bound. Define Q by

Q(A) =

∫
P n(A)dµ(P ) (49)

where µ is any distribution whose support is contained in P(ε). In particular, if µ is uniform
on a finite set P1, . . . , PN then

Q(A) =
1

N

∑
j

P n
j (A). (50)

Define the likelihood ratio

Ln =
dQ

dP n
0

=

∫
p(yn)

p0(yn)
dµ(p) =

∫ ∏
j

p(yj)

p0(yj)
dµ(p). (51)

Lemma 21 Let 0 < δ < 1− α. If

E0[L2
n] ≤ 1 + 4(1− α− δ)2 (52)

then βn(ε) ≥ δ.
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Proof. Since P n
0 (φ = 1) ≤ α for each φ, we have

βn(ε) = inf
φ

sup
P∈P(ε)

P n(φ = 0) ≥ inf
φ
Q(φ = 0) ≥ inf

φ
(P n

0 (φ = 0) + [Q(φ = 0)− P n
0 (φ = 0)])

≥ 1− α + [Q(φ = 0)− P n
0 (φ = 0)] ≥ 1− α− sup

A
|Q(A)− P n

0 (A)|

= 1− α− 1

2
||Q− P n

0 ||1.

Now,

||Q− P n
0 ||1 =

∫
|Ln(yn)− 1|dP0(yn) = E0|Ln(yn)− 1| ≤

√
E0[L2

n]− 1.

The result follows from (52). �

Upper Bound. Let φ be any size α test. Then

βn(ε) ≤ sup
P∈P(ε)

P n(φ = 0)

gives an upper bound.

11.1 Multinomials

Let Y1, . . . , Yn ∼ P where Yi ∈ {1, . . . , d} ≡ S. The minimax estimation rate under L1 loss
for this problem is O(

√
d/n). We will show that the minimax testing rate is d1/4/

√
n.

We will focus on the uniform distribution p0. So p0(y) = 1/d for all y. Let

P(ε) =
{
p : ||p− p0||1 > ε

}
.

We want to find εn such that βn(P(εn)) = δ.

Theorem 22 Let

ε ≤ Cd1/4

√
n

where

C =
1

2
[log(1 + 4(1− α− δ)2)]1/4.

Assume that ε ≤ 1. Then βn(ε) ≥ δ.
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Proof. Let γ = ε/d. Let η = (η1, . . . , ηd) where ηj ∈ {−1,+1} and
∑

j ηj = 0. Let R
be all such sequences. (This is like a Radamacher sequence except that they are not quite
independent.) Define pη by

pη(y) = p0(y) + γ
∑
j

ηjψj(y)

where ψj(y) = 1 if y = j and ψj(y) = 0 otherwise. Then pη(j) ≥ 0 for all j and
∑

j pη(j) = 1.
Also

||p0 − pη||1 =
∑
j

|γηj| = γd = ε.

Let N be the number of such probability functions. Now

Ln =
1

N

∑
η

∏
i

pη(Yi)

p0(Yi)

and, for any η, ν ∈ R,

L2
n =

1

N2

∑
η

∑
ν

∏
i

pη(Yi)pν(Yi)

p0(Yi)p0(Yi)

=
1

N2

∑
η

∑
ν

∏
i

(p0(Yi) + γ
∑

j ηjψj(Yi))

p0(Yi)

(p0(Yi) + γ
∑

j νjψj(Yi))

p0(Yi)

=
1

N2

∑
η

∑
ν

∏
i

(
1 + dγ

∑
j

ηjψj(Yi)

)(
1 + dγ

∑
j

νjψj(Yi)

)
.

Taking the expected value over Y1, . . . , Yn, and using the fact that ψj(Yi)ψk(Yi) = 0 for j 6= k,
and that E0[ψj(Y )] = P0(Y = j) = 1/d, we have

E0[L2
n] =

1

N2

∑
η

∑
ν

(
1 + dγ2

∑
j

ηjνj

)n

≤ 1

N2

∑
η

∑
ν

exp
(
ndγ2〈η, ν〉

)
= Eη,νe

n〈dγ2η,ν〉

where Eη,ν denotes expectation over random draws of η and ν. The average over η and ν
can thought of as averages with respect to random assignmetn of the 1′s and −1′s. Hence,
because these are negatively associated,

E0[L2
n] ≤ Eη,ν [e

ndγ2〈η,ν〉] ≤
∏
j

Eendγ
2ηjνj

=
∏
j

cosh(ndγ2) ≤
∏
j

(1 + 2n2d2γ4) ≤
∏
j

e2n2d2γ4

= e2n2d3γ4 = e2n2d3(ε4/d4) ≤ 1 + 4(1− α− δ)2

23



where we used the fact that, γ = εn/d and for small x, cosh(x) ≤ 1 + 2x2. From Lemma 21,
it follows that that βn(P(ε, L)) ≥ δ. �

For the upper bound we use a test due to Paninski (2008). Let Tn be the number of bins
with example one observation. Define tn by

P0(Tn < tn) = α.

Let φ = I(Tn < tn). Thus φ ∈ Φn.

Lemma 23 There exists C1 such that, if ||p− p0|| > C1d
1/4/
√
n then P (φ = 0) < δ.

11.2 Testing Densities

Now consider Y1, . . . , Yn ∼ P where Yi ∈ [0, 1]d. Let p0 be the uniform density. We want to
test H0 : P = P0.

Define

P(ε, s, L) =
{
f :

∫
|f0 − f | ≥ ε

}⋂
Hs(L) (53)

where f ∈ Hs(L) if, for all x, y,

|f (t−1)(y)− f (t−1)(x)| ≤ L|x− y|t

and ||f (t−1)||∞ ≤ L for t = 1, . . . , s.

Theorem 24 Fix δ > 0. Define εn by β(εn) = δ. Then, there exist c1, c2 > 0 such that

c1n
− 2s

4s+d ≤ εn ≤ c2n
− 2s

4s+d .

Proof. Here is a proof outline. Divide the spce into k = n2/(4s+d) equal size bins. Let η be
a Radamacher sequence. Let ψ be a smooth function such that

∫
ψ = 0 and

∫
ψ2 = 1. For

the jth bin Bj, let ψj be the function ψ rescaled and recentered to be supported on Bj with∫
ψ2
j = 1. Define

pη(y) = p0(y) + γ
∑
j

ηjψj(y)

where γ = cn−(2s+d)/(4s+d). It may be verified pη is a density inHs(L) and that
∫
|p0−pη| ≥ ε.

Let N be the number of Rademacher sequences. Then

Ln =
1

N

∑
η

∏
i

pη(Yi)

p0(Yi)
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and

L2
n =

1

N2

∑
η

∑
ν

∏
i

pη(Yi)pν(Yi)

p0(Yi)p0(Yi)

=
1

N2

∑
η

∑
ν

∏
i

(p0(Yi) +
∑

j γηjψj(Yi))

p0(Yi)

(p0(Yi) +
∑

j γνjψj(Yi))

p0(Yi)

=
1

N2

∑
η

∑
ν

∏
i

(
1 +

∑
j γηjψj(Yi)

p0(Yi)

)(
1 +

∑
j γνjψj(Yi)

p0(Yi)

)
.

Taking the expcted value over Y1, . . . , Yn, and using the fact that the ψj’s are orthogonal,

E0[L2
n] =

1

N2

∑
η

∑
ν

(
1 +

∑
j

γ2ηjνj

)n

≤ 1

N2

∑
η

∑
ν

exp

(
n
∑
j

γ2ηjνj

)
.

Thus E0[L2
n] ≤ Eη,νe

n〈η,ν〉 where 〈η, ν〉 = γ2
∑

j ηjνj. Hence,

E0[L2
n] ≤ Eη,νe

n〈η,ν〉 =
∏
j

Eenηjνj

=
∏
j

cosh(nρ2
j) ≤

∏
j

(1 + n2ρ4
j) ≤

∏
j

en
2γ4 = ekn

2γ4 ≤ C0.

From Lemma 21, it follows that that βn(P(ε, L)) ≥ δ. The upper bound can be obtained by
using a χ2 test on the bins. �

Surprisingly, the story gets much more complicated for non-uniform densities.

12 Summary

Minimax theory allows us to state precisely the best possible performance of any proce-
dure under given conditions. The key tool for finding lower bounds on the minimax risk is
Fano’s inequality. Finding an upper bound usually involves finding a specific estimator and
computing its risk.

13 Bibliographic remarks

There is a vast literature on minimax theory however much of it is scattered in various
journal articles. Some texts that contain minimax theory include Tsybakov (2009), van de
Geer (2000), van der Vaart (1998) and Wasserman (2006).

References: Arias-Castro Ingster (xxxx), Yu (2008), Tsybakov (2009), van der Vaart (1998),
Wasserman (2014).
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14 Appendix

14.1 Metrics For Probability Distributions

Minimax theory often makes use of various metrics for probability distributions. Here we
summarize some of these metrics and their properties.

Let P and Q be two distributions with densities p and q. We write the distance between P
and Q as either d(P,Q) or d(p, q) whichever is convenient. We define the following distances
and related quantities.

Total variation TV(P,Q) = supA |P (A)−Q(A)|
L1 distance d1(P,Q) =

∫
|p− q|

L2 distance d2(P,Q) =
√∫
|p− q|2

Hellinger distance h(P,Q) =
√∫

(
√
p−√q)2

Kullback-Leibler distance KL(P,Q) =
∫
p log(p/q)

χ2 χ2(P,Q) =
∫

(p− q)2/p
Affinity ‖P ∧Q‖ =

∫
p ∧ q =

∫
min{p(x), q(x)}dx

Hellinger affinity A(P,Q) =
∫ √

pq

There are many relationships between these quantities. These are summarized in the next
two theorems. We leave the proofs as exercises.

Theorem 25 The following relationships hold:

1. TV(P,Q) = 1
2
d1(P,Q) = 1− ‖p ∧ q‖. (Scheffés Theorem.)

2. TV(P,Q) = P (A)−Q(A) where A = {x : p(x) > q(x)}.
3. 0 ≤ h(P,Q) ≤

√
2.

4. h2(P,Q) = 2(1− A(P,Q)).

5. ‖P ∧Q‖ = 1− 1
2
d1(P,Q).

6. ‖P ∧Q‖ ≥ 1
2
A2(P,Q) = 1

2

(
1− h2(P,Q)

2

)2

. (Le Cam’s inequalities.)

7. 1
2
h2(P,Q) ≤ TV(P,Q) = 1

2
d1(P,Q) ≤ h(P,Q)

√
1− h2(P,Q)

4
.

8. TV(P,Q) ≤
√

KL(P,Q)/2. (Pinsker’s inequality.)

9.
∫

(log dP/dQ)+dP ≤ KL(P,Q) +
√
KL(P,Q)/2.

10. ‖P ∧Q‖ ≥ 1
2
e−KL(P,Q).

11. TV(P,Q) ≤ h(P,Q) ≤
√
KL(P,Q) ≤

√
χ2(P,Q).
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Let P n denote the product measure based on n independent samples from P .

Theorem 26 The following relationships hold:

1. h2(P n, Qn) = 2
(

1−
(

1− h2(P,Q)
2

)n)
.

2. ‖P n ∧Qn‖ ≥ 1
2
A2(P n, Qn) = 1

2

(
1− 1

2
h2(P,Q)

)2n
.

3. ‖P n ∧Qn‖ ≥
(
1− 1

2
d1(P,Q)

)n
.

4. KL(P n, Qn) = nKL(P,Q).

14.2 Fano’s Lemma

For 0 < p < 1 define the entropy h(p) = −p log p − (1 − p) log(1 − p) and note that
0 ≤ h(p) ≤ log 2. Let (Y, Z) be a pair of random variables each taking values in {1, . . . , N}
with joint distribution PY,Z . Then the mutual information is defined to be

I(Y ;Z) = KL(PY,Z , PY × PZ) = H(Y )−H(Y |Z) (54)

where H(Y ) = −
∑

j P(Y = j) logP(Y = j) is the entropy of Y and H(Y |Z) is the entropy
of Y given Z. We will use the fact that I(Y ;h(Z)) ≤ I(Y ;Z) for an function h.

Lemma 27 Let Y be a random variable taking values in {1, . . . , N}. Let {P1, . . . , PN} be a
set of distributions. Let X be drawn from Pj for some j ∈ {1, . . . , N}. Thus P (X ∈ A|Y =
j) = Pj(A). Let Z = g(X) be an estimate of Y taking values in {1, . . . , N}. Then,

H(Y |X) ≤ P(Z 6= Y ) log(N − 1) + h(P(Z = Y )). (55)

We follow the proof from Cover and Thomas (1991).

Proof. Let E = I(Z 6= Y ). Then

H(E, Y |X) = H(Y |X) +H(E|X, Y ) = H(Y |X)

since H(E|X, Y ) = 0. Also,

H(E, Y |X) = H(E|X) +H(Y |E,X).

But H(E|X) ≤ H(E) = h(P (Z = Y )). Also,

H(Y |E,X) = P (E = 0)H(Y |X,E = 0) + P (E = 1)H(Y |X,E = 1)

≤ P (E = 0)× 0 + h(P (Z = Y )) log(N − 1)
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since Y = g(X) when E = 0 and, when E = 1, H(Y |X,E = 1) by the log number of
remaining outcomes. Combining these gives H(Y |X) ≤ P(Z 6= Y ) log(N−1)+h(P(Z = Y )).
�

Lemma 28 (Fano’s Inequality) Let P = {P1, . . . , PN} and β = maxj 6=k KL(Pj, Pk). For any
random variable Z taking values on {1, . . . , N},

1

N

N∑
j=1

Pj(Z 6= j) ≥
(

1− nβ + log 2

logN

)
.

Proof. For simplicity, assume that n = 1. The general case follows since KL(P n, Qn) =
nKL(P,Q). Let Y have a uniform distribution on {1, . . . , N}. Given Y = j, let X have
distribution Pj. This defines a joint distribution P for (X, Y ) given by

P (X ∈ A, Y = j) = P (X ∈ A|Y = j)P (Y = j) =
1

N
Pj(A).

Hence,

1

N

N∑
j=1

P (Z 6= j|Y = j) = P (Z 6= Y ).

From (55),

H(Y |Z) ≤ P (Z 6= Y ) log(N − 1) + h(P (Z = Y )) ≤ P (Z 6= Y ) log(N − 1) + h(1/2)

= P (Z 6= Y ) log(N − 1) + log 2.

Therefore,

P (Z 6= Y ) log(N − 1) ≥ H(Y |Z)− log 2 = H(Y )− I(Y ;Z)− log 2

= logN − I(Y ;Z)− log 2 ≥ logN − β − log 2. (56)

The last inequality follows since

I(Y ;Z) ≤ I(Y ;X) =
1

N

N∑
j=1

KL(Pj, P ) ≤ 1

N2

N∑
j,k

KL(Pj, Pk) ≤ β (57)

where P = N−1
∑N

j=1 Pj and we used the convexity of K. Equation (56) shows that

P (Z 6= Y ) log(N − 1) ≥ logN − β − log 2

and the result follows. �
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14.3 Tsybakov’s Method

Proof of Theorem 14. Let X = (X1, . . . , Xn) and let ψ ≡ ψ(X) ∈ {0, 1, . . . , N}. Fix
τ > 0 and define

Aj =

{
dP0

dPj
≥ τ

}
.

Then

P0(ψ 6= 0) =
N∑
j=1

P0(ψ = j) ≥
N∑
j=1

P0

(
ψ = j

⋂
Aj

)

=
N∑
j=1

P0

(
ψ = j

⋂
Aj

)
Pj

(
ψ = j

⋂
Aj

)Pj(ψ = j
⋂

Aj

)

≥ τ
N∑
j=1

Pj

(
ψ = j

⋂
Aj

)
≥ τ

N∑
j=1

Pj

(
ψ = j

)
− τ

N∑
j=1

Pj

(
Acj

)
= τN

(
1

N

N∑
j=1

Pj

(
ψ = j

))
− τN

(
1

N

N∑
j=1

Pj

(
Acj

))
= τN(p0 − a)

where

p0 =
1

N

N∑
j=1

Pj

(
ψ = j

)
, a =

1

N

N∑
j=1

Pj

(
dP0

dPj
< τ

)
.
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Hence,

max
0≤j≤N

Pj(ψ 6= j) = max

{
P0(ψ 6= 0), max

1≤j≤N
Pj(ψ 6= j)

}

≥ max

{
τN(p0 − a), max

1≤j≤N
Pj(ψ 6= j)

}

≥ max

{
τN(p0 − a),

1

N

N∑
j=1

Pj(ψ 6= j)

}

= max

{
τN(p0 − a), 1− p0

}

≥ min
0≤p≤1

max

{
τN(p− a), 1− p

}
=
τN(1− a)

1 + τN

=

(
τN

1 + τN

)[
1

N

N∑
j=1

Pj

(
dP0

dPj
≥ τ

)]
.

In Lemma 29 below we show that

1

N

N∑
j=1

Pj

(
dP0

dPj
≥ τ

)
≥ 1−

a∗ +
√
a∗/2

log(1/τ)

where α∗ = N−1
∑

jK(Pj, P0). Choosing τ = 1/
√
N we get

max
0≤j≤N

Pj(ψ 6= j) ≥
√
N

1 +
√
N

(
1−

a∗ +
√
a∗/2

log(1/τ)

)

=

√
N

1 +
√
N

(
1−

2(a∗ +
√
a∗/2)

logN

)

≥ 1

2

(
1− 1

4

)
=

3

8
.

By Theorem 3,

Rn ≥
s

2

3

8
≥ s

8
. �

Lemma 29 Let a∗ = N−1
∑

jK(Pj, P0). Then,

1

N

N∑
j=1

Pj

(
dP0

dPj
≥ τ

)
≥ 1−

a∗ +
√
a∗/2

log(1/τ)
.
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Proof. Note that

Pj

(
dP0

dPj
≥ τ

)
= Pj

(
dPj
dP0

≤ 1

τ

)
= 1− Pj

(
log

dPj
dP0

≥ log

(
1

τ

))
.

By Markov’s inequality,

Pj

(
log

dPj
dP0

≥ log

(
1

τ

))
≤ Pj

([
log

dPj
dP0

]
+

≥ log

(
1

τ

))
≤ 1

log(1/τ)

∫ [
log

dPj
dP0

]
+

dPj.

According to Pinsker’s second inequality (see Thheorem 25 in the appendix and Tsyabakov
Lemma 2.5), ∫ [

log
dPj
dP0

]
+

dPj ≤ K(Pj, P0) +
√
K(Pj, K0)/2.

So

Pj

(
log

dPj
dP0

≥ log

(
1

τ

))
≥ 1− 1

log(1/τ)

[
K(Pj, P0) +

√
K(Pj, K0)/2

]
.

Using Jensen’s inequality,

1

N

∑
j

√
K(Pj, P0) ≤

√
1

N

∑
j

K(Pj, P0) =
√
a∗.

So

1

N

N∑
j=1

Pj

(
dP0

dPj
≥ τ

)
≥ 1− 1

log(1/τ)

1

N

∑
j

K(Pj, P0)− 1

log(1/τ)

1

N

∑
j

√
K(Pj, P0)/2

≥ 1− a∗
log(1/τ)

−
√
a∗/2

log(1/τ)
.

�

14.4 Assouad’s Lemma

Assouad’s Lemma is another way to get a lower bound using hypercubes. Let

Ω =
{
ω = (ω1, . . . , ωN) : ωj ∈ {0, 1}

}
be the set of binary sequences of length N . Let P = {Pω : ω ∈ Ω} be a set of 2N

distributions indexed by the elements of Ω. Let h(ω, ν) =
∑N

j=1 I(ωj 6= νj) be the Hamming
distance between ω, ν ∈ Ω.
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Lemma 30 Let {Pω : ω ∈ Ω} be a set of distributions indexed by ω and let θ(P ) be a
parameter. For any p > 0 and any metric d,

max
ω∈Ω

Eω

(
dp(θ̂, θ(Pω))

)
≥ N

2p+1

(
min
ω,ν

h(ω,ν)6=0

dp(θ(Pω), θ(Pν))

h(ω, ν)

) (
min
ω,ν

h(ω,ν)=1

‖Pω ∧ Pν‖

)
. (58)

For a proof, see van der Vaart (1998) or Tsybakov (2009).

14.5 The Bayesian Connection

Another way to find the minimax risk and to find a minimax estimator is to use a carefully
constructed Bayes estimator. In this section we assume we have a parametric family of
densities {p(x; θ) : θ ∈ Θ} and that our goal is to estimate the parameter θ. Since the

distributions are indexed by θ, we can write the risk as R(θ, θ̂n) and the maximum risk as

supθ∈ΘR(θ, θ̂n).

Let Q be a prior distribution for θ. The Bayes risk (with respect to Q) is defined to be

BQ(θ̂n) =

∫
R(θ, θ̂n)dQ(θ) (59)

and the Bayes estimator with respect to Q is the estimator θn that minimizes BQ(θ̂n). For
simplicity, assume that Q has a density q. The posterior density is then

q(θ|Xn) =
p(X1 . . . , Xn; θ)q(θ)

m(X1, . . . , Xn)

where m(x1, . . . , xn) =
∫
p(x1, . . . , xn; θ)q(θ)dθ.

Lemma 31 The Bayes risk can be written as∫ (∫
L(θ, θ̂n)q(θ|x1, . . . , xn)dθ

)
m(x1, . . . , xn)dx1 · · · dxn.

It follows from this lemma that the Bayes estimator can be obtained by finding θ̂n =
θ̂n(x1 . . . , xn) to minimize the inner integral

∫
L(θ, θ̂n)q(θ|x1, . . . , xn)dθ. Often, this is an

easy calculation.

Example 32 Suppose that L(θ, θ̂n) = (θ − θ̂n)2. Then the Bayes estimator is the posterior
mean θQ =

∫
θ q(θ|x1, . . . , xn)dθ.

32



Now we link Bayes estimators to minimax estimators.

Theorem 33 Let θ̂n be an estimator. Suppose that (i) the risk function R(θ, θ̂n) is constant

as a function of θ and (ii) θ̂n is the Bayes estimator for some prior Q. Then θ̂n is minimax.

Proof. We will prove this by contradiction. Suppose that θ̂n is not minimax. Then there is
some other estimator θ′ such that

sup
θ∈Θ

R(θ, θ′) < sup
θ∈Θ

R(θ, θ̂n). (60)

Now,

BQ(θ′) =

∫
R(θ, θ′)dQ(θ) definition of Bayes risk

≤ sup
θ∈Θ

R(θ, θ′) average is less than sup

< sup
θ∈Θ

R(θ, θ̂n) from (60)

=

∫
R(θ, θ̂n)dQ(θ) since risk is constant

= BQ(θ̂n) definition of Bayes risk.

So BQ(θ′) < BQ(θ̂n). This is a contradiction because θ̂n is the Bayes estimator for Q so it
must minimize BQ. �

Example 34 Let X ∼ Binomial(n, θ). The mle is X/n. Let L(θ, θ̂n) = (θ − θ̂n)2. Define

θ̂n =

X
n

+
√

1
4n

1 +
√

1
n

.

Some calculations show that this is the posterior mean under a Beta(α, β) prior with α =

β =
√
n/4. By computing the bias and variance of θ̂n it can be seen that R(θ, θ̂n) is constant.

Since θ̂n is Bayes and has constant risk, it is minimax.

Example 35 Let us now show that the sample mean is minimax for the Normal model. Let
X ∼ Np(θ, I) be multivariate Normal with mean vector θ = (θ1, . . . , θp). We will prove that

θ̂n = X is minimax when L(θ, θ̂n) = ‖θ̂n − θ‖2. Assign the prior Q = N(0, c2I). Then the
posterior is

N

(
c2x

1 + c2
,

c2

1 + c2
I

)
. (61)
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The Bayes risk BQ(θ̂n) =
∫
R(θ, θ̂n)dQ(θ) is minimized by the posterior mean θ̃ = c2X/(1 +

c2). Direct computation shows that BQ(θ̃) = pc2/(1+c2). Hence, if θ∗ is any estimator, then

pc2

1 + c2
= BQ(θ̃) ≤ BQ(θ∗) =

∫
R(θ∗, θ)dQ(θ) ≤ sup

θ
R(θ∗, θ).

This shows that R(Θ) ≥ pc2/(1 + c2) for every c > 0 and hence

R(Θ) ≥ p. (62)

But the risk of θ̂n = X is p. So, θ̂n = X is minimax.

14.6 Nonparametric Maximum Likelihood and the Le Cam Equation

In some cases, the minimax rate can be found by finding ε to solve the equation

H(εn) = nε2n

where H(ε) = logN(ε) and N(ε) is the smallest number of balls of size ε in the Hellinger
metric needed to cover P . H(ε) is called the Hellinger entropy of P . The equation H(ε) = nε2

is known as the Le Cam equation. In this section we consider one case where this is true.
For more general versions of this argument, see Shen and Wong (1995), Barron and Yang
(1999) and Birgé and Massart (1993).

Our goal is to estimate the density function using maximum likelihood. The loss function
is Hellinger distance. Let P be a set of probability density functions. We have in mind the
nonparametric situation where P does not correspond to some finite dimensional parametric
family. Let N(ε) denote the Hellinger covering number of P . We will make the following
assumptions:

(A1) We assume that there exist 0 < c1 < c2 <∞ such that c1 ≤ p(x) ≤ c2 for all x and all
p ∈ P .

(A2) We assume that there exists a > 0 such that

H(aε,P , h) ≤ sup
p∈P

H(ε, B(p, 4ε), h)

where B(p, δ) = {q : h(p, q) ≤ δ}.

(A3) We assume
√
nεn →∞ as n→∞ where H(εn) � nε2n.
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Assumption (A1) is a very strong and is made only to make the proofs simpler. Assumption
(A2) says that the local entropy and global entropy are of the same order. This is typically
true in nonparametric models. Assumption (A3) says that the rate of convergence is slower
than O(1/

√
n) which again is typical of nonparametric problems. An example of a class P

that satisfies these conditions is

P =

{
p : [0, 1]→ [c1, c2] :

∫ 1

0

p(x)dx = 1,

∫ 1

0

(p′′(x))2dx ≤ C2

}
.

Thanks to (A1) we have,

KL(p, q) ≤ χ2(p, q) =

∫
(p− q)2

p
≤ 1

c1

∫
(p− q)2

=
1

c1

∫
(
√
p−√q)2(

√
p+
√
q)2

≤ 4c2

c1

∫
(
√
p−√q)2 = Ch2(p, q) (63)

where C = 4c2/c1.

Let εn solve the Le Cam equation. More precisely, let

εn = min

{
ε : H

(
ε√
2C

)
≤ nε2

16C

}
. (64)

We will show that εn is the minimax rate.

Upper Bound. To show the upper bound, we will find an estimator that achieves the rate.
Let Pn = {p1, . . . , pN} be an εn/

√
2C covering set where N = N(εn/

√
2C). The set Pn is

an approximation to P that grows with sample size n. Such a set is called sieve. Let p̂ be
the mle over Pn, that is, p̂ = argmaxp∈PnL(p) where L(p) =

∏n
i=1 p(Xi) is the likelihood

function. We call p̂, a sieve maximum likelihood estimator. It is crucial that the estimator
is computed over Pn rather than over P to prevent overfitting. Using a sieve is a type of
regularization. We need the following lemma.

Lemma 36 (Wong and Shen) Let p0 and p be two densities and let δ = h(p0, p). Let
Z1, . . . , Zn be a sample from p0. Then

P
(
L(p)

L(p0)
> e−nδ

2/2

)
≤ e−nδ

2/4.
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Proof.

P
(
L(p)

L(p0)
> e−nδ

2/2

)
= P

(
n∏
i=1

√
p(Zi)

p0(Zi)
> e−nδ

2/4

)
≤ enδ

2/4E

(
n∏
i=1

√
p(Zi)

p0(Zi)

)

= enδ
2/4

(
E

(√
p(Zi)

p0(Zi)

))n

= enδ
2/4

(∫
√
p0 p

)n
= enδ

2/4

(
1− h2(p0, p)

2

)n
= enδ

2/4 exp

(
n log

(
1− h2(p0, p)

2

))
≤ enδ

2/4e−nh
2(p0,p)/2 = e−nδ

2/4.

�

In what follows, we use c, c1, c2, . . . , to denote various positive constants.

Theorem 37 supP∈P Ep(h(p, p̂)) = O(εn).

Proof. Let p0 denote the true density. Let p∗ be the element of Pn that minimizes KL(p0, pj).
Hence, KL(p0, p∗) ≤ Cd2(p0, p∗) ≤ C(ε2n/(2C)) = ε2n/2. Let

B = {p ∈ Pn : d(p∗, p) > Aεn}

where A = 1/
√

2C. Then

P(h(p̂, p0) > Dεn) ≤ P(h(p̂, p∗) + h(p0, p∗) > Dεn) ≤ P(h(p̂, p∗) +
ε√
2C

> Dεn)

= P(h(p̂, p∗) > Aεn) = P(p̂ ∈ B) ≤ P
(

sup
p∈B

L(p)

L(p∗)
> 1

)
≤ P

(
sup
p∈B

L(p)

L(p∗)
> e−nε

2
n(A2/2+1)

)
≤ P

(
sup
p∈B

L(p)

L(p∗)
> e−nε

2
nA

2/2

)
+ P

(
sup
p∈B

L(p0)

L(p∗)
> enε

2
n

)
≡ P1 + P2.

Now

P1 ≤
∑
p∈B

P
(
L(p)

L(p∗)
> e−nε

2
nA

2/2

)
≤ N(ε/

√
2C)e−nε

2
nA

2/4 ≤ enε
2
n/(16C)

where we used Lemma 36 and the definition of εn. To bound P2, defineKn = 1
n

∑n
i=1 log p0(Zi)

p∗(Zi)
.

Hence, E(Kn) = KL(p0, p∗) ≤ ε2/2. Also,

σ2 ≡ Var

(
log

p0(Z)

p∗(Z)

)
≤ E

(
log

p0(Z)

p∗(Z)

)2

≤ log

(
c2

c1

)
E
(

log
p0(Z)

p∗(Z)

)
= log

(
c2

c1

)
KL(p0, p∗) ≤ log

(
c2

c1

)
ε2

2
≡ c3ε

2
n
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where we used (63). So, by Bernstein’s inequality,

P2 = P(Kn > ε2n) = P(Kn − KL(p0, p∗) > ε2n − KL(p0, p∗))

≤ P
(
Kn − KL(p0, p∗) >

ε2n
2

)
≤ 2 exp

(
− nε4n

8σ2 + c4ε2n

)
≤ 2 exp

(
−c5nε

2
n

)
.

Thus, P1 + P2 ≤ exp (−c6nε
2
n) . Now,

E(h(p̂, p0)) =

∫ √2

0

P(h(p̂, p0) > t)dt

=

∫ Dεn

0

P(h(p̂, p0) > t)dt+

∫ √2

Dεn

P(h(p̂, p0) > t)dt

≤ Dεn + exp
(
−c6nε

2
n

)
≤ c7εn.

�

Lower Bound. Now we derive the lower bound.

Theorem 38 Let εn be the smallest ε such that H(aε) ≥ 64C2nε2. Then

inf
p̂

sup
P∈P

Ep(h(p, p̂)) = Ω(εn).

Proof. Pick any p ∈ P . Let B = {q : h(p, q) ≤ 4εn}. Let F = {p1, . . . , pN} be an εn
packing set for B. Then

N = logP (εn, B, h) ≥ logH(εn, B, h) ≥ logH(aεn) ≥ 64C2nε2.

Hence, for any Pj, Pk ∈ F ,

KL(P n
j , P

n
k ) = nKL(Pj, Pk) ≤ Cnh2(Pj, Pk) ≤ 16Cnε2n ≤

N

4
.

It follows from Fano’s inequality that

inf
p̂

sup
p∈P

Eph(p, p̂) ≥ 1

4
min
j 6=k

h(pj, pk) ≥
εn
4

as claimed. �

In summary, we get the minimax rate by solving

H(εn) � nε2n.

Now we can use the Le Cam equation to compute some rates:
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Example 39 Here are some standard examples:

Space Entropy Rate

Sobolev α ε−1/α n−α/(2α+1)

Sobolev α dimension d ε−d/α n−α/(2α+d)

Lipschitz α ε−d/α n−α/(2α+d)

Monotone 1/ε n−1/3

Besov Bα
p,q ε−d/α n−α/(2α+d)

Neural Nets see below see below
m-dimensional m log(1/ε) (m/n)

parametric model

In the neural net case we have f(x) = c0 +
∑

i ciσ(vTi x + bi) where ‖c‖1 ≤ C, ‖vi‖ = 1 and
σ is a step function or a Lipschitz sigmoidal function. Then(

1

ε

)1/2+1/d

≤ H(ε) ≤
(

1

ε

)1/2+1/(2d)

log(1/ε) (65)

and hence

n−(1+2/d)/(2+1/d)(log n)−(1+2/d)(1+1/d)/(2+1/d) ≤ εn ≤ (n/ log n)−(1+1/d)/(2+1/d). (66)
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