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1 Introduction, and k-nearest-neighbors

1.1 Basic setup

• Given a random pair (X,Y ) ∈ Rd × R, recall that the function

f0(x) = E(Y |X = x)

is called the regression function (of Y on X). The basic goal in nonparametric regression: to
construct an estimate f̂ of f0, from i.i.d. samples (xi, yi) ∈ Rd × R, i = 1, . . . , n that have the
same joint distribution as (X,Y ). We often call X the input, predictor, feature, etc., and Y
the output, outcome, response, etc.

• Note for i.i.d. samples (xi, yi) ∈ Rd × R, i = 1, . . . , n, we can always write

yi = f0(xi) + εi, i = 1, . . . , n,

where εi, i = 1, . . . , n are i.i.d. random errors, with mean zero. Therefore we can think about
the sampling distribution as follows: (xi, εi), i = 1, . . . , n are i.i.d. draws from some common
joint distribution, where E(εi) = 0, and yi, i = 1, . . . , n are generated from the above model

• It is typical to assume that each εi is independent of xi. This is a pretty strong assumption,
and you should think about it skeptically. We too will make this assumption, for simplicity.
It should be noted that a good portion of theoretical results that we cover (or at least, similar
theory) also holds without this assumption

1.2 Fixed or random inputs?

• Another common setup in nonparametric regression is to directly assume a model

yi = f0(xi) + εi, i = 1, . . . , n,

where now xi, i = 1, . . . , n are fixed inputs, and εi, i = 1, . . . , n are i.i.d. with E(εi) = 0

• For arbitrary xi, i = 1, . . . , n, this is really just the same as starting with the random input
model, and conditioning on the particular values of xi, i = 1, . . . , n. (But note: after condi-
tioning on the inputs, the errors are only i.i.d. if we assumed that the errors and inputs were
independent in the first place!)

• Generally speaking, nonparametric regression estimators are not defined with the random or
fixed setups specifically in mind, i.e., there is no real distinction made here. A caveat: some
estimators (like wavelets) do in fact assume evenly spaced fixed inputs, as in

xi = i/n, i = 1, . . . , n,

for evenly spaced inputs in the univariate case

1



• Theory is not completely the same between the random and fixed input worlds (some theory
is sharper when we assume fixed input points, especially evenly spaced input points), but for
the most part the theory is quite similar

• Therefore, in what follows, we won’t be very precise about which setup we assume—random
or fixed inputs—because it mostly doesn’t matter when introducing nonparametric regression
estimators and discussing basic properties

1.3 Notation

• We will define an empirical norm ‖ · ‖n in terms of the training points xi, i = 1, . . . , n, acting
on functions f : Rd → R, by

‖f‖2n =
1

n

n∑

i=1

f2(xi).

This makes sense no matter if the inputs are fixed or random (but in the latter case, it is a
random norm)

• When the inputs are considered random, we will write PX for the distribution of X, and we
will define the L2 norm ‖ · ‖2 in terms of PX , acting on functions f : Rd → R, by

‖f‖22 = E[f2(X)] =

∫
f2(x) dPX(x).

So when you see ‖ · ‖2 in use, it is a hint that the inputs are being treated as random

• A quantity of interest will be the (squared) error associated with an estimator f̂ of f0, which
can be measured in either norm:

‖f̂ − f0‖2n or ‖f̂ − f0‖22.

In either case, this is a random quantity (since f̂ is itself random). We will study bounds in
probability or in expectation. The expectation of the errors defined above, in terms of either
norm (but more typically the L2 norm) is most properly called the risk; but we will often be
a bit loose in terms of our terminology and just call this the error

1.4 What does “nonparametric” mean?

• Importantly, in nonparametric regression we don’t assume a particular parametric form for
f0. This doesn’t mean, however, that we can’t estimate f0 using (say) a linear combination of
spline basis functions, written as f̂(x) =

∑p
j=1 β̂jgj(x). A common question: the coefficients

on the spline basis functions β1, . . . , βp are parameters, so how can this be nonparametric?
Again, the point is that we don’t assume a parametric form for f0, i.e., we don’t assume that
f0 itself is an exact linear combination of splines basis functions g1, . . . , gp

• With (say) splines as a modeler, we can still derive rigorous results about the error incurred
in estimating arbitrary functions, because “splines are nearly everywhere”. In other words,
for any appropriately smooth function, there’s a spline that’s very close to it. Classic results
in approximation theory (de Boor 1978) make this precise; e.g., for any twice differentiable
function f0 on [0, 1], and points t1, . . . , tN ∈ [0, 1], there is a cubic spline f̄ spl0 with knots at
t1, . . . , tN such that

sup
x∈[0,1]

|f̄ spl0 (x)− f0(x)| ≤ C

N

√∫ 1

0

f ′′0 (x)2 dx,
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for a constant C > 0. Note
∫ 1

0
f ′′0 (x)2 dx is a measure of the smoothness of f0. If this remains

constant, and we choose N =
√
n knots, then the approximation error is on the order of 1/n,

which is smaller than the final statistical estimation error that we should expect

1.5 What we cover here

• The goal is to expose you to a variety of methods, and give you a flavor of some interesting
results, under different assumptions. A few topics we will cover into more depth than others,
but overall, this will be far from a complete treatement of nonparametric regression. Below
are some excellent texts out there that you can consult for more details, proofs, etc.

– Kernel smoothing, local polynomials: Tsybakov (2009)

– Regression splines, smoothing splines: de Boor (1978), Green & Silverman (1994), Wahba
(1990)

– Reproducing kernel Hilbert spaces: Scholkopf & Smola (2002), Wahba (1990)

– Wavelets: Johnstone (2011), Mallat (2008).

– General references, more theoretical: Gyorfi, Kohler, Krzyzak & Walk (2002), Wasserman
(2006)

– General references, more methodological: Hastie & Tibshirani (1990), Hastie, Tibshirani
& Friedman (2009), Simonoff (1996)

• Throughout, our discussion will bounce back and forth between the multivariate case (d > 1)
and univariate case (d = 1). Some methods have obvious (natural) multivariate extensions;
some don’t. In any case, we can always use low-dimensional (even just univariate) nonpara-
metric regression methods as building blocks for a high-dimensional nonparametric method.
We’ll study this near the end, when we talk about additive models

• Lastly, a lot of what we cover for nonparametric regression also carries over to nonparametric
classification, which we’ll cover (in much less detail) at the end

1.6 k-nearest-neighbors regression

• Here’s a basic method to start us off: k-nearest-neighbors regression. We fix an integer k ≥ 1
and define

f̂(x) =
1

k

∑

i∈Nk(x)

yi, (1)

where Nk(x) contains the indices of the k closest points of x1, . . . , xn to x

• This is not at all a bad estimator, and you will find it used in lots of applications, in many
cases probably because of its simplicity. By varying the number of neighbors k, we can achieve
a wide range of flexibility in the estimated function f̂ , with small k corresponding to a more
flexible fit, and large k less flexible

• But it does have its limitations, an apparent one being that the fitted function f̂ essentially
always looks jagged, especially for small or moderate k. Why is this? It helps to write

f̂(x) =

n∑

i=1

wi(x)yi, (2)
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where the weights wi(x), i = 1, . . . , n are defined as

wi(x) =

{
1/k if xi is one of the k nearest points to x

0 else

Note that wi(x) is discontinuous as a function of x, and therefore so is f̂(x)

• The representation (2) also reveals that the k-nearest-neighbors estimate is in a class of esti-
mates we call linear smoothers, i.e., writing y = (y1, . . . , yn) ∈ Rn, the vector of fitted values

µ̂ = (f̂(x1), . . . , f̂(xn)) ∈ Rn

can simply be expressed as µ̂ = Sy. (To be clear, this means that for fixed inputs x1, . . . , xn,
the vector of fitted values µ̂ is a linear function of y; it does not mean that f̂(x) need behave
linearly as a function of x!) This class is quite large, and contains many popular estimators,
as we’ll see in the coming sections

• The k-nearest-neighbors estimator is universally consistent, which means E‖f̂ − f0‖22 → 0 as
n→∞, with no assumptions other than E(Y 2) ≤ ∞, provided that we take k = kn such that
kn →∞ and kn/n→ 0; e.g., k =

√
n will do. See Chapter 6.2 of Gyorfi et al. (2002)

• Furthermore, assuming the underlying regression function f0 is Lipschitz continuous, the k-
nearest-neighbors estimate with k � n2/(2+d) satisfies

E‖f̂ − f0‖22 . n−2/(2+d). (3)

See Chapter 6.3 of Gyorfi et al. (2002)

• Proof sketch: assume that Var(Y |X = x) = σ2, a constant, for simplicity, and fix (condition
on) the training points. Using the bias-variance tradeoff,

E
[(
f̂(x)− f0(x)

)2]
=
(
E[f̂(x)]− f0(x)

)2
︸ ︷︷ ︸

Bias2(f̂(x))

+E
[(
f̂(x)− E[f̂(x)]

)2]
︸ ︷︷ ︸

Var(f̂(x))

=

(
1

k

∑

i∈Nk(x)

(
f0(xi)− f0(x)

))2

+
σ2

k

≤
(
L

k

∑

i∈Nk(x)

‖xi − x‖2
)2

+
σ2

k
.

In the last line we used the Lipschitz property |f0(x)− f0(z)| ≤ L‖x− z‖2, for some constant
L > 0. Now for “most” of the points we’ll have ‖xi − x‖2 ≤ C(k/n)1/d, for a constant C > 0.
(Think of a having input points xi, i = 1, . . . , n spaced equally over (say) [0, 1]d.) Then our
bias-variance upper bound becomes

(CL)2
(
k

n

)2/d

+
σ2

k
,

We can minimize this by balancing the two terms so that they are equal, giving k1+2/d � n2/d,
i.e., k � n2/(2+d) as claimed. Plugging this in gives the error bound of n−2/(2+d), as claimed
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Figure 1: The curse of dimensionality, with ε = 0.1

1.7 Curse of dimensionality

• Note that the above error rate n−2/(2+d) exhibits a very poor dependence on the dimension d.
To see it differently: given a small ε > 0, think about how large we need to make n to ensure
that n−2/(2+d) ≤ ε. Rearranged, this says n ≥ ε−(2+d)/2. That is, as we increase d, we require
exponentially more samples n to achieve an error bound of ε. See Figure 1 for an illustration
with ε = 0.1

• In fact, this phenomenon is not specific to k-nearest-neighbors, but a reflection of the curse of
dimensionality, the principle that estimation becomes exponentially harder as the number of
dimensions increases. This is made precise by minimax theory: we cannot hope to do better
than the rate in(3) over Hd(1, L), which we write for the space of L-Lipschitz functions in d
dimensions, for a constant L > 0. It can be shown that

inf
f̂

sup
f0∈Hd(1,L)

E‖f̂ − f0‖22 & n−2/(2+d), (4)

where the infimum above is over all estimators f̂ . See Chapter 3.2 of Gyorfi et al. (2002)

• So to circumvent this curse, we need to make more assumptions about what we’re looking for
in high dimensions. One such example is the additive model, covered near the end

2 Kernel smoothing, local polynomials

2.1 Kernel smoothing

• Kernel regression or kernel smoothing begins with a kernel function K : R→ R, satisfying

∫
K(t) dt = 1,

∫
tK(t) dt = 0, 0 <

∫
t2K(t) dt <∞.
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Epanechnikov Kernel
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FIGURE 6.1. In each panel 100 pairs xi, yi are generated at random from the
blue curve with Gaussian errors: Y = sin(4X)+ε, X ∼ U [0, 1], ε ∼ N(0, 1/3). In
the left panel the green curve is the result of a 30-nearest-neighbor running-mean
smoother. The red point is the fitted constant f̂(x0), and the red circles indicate
those observations contributing to the fit at x0. The solid yellow region indicates
the weights assigned to observations. In the right panel, the green curve is the
kernel-weighted average, using an Epanechnikov kernel with (half) window width
λ = 0.2.

6.1 One-Dimensional Kernel Smoothers

In Chapter 2, we motivated the k–nearest-neighbor average

f̂(x) = Ave(yi|xi ∈ Nk(x)) (6.1)

as an estimate of the regression function E(Y |X = x). Here Nk(x) is the set
of k points nearest to x in squared distance, and Ave denotes the average
(mean). The idea is to relax the definition of conditional expectation, as
illustrated in the left panel of Figure 6.1, and compute an average in a
neighborhood of the target point. In this case we have used the 30-nearest
neighborhood—the fit at x0 is the average of the 30 pairs whose xi values
are closest to x0. The green curve is traced out as we apply this definition
at different values x0. The green curve is bumpy, since f̂(x) is discontinuous
in x. As we move x0 from left to right, the k-nearest neighborhood remains
constant, until a point xi to the right of x0 becomes closer than the furthest
point xi′ in the neighborhood to the left of x0, at which time xi replaces xi′ .
The average in (6.1) changes in a discrete way, leading to a discontinuous

f̂(x).
This discontinuity is ugly and unnecessary. Rather than give all the

points in the neighborhood equal weight, we can assign weights that die
off smoothly with distance from the target point. The right panel shows
an example of this, using the so-called Nadaraya–Watson kernel-weighted

Figure 2: Comparing k-nearest-neighbor and Epanechnikov kernels, when d = 1. From Chapter 6 of
Hastie et al. (2009)

Three common examples are the box-car kernel:

K(t) =

{
1 |x| ≤ 1/2

0 otherwise
,

the Gaussian kernel:

K(t) =
1√
2π

exp(−t2/2),

and the Epanechnikov kernel:

K(t) =

{
3/4(1− t2) if |t| ≤ 1

0 else

• Given a bandwidth h > 0, the (Nadaraya-Watson) kernel regression estimate is defined as

f̂(x) =

n∑

i=1

K

(‖x− xi‖2
h

)
yi

n∑

i=1

K

(‖x− xi‖2
h

) . (5)

Hence kernel smoothing is also a linear smoother (2), with choice of weights wi(x) = K(‖x−
xi‖2/h)/

∑n
j=1K(‖x− xj‖2/h)

• In comparison to the k-nearest-neighbors estimator in (1), which can be thought of as a raw
(discontinuous) moving average of nearby responses, the kernel estimator in (5) is a smooth
moving average of responses. See Figure 2 for an example with d = 1

• A shortcoming: the kernel regression suffers from poor bias at the boundaries of the domain
of the inputs x1, . . . xn. This happens because of the asymmetry of the kernel weights in such
regions. See Figure 3
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2.2 Local linear regression

• We can alleviate this boundary bias issue by moving from a local constant fit to a local linear
fit, or a local higher-order fit

• To build intuition, another way to view the kernel estimator in (5) is the following: at each
input x, it employs the estimate f̂(x) = θ̂x, where θ̂x is the minimizer of

n∑

i=1

K

(‖x− xi‖2
h

)
(yi − θ)2,

over all θ ∈ R. Instead we could consider forming the local estimate f̂(x) = α̂x + β̂Tx x, where
α̂x, β̂x minimize

n∑

i=1

K

(‖x− xi‖2
h

)
(yi − α− βTxi)2.

over all α ∈ R, β ∈ Rd. This is called local linear regression

• We can rewrite the local linear regression estimate f̂(x). This is just given by a weighted least
squares fit, so

f̂(x) = b(x)T (BTΩB)−1BTΩy,

where b(x) = (1, x) ∈ Rd+1, B ∈ Rn×(d+1) with ith row b(xi), and Ω ∈ Rn×n is diagonal with
ith diagonal element K(‖x− xi‖2/h). We can write more concisely as f̂(x) = w(x)T y, where
w(x) = ΩB(BTΩB)−1b(x), which shows local linear regression is a linear smoother too

• The vector of fitted values µ̂ = (f̂(x1), . . . , f̂(xn)) can be expressed as

µ̂ =




w1(x)T y
...

wn(x)T y


 = B(BTΩB)−1BTΩy,

which should look familiar to you from weighted least squares

• Now we’ll sketch how the local linear fit reduces the bias, fixing (conditioning on) the training
points. Compute at a fixed point x,

E[f̂(x)] =

n∑

i=1

wi(x)f0(xi).

Using a Taylor expansion of f0 about x,

E[f̂(x)] = f0(x)

n∑

i=1

wi(x) +∇f0(x)T
n∑

i=1

(xi − x)wi(x) +R,

where the remainder term R contains quadratic and higher-order terms, and under regularity
conditions, is small. One can check that in fact for the local linear regression estimator f̂ ,

n∑

i=1

wi(x) = 1 and

n∑

i=1

(xi − x)wi(x) = 0,

and so E[f̂(x)] = f0(x) +R, which means that f̂ is unbiased to first-order
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N-W Kernel at Boundary
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Local Linear Regression at Boundary
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FIGURE 6.3. The locally weighted average has bias problems at or near the
boundaries of the domain. The true function is approximately linear here, but
most of the observations in the neighborhood have a higher mean than the target
point, so despite weighting, their mean will be biased upwards. By fitting a locally
weighted linear regression (right panel), this bias is removed to first order

because of the asymmetry of the kernel in that region. By fitting straight
lines rather than constants locally, we can remove this bias exactly to first
order; see Figure 6.3 (right panel). Actually, this bias can be present in the
interior of the domain as well, if the X values are not equally spaced (for
the same reasons, but usually less severe). Again locally weighted linear
regression will make a first-order correction.

Locally weighted regression solves a separate weighted least squares prob-
lem at each target point x0:

min
α(x0),β(x0)

N∑

i=1

Kλ(x0, xi) [yi − α(x0) − β(x0)xi]
2
. (6.7)

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0. Notice that although we fit
an entire linear model to the data in the region, we only use it to evaluate
the fit at the single point x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)

T , and W(x0) the N × N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)
T (BT W(x0)B)−1BT W(x0)y (6.8)

=

N∑

i=1

li(x0)yi. (6.9)

Equation (6.8) gives an explicit expression for the local linear regression
estimate, and (6.9) highlights the fact that the estimate is linear in the

Figure 3: Comparing (Nadaraya-Watson) kernel smoothing to local linear regression; the former is
biased at the boundary, the latter is unbiased (to first-order). From Chapter 6 of Hastie et al. (2009)

2.3 Consistency and error rates

• The kernel smoothing estimator is universally consistent (recall: E‖f̂ − f0‖22 → 0 as n → ∞,
with no assumptions other than E(Y 2) ≤ ∞), provided we take a compactly supported kernel
K, and bandwidth h = hn satisfying hn → 0 and nhdn → ∞ as n → ∞. See Chapter 5.2 of
Gyorfi et al. (2002)

• Now let us define the Holder class of functions Hd(k + γ, L), for an integer k ≥ 0, 0 < γ ≤ 1,
and L > 0, to contain all k times differentiable functions f : Rd → R such that
∣∣∣∣

∂kf(x)

∂xα1
1 xα2

2 . . . ∂xαd

d

− ∂kf(z)

∂xα1
1 xα2

2 . . . ∂xαd

d

∣∣∣∣ ≤ L‖x− z‖
γ
2 , for all x, z, and α1 + . . .+ αd = k.

Note that Hd(1, L) is the space of all L-Lipschitz functions, and Hd(k + 1, L) is the space of
all functions whose kth-order partial derivatives are L-Lipschitz

• Assuming that the underlying regression function f0 is Lipschitz, f0 ∈ Hd(1, L) for a constant
L > 0, the kernel smoothing estimator with a compactly supported kernel K and bandwidth
h � n−1/(2+d) satisfies

E‖f̂ − f0‖22 . n−2/(2+d). (6)

See Chapter 5.3 of Gyorfi et al. (2002)

• Recall from (4) we saw that this was the minimax optimal rate over Hd(1, L). More generally,
the minimax rate over Hd(α,L), for a constant L > 0, is

inf
f̂

sup
f0∈Hd(α,L)

E‖f̂ − f0‖22 & n−2α/(2α+d), (7)

see again Chapter 3.2 of Gyorfi et al. (2002)

• We also saw in (3) that the k-nearest-neighbors estimator achieved the same (optimal) error
rate as kernel smoothing in (6), for Lipschitz f0. Shouldn’t the kernel estimator be better,
because it is smoother? The answer is kind of both “yes” and “no”
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• The “yes” part: kernel smoothing still achieves the optimal convergence rate over Hd(1.5, L)
whereas it is believed (conjectured) that this not true for k-nearest-neighbors; see Chapters
5.3 and 6.3 of Gyorfi et al. (2002)

• The “no” part: neither kernel smoothing nor k-nearest-neighbors are optimal over Hd(2, L).
(An important remark: here we see a big discrepancy between the L2 and pointwise analyses.
Indeed, it can be shown that both kernel smoothing and k-nearest-neighbors satisfy

E
(
f̂(x)− f0(x)

)2
. n−4/(4+d)

for each fixed x, in the interior of the support of input density, when f0 ∈ Hd(2, L). But the
same is not true when we integrate over x; it is boundary bias that kills the error rate, for
both methods.)

• As an aside, why did we study the Holder class Hd(k + γ, L)? Because the analysis for kernel
smoothing can be done via Taylor expansions, and it becomes pretty apparent that things will
work out if we can bound the (partial) derivatives. So, in essense, it makes our proofs easier!

2.4 Higher-order smoothness

• How can we hope to get optimal error rates over Hd(α, d), when α ≥ 2? With kernels there
are basically two options: use local polynomials, or use higher-order kernels

• Local polynomials build on our previous idea of local linear regression (itself an extension of
kernel smoothing.) Consider d = 1, for concreteness. Define f̂(x) = β̂x,0 +

∑k
j=1 β̂x,jx

j , where
β̂x,0, . . . , β̂x,k minimize

n∑

i=1

K

( |x− xi|
h

)(
yi − β0 −

k∑

j=1

βjx
j
i

)2
.

over all β0, β1, . . . , βk ∈ R. This is called (kth-order) local polynomial regression

• Again we can express
f̂(x) = b(x)(BTΩB)−1BTΩy = w(x)T y,

where b(x) = (1, x, . . . , xk), B is an n× (k+ 1) matrix with ith row b(xi) = (1, xi, . . . , x
k
i ), and

Ω is as before. Hence again, local polynomial regression is a linear smoother

• Assuming that f0 ∈ H1(α,L) for a constant L > 0, a Taylor expansion shows that the local
polynomial estimator f̂ of order k, where k is the largest integer strictly less than α and where
the bandwidth scales as h � n−1/(2α+1), satisfies

E‖f̂ − f0‖22 . n−2α/(2α+1).

See Chapter 1.6.1 of Tsybakov (2009). This matches the lower bound in (7) (when d = 1)

• In multiple dimensions, d > 1, local polynomials become kind of tricky to fit, because of the
explosion in terms of the number of parameters we need to represent a kth order polynomial
in d variables. Hence, an interesting alternative is to return back kernel smoothing but use a
higher-order kernel. A kernel function K is said to be of order k provided that

∫
K(t) dt = 1,

∫
tjK(t) dt = 0, j = 1, . . . , k − 1, and 0 <

∫
tkK(t) dt <∞.

This means that the kernels we were looking at so far were of order 2
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Figure 4: A higher-order kernel function: specifically, a kernel of order 4

• An example of a 4th-order kernel is K(t) = 3
8 (3− 5t2)1{|t| ≤ 1}, plotted in Figure 4. Notice

that it takes negative values! Higher-order kernels, in fact, have an interesting connection to
smoothing splines, which we’ll learn shortly

• Lastly, while local polynomial regression and higher-order kernel smoothing can help “track”
the derivatives of smooth functions f0 ∈ Hd(α,L), α ≥ 2, it should be noted that they don’t
share the same universal consistency property of kernel smoothing (or k-nearest-neighbors).
See Chapters 5.3 and 5.4 of Gyorfi et al. (2002)

3 Regression splines, smoothing splines

3.1 Splines

• Regression splines and smoothing splines are motivated from a different perspective than ker-
nels and local polynomials; in the latter case, we started off with a special kind of local
averaging, and moved our way up to a higher-order local models. With regression splines and
smoothing splines, we build up our estimate globally, from a set of select basis functions

• These basis functions, as you might guess, are splines. Let’s assume that d = 1 for simplicity.
(We’ll stay in the univariate case, for the most part, in this section.) A kth-order spline f is
a piecewise polynomial function of degree k that is continuous and has continuous derivatives
of orders 1, . . . , k − 1, at its knot points. Specifically, there are t1 < . . . < tp such that f is a
polynomial of degree k on each of the intervals

(−∞, t1], [t1, t2], . . . , [tp,∞)

and f (j) is continuous at t1, . . . , tp, for each j = 0, 1, . . . , k − 1

• Splines have some special (some might say: amazing!) properties, and they have been a topic
of interest among statisticians and mathematicians for a very long time. See de Boor (1978)
for an in-depth coverage. Informally, a spline is a lot smoother than a piecewise polynomial,
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and so modeling with splines can serve as a way of reducing the variance of fitted estimators.
See Figure 5

• A bit of statistical folklore: it is said that a cubic spline is so smooth, that one cannot detect
the locations of its knots by eye!

• How can we parametrize the set of a splines with knots at t1, . . . , tp? The most natural way is
to use the truncated power basis, g1, . . . , gp+k+1, defined as

g1(x) = 1, g2(x) = x, . . . gk+1(x) = xk,

gk+1+j(x) = (x− tj)k+, j = 1, . . . , p.
(8)

(Here x+ denotes the positive part of x, i.e., x+ = max{x, 0}.) From this we can see that the
space of kth-order splines with knots at t1, . . . , tp has dimension p+ k + 1

• While these basis functions are natural, a much better computational choice, both for speed
and numerical accuracy, is the B-spline basis. This was a major development in spline theory
and is now pretty much the standard in software. The key idea: B-splines have local support,
so a basis matrix that we form with them (to be defined below) is banded. See de Boor (1978)
or the Appendix of Chapter 5 in Hastie et al. (2009) for details

3.2 Regression splines

• A first idea: let’s perform regression on a spline basis. In other words, given inputs x1, . . . , xn
and responses y1, . . . , yn, we consider fitting functions f that are kth-order splines with knots
at some chosen locations t1, . . . tp. This means expressing f as

f(x) =

p+k+1∑

j=1

βjgj(x),

where β1, . . . , βp+k+1 are coefficients and g1, . . . , gp+k+1, are basis functions for order k splines
over the knots t1, . . . , tp (e.g., the truncated power basis or B-spline basis)

• Letting y = (y1, . . . , yn) ∈ Rn, and defining the basis matrix G ∈ Rn×(p+k+1) by

Gij = gj(xi), i = 1, . . . , n, j = 1, . . . , p+ k + 1,

we can just use least squares to determine the optimal coefficients β̂ = (β̂1, . . . , β̂p+k+1),

β̂ = argmin
β∈Rp+k+1

‖y −Gβ‖22,

which then leaves us with the fitted regression spline f̂(x) =
∑p+k+1
j=1 β̂jgj(x)

• Of course we know that β̂ = (GTG)−1GT y, so the fitted values µ̂ = (f̂(x1), . . . , f̂(xn)) are

µ̂ = G(GTG)−1GT y,

and regression splines are linear smoothers

• This is a classic method, and can work well provided we choose good knots t1, . . . , tp; but in
general choosing knots is a tricky business. There is a large literature on knot selection for
regression splines via greedy methods like recursive partitioning
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5.2 Piecewise Polynomials and Splines 143
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FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.

increasing orders of continuity at the knots. The function in the lower
right panel is continuous, and has continuous first and second derivatives
at the knots. It is known as a cubic spline. Enforcing one more order of
continuity would lead to a global cubic polynomial. It is not hard to show
(Exercise 5.1) that the following basis represents a cubic spline with knots
at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)
3
+,

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)
3
+.

(5.3)

There are six basis functions corresponding to a six-dimensional linear space
of functions. A quick check confirms the parameter count: (3 regions)×(4
parameters per region) −(2 knots)×(3 constraints per knot)= 6.

Figure 5: Illustration of the effects of enforcing continuity at the knots, across various orders of the
derivative, for a cubic piecewise polynomial. From Chapter 5 of Hastie et al. (2009)
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3.3 Natural splines

• A problem with regression splines is that the estimates tend to display erractic behavior, i.e.,
they have high variance, at the boundaries of the input domain. (This is the opposite problem
to that with kernel smoothing, which had poor bias at the boundaries.) This only gets worse
as the polynomial order k gets larger

• A way to remedy this problem is to force the piecewise polynomial function to have a lower
degree to the left of the leftmost knot, and to the right of the rightmost knot—this is exactly
what natural splines do. A natural spline of order k, with knots at t1 < . . . < tp, is a piecewise
polynomial function f such that

– f is a polynomial of degree k on each of [t1, t2], . . . , [tp−1, tp],

– f is a polynomial of degree (k − 1)/2 on (−∞, t1] and [tp,∞),

– f is continuous and has continuous derivatives of orders 1, . . . , k − 1 at t1, . . . , tp.

It is implicit here that natural splines are only defined for odd orders k

• What is the dimension of the span of kth order natural splines with knots at t1, . . . , tp? Recall
for splines, this was p + k + 1 (the number of truncated power basis functions). For natural
splines, we can compute this dimension by counting:

(k + 1) · (p− 1)
︸ ︷︷ ︸

a

+
( (k − 1)

2
+ 1
)
· 2

︸ ︷︷ ︸
b

− k · p
︸︷︷︸
c

= p.

Above, a is the number of free parameters in the interior intervals [t1, t2], . . . , [tp−1, tp], b is
the number of free parameters in the exterior intervals (−∞, t1], [tp,∞), and c is the number
of constraints at the knots t1, . . . , tp. The fact that the total dimension is p is amazing; this is
independent of k!

• Note that there is a variant of the truncated power basis for natural splines, and a variant of
the B-spline basis for natural splines. Again, B-splines are the preferred parametrization for
computational speed and stability

• Natural splines of cubic order is the most common special case: these are smooth piecewise
cubic functions, that are simply linear beyond the leftmost and rightmost knots

3.4 Smoothing splines

• Smoothing splines, at the end of the day, are given by a regularized regression over the natural
spline basis, placing knots at all inputs x1, . . . , xn. They circumvent the problem of knot
selection (as they just use the inputs as knots), and they control for overfitting by shrinking
the coefficients of the estimated function (in its basis expansion)

• Interestingly, we can motivate and define a smoothing spline directly from a functional mini-
mization perspective. With inputs x1, . . . , xn lying in an interval [0, 1], the smoothing spline
estimate f̂ , of a given odd integer order k ≥ 0, is defined as

f̂ = argmin
f

n∑

i=1

(
yi − f(xi)

)2
+ λ

∫ 1

0

(
f (m)(x)

)2
dx, where m = (k + 1)/2. (9)

This is an infinite-dimensional optimization problem over all functions f for the which the
criterion is finite. This criterion trades off the least squares error of f over the observed pairs
(xi, yi), i = 1, . . . , n, with a penalty term that is large when the mth derivative of f is wiggly.
The tuning parameter λ ≥ 0 governs the strength of each term in the minimization
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• By far the most commonly considered case is k = 3, i.e., cubic smoothing splines, which are
defined as

f̂ = argmin
f

n∑

i=1

(
yi − f(xi)

)2
+ λ

∫ 1

0

f ′′(x)2 dx (10)

• Remarkably, it so happens that the minimizer in the general smoothing spline problem (9) is
unique, and is a natural kth-order spline with knots at the input points x1, . . . , xn! Here we
give a proof for the cubic case, k = 3, from Green & Silverman (1994) (see also Exercise 5.7
in Hastie et al. (2009))

The key result can be stated as follows: if f̃ is any twice differentiable function on [0, 1], and
x1, . . . , xn ∈ [0, 1], then there exists a natural cubic spline f with knots at x1, . . . , xn such that
f(xi) = f̃(xi), i = 1, . . . , n and

∫ 1

0

f ′′(x)2 dx ≤
∫ 1

0

f̃ ′′(x)2 dx.

Note that this would in fact prove that we can restrict our attention in (10) to natural splines
with knots at x1, . . . , xn

Proof: the natural spline basis with knots at x1, . . . , xn is n-dimensional, so given any n points
zi = f̃(xi), i = 1, . . . , n, we can always find a natural spline f with knots at x1, . . . , xn that
satisfies f(xi) = zi, i = 1, . . . , n. Now define

h(x) = f̃(x)− f(x).

Consider
∫ 1

0

f ′′(x)h′′(x) dx = f ′′(x)h′(x)
∣∣∣
1

0
−
∫ 1

0

f ′′′(x)h′(x) dx

= −
∫ xn

x1

f ′′′(x)h′(x) dx

= −
n−1∑

j=1

f ′′′(x)h(x)
∣∣∣
xj+1

xj

+

∫ xn

x1

f (4)(x)h′(x) dx

= −
n−1∑

j=1

f ′′′(x+j )
(
h(xj+1)− h(xj)

)
,

where in the first line we used integration by parts; in the second we used the that f ′′(a) =
f ′′(b) = 0, and f ′′′(x) = 0 for x ≤ x1 and x ≥ xn, as f is a natural spline; in the third we
used integration by parts again; in the fourth line we used the fact that f ′′′ is constant on
any open interval (xj , xj+1), j = 1, . . . , n− 1, and that f (4) = 0, again because f is a natural
spline. (In the above, we use f ′′′(u+) to denote limx↓u f ′′′(x).) Finally, since h(xj) = 0 for all
j = 1, . . . , n, we have ∫ 1

0

f ′′(x)h′′(x) dx = 0.

From this, it follows that
∫ 1

0

f̃ ′′(x)2 dx =

∫ 1

0

(
f ′′(x) + h′′(x)

)2
dx

=

∫ 1

0

f ′′(x)2 dx+

∫ 1

0

h′′(x)2 dx+ 2

∫ 1

0

f ′′(x)h′′(x) dx

=

∫ 1

0

f ′′(x)2 dx+

∫ 1

0

h′′(x)2 dx,
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and therefore ∫ 1

0

f ′′(x)2 dx ≤
∫ 1

0

f̃ ′′(x)2 dx, (11)

with equality if and only if h′′(x) = 0 for all x ∈ [0, 1]. Note that h′′ = 0 implies that h must
be linear, and since we already know that h(xj) = 0 for all j = 1, . . . , n, this is equivalent to
h = 0. In other words, the inequality (11) holds strictly except when f̃ = f , so the solution in
(10) is uniquely a natural spline with knots at the inputs

3.5 Finite-dimensional form

• The key result presented above tells us that we can choose a basis η1, . . . , ηn for the set of
kth-order natural splines with knots over x1, . . . , xn, and reparametrize the problem (9) as

β̂ = argmin
β∈Rn

n∑

i=1

(
yi −

n∑

j=1

βjηj(xi)
)2

+ λ

∫ 1

0

( n∑

j=1

βjη
(m)
j (x)

)2
dx. (12)

This is a finite-dimensional problem, and after we compute the coefficients β̂ ∈ Rn, we know
that the smoothing spline estimate is simply f̂(x) =

∑n
j=1 β̂jηj(x)

• Defining the basis matrix and penalty matrices N,Ω ∈ Rn×n by

Nij = ηj(xi) and Ωij =

∫ 1

0

η
(m)
i (x)η

(m)
j (x) dx for i, j = 1, . . . , n, (13)

the problem in (12) can be written more succintly as

β̂ = argmin
β∈Rn

‖y −Nβ‖22 + λβΩβ, (14)

showing the smoothing spline problem to be a type of generalized ridge regression problem.
In fact, the solution in (14) has the explicit form

β̂ = (NTN + λΩ)−1NT y,

and therefore the fitted values µ̂ = (f̂(x1), . . . , f̂(xn)) are

µ̂ = N(NTN + λΩ)−1NT y. (15)

Therefore, once again, smoothing splines are a type of linear smoother

• A special property of smoothing splines: the fitted values in (15) can be computed in O(n)
operations. This is achieved by forming N from the B-spline basis (for natural splines), and in
this case the matrix NTN + ΩI ends up being banded (with a bandwidth that only depends
on the polynomial order k). In practice, smoothing spline computations are extremely fast

3.6 Reinsch form

• It is informative to rewrite the fitted values in (15) is what is called Reinsch form,

µ̂ = N(NTN + λΩ)−1NT y

= N
(
NT
(
I + λ(NT )−1ΩN−1

)
N
)−1

NT y

= (I + λQ)−1y, (16)

where Q = (NT )−1ΩN−1
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Figure 6: Eigenvectors and eigenvalues for the Reinsch form of the cubic smoothing spline operator,
defined over n = 50 evenly spaced inputs on [0, 1]. The left plot shows the bottom 7 eigenvectors of
the Reinsch matrix Q. We can see that the smaller the eigenvalue, the “smoother” the eigenvector.
The right plot shows the weights wj = 1/(1 + λdj), j = 1, . . . , n implicitly used by the smoothing
spline estimator (17), over 8 values of λ. We can see that when λ is larger, the weights decay faster,
so the smoothing spline estimator places less weight on the “nonsmooth” eigenvectors

• Note that this matrix Q does not depend on λ. If we compute an eigendecomposition Q =
UDUT , then the eigendecomposition of S = N(NTN + λΩ)−1 = (I + λQ)−1 is

S =

n∑

j=1

1

1 + λdj
uju

T
j ,

where D = diag(d1, . . . , dn)

• Therefore the smoothing spline fitted values are µ̂ = Sy, i.e.,

µ̂ =

n∑

j=1

uTj y

1 + λdj
uj . (17)

Interpretation: smoothing splines perform a regression on the orthonormal basis u1, . . . , un ∈
Rn, yet they shrink the coefficients in this regression, with more shrinkage assigned to eigen-
vectors uj that correspond to large eigenvalues dj

• So what exactly are these basis vectors u1, . . . , un? These are known as the Demmler-Reinsch
basis, and a lot of their properties can be worked out analytically (Demmler & Reinsch 1975).
Basically: the eigenvectors uj that correspond to smaller eigenvalues dj are smoother, and so
with smoothing splines, we shrink less in their direction. Said differently, by increasing λ in
the smoothing spline estimator, we are tuning out the more wiggly components. See Figure 6

3.7 Kernel smoothing equivalence

• Something interesting happens when we plot the rows of the smoothing spline matrix S. For
evenly spaced inputs, they look like the translations of a kernel! See Figure 7, left plot. For
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Figure 7: Rows of the cubic smoothing spline operator S defined over n = 100 evenly spaced input
points on [0, 1]. The left plot shows 3 rows of S (in particular, rows 25, 50, and 75) for λ = 0.0002.
These look precisely like translations of a kernel. The right plot considers a setup where the input
points are concentrated around 0.5, and shows 3 rows of S (rows 5, 50, and 95) for the same value
of λ. These still look like kernels, but the bandwidth is larger in low-density regions of the inputs

unevenly spaced inputs, the rows still have a kernel shape; now, the bandwidth appears to
adapt to the density of the input points: lower density, larger bandwidth. See Figure 7, right
plot

• What we are seeing is an empirical validation of a beautiful asymptotic result by Silverman
(1984). It turns out that the cubic smoothing spline estimator is asymptotically equivalent to
a kernel regression estimator, with an unusual choice of kernel. Recall that both are linear
smoothers; this equivalence is achieved by showing that under some conditions the smoothing
spline weights converge to kernel weights, under the “Silverman kernel”:

K(x) =
1

2
exp(−|x|/

√
2) sin(|x|/

√
2 + π/4), (18)

and a local choice of bandwidth h(x) = λ1/4q(x)−1/4, where q(x) is the density of the input
points. That is, the bandwidth adapts to the local distribution of inputs. See Figure 8 for a
plot of the Silverman kernel

• The Silverman kernel is “kind of” a higher-order kernel. It satisfies

∫
K(x) dx = 1,

∫
xjK(x) dx = 0, j = 1, . . . , 3, but

∫
x4K(x) dx = −24.

So it lies outside the scope of usual kernel analysis

• There is more recent work that connects smoothing splines of all orders to kernel smoothing.
See, e.g., Eggermont & LaRiccia (2006), Wang et al. (2013).
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899 SPLINES AND VARIABLE KERNELS 

smoothing parameter A, but these dependences will not be expressed explicitly. 
The main object of this paper is to investigate the form of G in order to establish 
connections between spline smoothing and kernel (or convolution or moving 
average) smoothing. These connections give insight into the behaviour of the 
spline smoother and also show that splines should provide good results whether 
or not the design points are uniformly spaced. For the special case of regularly 
spaced design points, connections between spline and kernel smoothing have 
been obtained by Cox (1983) and, under the additional assumption of periodicity, 
by Cogburn and Davies (1974). 

Our study of G will show that, under suitable conditions, the weight function 
will be approximately of a form corresponding to smoothing by a kernel function 
K with bandwidth varying according to the local density f of design points. The 
kernel K is given by 

A graph of K is given in Figure 1. The effective local bandwidth demonstrated 
below is ~ l ' ~ f ( t ) - ' ' ~  asymptotically; thus the smoothing spline's behaviour is 
intermediate between fixed kernel smoothing (no dependence on f )  and smooth- 
ing based on an  average of a fixed number of neighbouring values (effective local 
bandwidth proportional to l l f ) .  The desirability of this dependence on a low 
power of f  will be discussed in Section 3. 

The paper is organized as follows. In Section 2 the main theorem is stated and 
discussed. In addition, some graphs of actual weight functions are presented and 
compared with their asymptotic forms. These show that the kernel approximation 
of the weight function is excellent in practice. Section 3 contains some discussion 

FIG.1. The effectiue kernel K .  

Figure 8: The Silverman kernel in (18), which is the (asymptotically) equivalent implicit kernel used
by smoothing splines. Note that it can be negative. From Silverman (1984)

3.8 Error rates

• Define the Sobolev class of functions W1(m,C), for an integer m ≥ 0 and C > 0, to contain all
m times differentiable functions f : R→ R such that

∫ (
f (m)(x)

)2
dx ≤ C2.

(The Sobolev class Wd(m,C) in d dimensions can be defined similarly, where we sum over all
partial derivatives of order m.)

• Assuming f0 ∈ W1(m,C) for the underlying regression function, where C > 0 is a constant,
the smoothing spline estimator f̂ in (9) of polynomial order k = 2m−1 with tuning parameter
λ � n1/(2m+1) � n1/(k+2) satisfies

‖f̂ − f0‖2n . n−2m/(2m+1) in probability.

The proof of this result uses much more fancy techniques from empirical process theory (en-
tropy numbers) than the proofs for kernel smoothing. See Chapter 10.1 of van de Geer (2000)

• This rate is seen to be minimax optimal over W1(m,C) (e.g., Nussbaum (1985)). Also, it is
worth noting that the Sobolev W1(m,C) and Holder H1(m,L) classes are equivalent in the
following sense: given W1(m,C) for a constant C > 0, there are L0, L1 > 0 such that

H1(m,L0) ⊆W1(m,C) ⊆ H1(m,L1).

The first containment is easy to show; the second is far more subtle, and is a consequence of
the Sobolev embedding theorem. (The same equivalences hold for the d-dimensional versions
of the Sobolev and Holder spaces.)

3.9 Multivariate splines

• Splines can be extended to multiple dimensions, in two different ways: thin-plate splines and
tensor-product splines. The former construction is more computationally efficient but more in

18



some sense more limiting; the penalty for a thin-plate spline, of polynomial order k = 2m− 1,
is

∑

α1+...+αd=m

∫ ∣∣∣∣
∂mf(x)

∂xα1
1 xα2

2 . . . ∂xαd

d

∣∣∣∣
2

dx,

which is rotationally invariant. Both of these concepts are discussed in Chapter 7 of Green &
Silverman (1994) (see also Chapters 15 and 20.4 of Gyorfi et al. (2002))

• The multivariate extensions (thin-plate and tensor-product) of splines are highly nontrivial,
especially when we compare them to the (conceptually) simple extension of kernel smoothing
to higher dimensions. In multiple dimensions, if one wants to study penalized nonparametric
estimation, it’s (argurably) easier to study reproducing kernel Hilbert space estimators. We’ll
see, in fact, that this covers smoothing splines (and thin-plate splines) as a special case

4 Mercer kernels, RKHS

• Smoothing splines are just one example of an estimator of the form

f̂ = argmin
f∈H

n∑

i=1

(
yi − f(xi)

)2
+ λJ(f), (19)

where H is a space of functions, and J is a penalty functional

• Another important subclass of this problem form: we choose the function space H = HK to be
what is called a reproducing kernel Hilbert space, or RKHS, associated with a particular kernel
function K : Rd × Rd → R. To avoid confusion: this is not the same thing as a smoothing
kernel! We’ll adopt the convention of calling this second kind of kernel, i.e., the kind used in
RKHS theory, a Mercer kernel, to differentiate the two

• There is an immense literature on the RKHS framework; here we follow the RKHS treatment
in Chapter 5 of Hastie et al. (2009). Suppose that K is a positive definite kernel; examples
include the polynomial kernel:

K(x, z) = (xT z + 1)k,

and the Gaussian radial basis kernel:

K(x, z) = exp
(
−δ‖x− z‖22

)
.

Mercer’s theorem tells us that for any positive definite kernel function K, we have an eigenex-
pansion of the form

K(x, z) =

∞∑

i=1

γiφi(x)φi(z),

for eigenfunctions φi(x), i = 1, 2, . . . and eigenvalues γi ≥ 0, i = 1, 2, . . ., satisfying
∑∞
i=1 γ

2
i <

∞. We then define HK , the RKHS, as the space of functions generated by K(·, z), z ∈ Rd,
i.e., elements in HK are of the form

f(x) =
∑

m∈M
αmK(x, zm),

for a (possibly infinite) set M
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• The above eigenexpansion of K implies that elements f ∈ HK can be represented as

f(x) =

∞∑

i=1

ciφi(x),

subject to the constraint that we must have
∑∞
i=1 c

2
i /γi < ∞. In fact, this representation is

used to define a norm ‖ · ‖HK
on HK : we define

‖f‖2HK
=

∞∑

i=1

c2i /γi.

• The natural choice now is to take the penalty functional in (19) as this squared RKHS norm,
J(f) = ‖f‖2HK

. This yields the RKHS problem

f̂ = argmin
f∈HK

n∑

i=1

(
yi − f(xi)

)2
+ λ‖f‖2HK

. (20)

A remarkable achievement of RKHS theory is that the infinite-dimensional problem (20) can
be reduced to a finite-dimensional one (as was the case with smoothing splines). This is called
the representer theorem and is attributed to Kimeldorf & Wahba (1970). In particular, this
result tells us that the minimum in (20) is uniquely attained by a function of the form

f(x) =

n∑

i=1

αiK(x, xi),

or in other words, a function f lying in the span of the functions K(·, xi), i = 1, . . . , n.
Furthermore, we can rewrite the problem (20) in finite-dimensional form, as

α̂ = argmin
α∈Rn

‖y −Kα‖22 + λαTKα, (21)

where K ∈ Rn×n is a symmetric matrix defined by Kij = K(xi, xj) for i, j = 1, . . . , n. Once
we have computed the optimal coefficients α̂ in (21), the estimated function f̂ in (20) is given
by

f̂(x) =

n∑

i=1

α̂iK(x, xi)

• The solution in (21) is
α̂ = (K + λI)−1y,

so the fitted values µ̂ = (f̂(x1), . . . , f̂(xn)) are

µ̂ = K(K + λI)−1y = (I + λK−1)−1y,

showing that the RKHS estimator is yet again a linear smoother

• In fact, it can be shown that thin-plate splines are themselves an example of smoothing via
Mercel kernels, using the kernel K(x, z) = ‖x − z‖2 log ‖x − z‖2. See Chapter 7 of Green &
Silverman (1994)

• Seen from a distance, there is something kind of subtle but extremely important about the
problem in (21): to define a flexible nonparametric function, in multiple dimensions, note that
we need not write down an explicit basis, but need only to define a “kernelized” inner product
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between any two input points, i.e., define the entries of the kernel matrix Kij = K(xi, xj).
This encodes a notion of similarity between xi, xj , or equivalently,

K(xi, xi) +K(xj , xj)− 2K(xi, xj)

encodes a notion of distance between xi, xj

• It can sometimes be much easier to define an appropriate kernel than to define explicit basis
functions. Think about, e.g., the case when the input points are images, or strings, or some
other weird objects—the kernel measure is defined entirely in terms of pairwise relationships
between input objects, which can be done even in exotic input spaces

• Given the kernel matrix K, the kernel regression problem (21) is completely specified, and
the solution is implicitly fit to lie in the span of the (infinite-dimensional) RKHS generated
by the chosen kernel. This is a pretty unique way of fitting flexible nonparametric regression
estimates. Note: this idea isn’t specific to regression: kernel classification, kernel PCA, etc.,
are built in the analogous way

5 Linear smoothers

5.1 Degrees of freedom and unbiased risk estimation

• Literally every estimator we have discussed so far, trained on (xi, yi) ∈ Rd × R, i = 1, . . . , n,
produces fitted values µ̂ = (f̂(x1), . . . , f̂(xn)) of the form

µ̂ = Sy

for some matrix S ∈ Rn×n depending on the inputs x1, . . . , xn—and also possibly on a tuning
parameter such as h in kernel smoothing, or λ in smoothing splines—but not on y. Recall that
such estimators are called linear smoothers

• Consider the inputs as fixed (nonrandom), and assume y has i.i.d. components with mean 0
and variance σ2. In this setting, we can define the degrees of freedom of an estimator µ̂

df(µ̂) =
1

σ2

n∑

i=1

Cov(µ̂i, yi).

In particular, recall that for linear smoothers µ̂ = Sy, the degrees of freedom is

df(µ̂) =

n∑

i=1

Sii = tr(S),

the trace of the smooth matrix S

• Example: for a regression spline estimator, of polynomial order k, with knots at the locations
t1, . . . , tp, recall that µ̂ = G(GTG−1)GT y for G ∈ Rn×(p+k+1) the order k spline basis matrix
over the knots t1, . . . , tp. Therefore

df(µ̂) = tr
(
G(GTG)−1GT

)
= tr

(
GTG(GTG)−1

)
= p+ k + 1,

the degrees of freedom of a regression spline is the number of knots + polynomial order + 1.
The same calculation shows that the degrees of freedom of a regression natural spline is simply
the number of knots (independent of the polynomial order)
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• Example: for a smoothing spline estimator, recall that we were able to write the fitted values
as µ̂ = (I + λK)−1, i.e., as

µ̂ = U(1 + λD)−1UT y,

where UDUT is the eigendecomposition of the Reinsch matrix K = (NT )−1ΩN−1 (and here
K depends only on the input points x1, . . . , xn and the polynomial order k). The smoothing
spline hence has degrees of freedom

df(µ̂) = tr
(
U(1 + λD)−1UT

)
=

n∑

i=1

1

1 + λdj
,

where D = diag(d1, . . . , dn). This is monotone decreasing in λ, with df(µ̂) = n when λ = 0,
and df(µ̂)→ (k + 1)/2 when λ→∞, the number of zero eigenvalues among d1, . . . , dn

• Degrees of freedom is generally a useful concept since it allows us to put two different estima-
tors on equal footing. E.g., suppose we wanted to compare kernel smoothing versus smoothing
splines; we could tune them to match their degrees of freedom, and then compare their per-
formances

• A second more concrete motivation for considering degrees of freedom: it allows us to form an
unbiased estimate of the error, or risk. Let µ = (f0(x1), . . . , f0(xn)) ∈ Rn be the vector given
by evaluating the underlying regression function at the inputs, i.e., µ = E(y). Then

Êrr =
1

n
‖y − µ̂‖22 − σ2 +

2σ2

n
df(µ̂)

serves as an unbiased estimate of the error Err = E‖µ− µ̂‖22/n. This is simply

Êrr =
1

n
‖y − Sy‖22 − σ2 +

2σ2

n
tr(S) (22)

• Suppose our linear smoother of interest depends on a tuning parameter α (e.g., h for kernel
smoothing, λ for smoothing splines, or λ for Mercer kernels), and express this as µ̂α = Sαy.
Then we could choose the tuning parameter α to minimize the estimated test error, as in

α̂ = argmin
α

1

n
‖y − Sαy‖22 +

2σ2

n
tr(Sα).

This is just like the Cp criterion, or AIC, in ordinary linear regression (we could also replace
the factor of 2 above with log n to obtain something like BIC)

5.2 Leave-one-out and generalized cross-validation

• Of course, cross-validation gives us another way to perform error estimation and model selec-
tion. For linear smoothers µ̂ = (f̂(x1), . . . f̂(xn)) = Sy, leave-one-out cross-validation can be
particularly appealing because in many cases we have the seemingly magical reduction

CV(f̂) =
1

n

n∑

i=1

(
yi − f̂−i(xi)

)2
=

1

n

n∑

i=1

(
yi − f̂(xi)

1− Sii

)2

, (23)

where f̂−i denotes the estimated regression function that was trained on all but the ith pair
(xi, yi). This leads to a big computational savings since it shows us that, to compute leave-
one-out cross-validation error, we don’t have to actually ever compute f̂−i, i = 1, . . . , n
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• Why does (23) hold, and for which linear smoothers µ̂ = Sy? Just rearranging (23) perhaps
demystifies this seemingly magical relationship and helps to answer these questions. Suppose
we knew that f̂ had the property

f̂−i(xi) =
1

1− Sii
(
f̂(xi)− Siiyi

)
. (24)

That is, to obtain the estimate at xi under the function f̂−i fit on all but (xi, yi), we take
the sum of the linear weights (from our original fitted function f̂) across all but the ith point,
f̂(xi)− Siiyi =

∑
i 6=j Sijyj , and then renormalize so that these weights sum to 1

• This is not an unreasonable property; e.g., we can immediately convince ourselves that it holds
for kernel smoothing. A little calculation shows that it also holds for smoothing splines (using
the Sherman-Morrison update formula). How about for k-nearest-neighbors?

• From the special property (24), it is easy to show the leave-one-out formula (23). We have

yi − f̂−i(xi) = yi −
1

1− Sii
(
f̂(xi)− Siiyi

)
=
yi − f̂(xi)

1− Sii
,

and then squaring both sides and summing over n gives (23)

• Finally, generalized cross-validation is a small twist on the right-hand side in (23) that gives
an approximation to leave-one-out cross-validation error. It is defined as by replacing the
appearences of diagonal terms Sii with the average diagonal term tr(S)/n,

GCV(f̂) =
1

n

n∑

i=1

(
yi − f̂(xi)

1− tr(S)/n

)2

.

This can be of computational advantage in some cases where tr(S) is easier to compute that
individual elements Sii, and is also closely tied to the unbiased test error estimate in (22), seen
by making the approximation 1/(1− x)2 ≈ 1 + 2x

6 Locally adaptive estimators

6.1 Wavelet smoothing

• Not every nonparametric regression estimate needs to be a linear smoother (though this does
seem to be very common), and wavelet smoothing is one of the leading nonlinear tools for non-
parametric estimation. The theory of wavelets is elegant and we only give a brief introduction
here; see Mallat (2008) for an excellent reference

• You can think of wavelets as defining an orthonormal function basis, with the basis functions
exhibiting a highly varied level of smoothness. Importantly, these basis functions also display
spatially localized smoothness at different locations in the input domain. There are actually
many different choices for wavelets bases (Haar wavelets, symmlets, etc.), but these are details
that we will not go into

• We assume d = 1. Local adaptivity in higher dimensions is not nearly as settled as it is with
smooting splines or (especially) kernels (multivariate extensions of wavelets are possible, i.e.,
ridgelets and curvelets, but are complex)
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• Consider basis functions, φ1, . . . , φn, evaluated over n equally spaced inputs over [0, 1]:

xi = i/n, i = 1, . . . , n.

The assumption of evenly spaced inputs is crucial for fast computations; we also typically
assume with wavelets that n is a power of 2. We now form a wavelet basis matrix W ∈ Rn×n,
defined by

Wij = φj(xi), i, j = 1, . . . , n

• The goal, given outputs y = (y1, . . . , yn) over the evenly spaced input points, is to represent
y as a sparse combination of the wavelet basis functions. To do so, we first perform a wavelet
transform (multiply by WT ):

θ̃ = WT y,

we threshold the coefficients θ (the threshold function Tλ to be defined shortly):

θ̂ = Tλ(θ̃),

and then perform an inverse wavelet transform (multiply by W ):

µ̂ = Wθ̂

• The wavelet and inverse wavelet transforms (multiplication by WT and W ) each require O(n)
operations, and are practically extremely fast due do clever pyramidal multiplication schemes
that exploit the special structure of wavelets

• The threshold function Tλ is usually taken to be hard-thresholding, i.e.,

[T hard
λ (z)]i = zi · 1{|zi| ≥ λ}, i = 1, . . . , n,

or soft-thresholding, i.e.,

[T soft
λ (z)]i =

(
zi − sign(zi)λ

)
· 1{|zi| ≥ λ}, i = 1, . . . , n.

These thresholding functions are both also O(n), and computationally trivial, making wavelet
smoothing very fast overall

• We should emphasize that wavelet smoothing is not a linear smoother, i.e., there is no single
matrix S such that µ̂ = Sy for all y

• We can write the wavelet smoothing estimate in a more familiar form, following our previous
discussions on basis functions and regularization. For hard-thresholding, we solve

θ̂ = argmin
θ∈Rn

‖y −Wθ‖22 + λ2‖θ‖0,

and then the wavelet smoothing fitted values are µ̂ = Wθ̂. Here ‖θ‖0 =
∑n
i=1 1{θi 6= 0}, the

number of nonzero components of θ, called the “`0 norm”. For soft-thresholding, we solve

θ̂ = argmin
θ∈Rn

‖y −Wθ‖22 + 2λ‖θ‖1,

and then the wavelet smoothing fitted values are µ̂ = Wθ̂. Here ‖θ‖1 =
∑n
i=1 |θi|, the `1 norm
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6.2 The strengths of wavelets, the limitations of linear smoothers

• Apart from its computational efficiency, an important strength of wavelet smoothing is that
it can represent a signal that has a spatially heterogeneous degree of smoothness, i.e., it can
be both smooth and wiggly at different regions of the input domain. The reason that wavelet
smoothing can achieve such local adaptivity is because it selects a sparse number of wavelet
basis functions, by thresholding the coefficients from a basis regression

• We can make this more precise by considering convergence rates over an appropriate function
class. In particular, we define the total variation class F (k,C), for an integer k ≥ 0 and C > 0,
to contain all k times (weakly) differentiable functions whose kth derivative satisfies

TV(f (k)) = sup
0=z1<z2<...<zN<zN+1=1

N∑

j=1

|f (k)(zi+1)− f (k)(zi)| ≤ C.

(Note that if f has k + 1 continuous derivatives, then TV(f (k)) =
∫ 1

0
|f (k+1)(x)| dx.)

• For the wavelet smoothing estimator, denoted by f̂wav, Donoho & Johnstone (1998) provide
a seminal analysis. Assuming that f0 ∈ F (k,C) for a constant C > 0 (and further conditions
on the setup), they show that (for an appropriate scaling of the smoothing parameter λ),

E‖f̂wav − f0‖22 . n−(2k+2)/(2k+3) and inf
f̂

sup
f0∈F (k,C)

E‖f̂ − f0‖22 & n−(2k+2)/(2k+3). (25)

Thus wavelet smoothing attains the minimax optimal rate over the function class F (k,C).
(For a translation of this result to the notation of the current setting, see Tibshirani (2014).)

• Some important questions: (i) just how big is the function class F (k,C)? And (ii) can a linear
smoother also be minimax optimal over F (k,C)?

It is not hard to check F (k,C) ⊇W1(k + 1, C ′), the (univariate) Sobolev space of order k+ 1,
for some other constant C ′ > 0. We know from the previously mentioned theory on Sobolev
spaces that the minimax rate over W1(k + 1, C ′) is again n−(2k+2)/(2k+3). This suggests that
these two function spaces might actually be somewhat close in size

But in fact, the overall minimax rates here are sort of misleading, and we will see from the
behavior of linear smoothers that the function classes are actually quite different. Donoho &
Johnstone (1998) showed that the minimax error over F (k,C), restricted to linear smoothers,
satisfies

inf
f̂ linear

sup
f0∈F (k,C)

E‖f̂ − f0‖22 & n−(2k+1)/(2k+2). (26)

(See again Tibshirani (2014) for a translation to the notation of the current setting.) Hence
the answers to our questions are: (ii) linear smoothers cannot cope with the heterogeneity
of functions in F (k,C), and are are bounded away from optimality, which means (i) we can
interpret F (k,C) as being much larger than W1(k + 1, C ′), because linear smoothers can be
optimal over the latter class but not over the former. See Figure 9 for a diagram

• Let’s back up to emphasize just how remarkable the results (25), (26) really are. Though it
may seem like a subtle difference in exponents, there is actually a significant difference in the
minimax rate and minimax linear rate: e.g., when k = 0, this is a difference of n−1/2 (optimal)
and n−1/2 (optimal among linear smoothers) for estimating a function of bounded variation.
Recall also just how broad the linear smoother class is: kernel smoothing, regression splines,
smoothing splines, RKHS estimators ... none of these methods can achieve a better rate than
n−1/2 over functions of bounded variation
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Figure 9: A diagram of the minimax rates over F (k,C) (denoted Fk in the picture) and W1(k+1, C)
(denoted Wk+1 in the picture)

• Practically, the differences between wavelets and linear smoothers in problems with spatially
heterogeneous smoothness can be striking as well. However, you should keep in mind that
wavelets are not perfect: a shortcoming is that they require a highly restrictive setup: recall
that they require evenly spaced inputs, and n to be power of 2, and there are often further
assumptions made about the behavior of the fitted function at the boundaries of the input
domain

• Also, though you might say they marked the beginning of the story, wavelets are not the end
of the story when it comes to local adaptivity. The natural thing to do, it might seem, is
to make (say) kernel smoothing or smoothing splines more locally adaptive by allowing for a
local bandwidth parameter or a local penalty parameter. People have tried this, but it is both
difficult theoretically and practically to get right. A cleaner approach is to redesign the kind
of penalization used in constructing smoothing splines directly, which we discuss next

6.3 Locally adaptive regression splines

• Locally adaptive regression splines (Mammen & van de Geer 1997), as their name suggests,
can be viewed as variant of smoothing splines that exhibit better local adaptivity. For a given
integer order k ≥ 0, the estimate is defined as

f̂ = argmin
f

n∑

i=1

(
yi − f(xi)

)2
+ λTV(f (k)). (27)

The minimization domain is infinite-dimensional, the space of all functions for which the
criterion is finite

• Another remarkable variational result, similar to that for smoothing splines, shows that (27)
has a kth order spline as a solution (Mammen & van de Geer 1997). This almost turns the
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minimization into a finite-dimensional one, but there is one catch: the knots of this kth-order
spline are generally not known, i.e., they need not coincide with the inputs x1, . . . , xn. (When
k = 0, 1, they do, but in general, they do not)

• To deal with this issue, we can redefine the locally adaptive regression spline estimator to be

f̂ = argmin
f∈Gk

n∑

i=1

(
yi − f(xi)

)2
+ λTV(f (k)), (28)

i.e., we restrict the domain of minimization to be Gk, the space of kth-order spline functions
with knots in Tk, where Tk is a subset of {x1, . . . , xn} of size n−k−1. The precise definition of
Tk is not important; it is just given by trimming away k + 1 boundary points from the inputs

• As we already know, the space Gk of kth-order splines with knots in Tk has dimension |Tk|+
k+ 1 = n. Therefore we can choose a basis g1, . . . , gn for the functions in Gk, and the problem
in (28) becomes one of finding the coefficients in this basis expansion,

β̂ = argmin
f∈Gk

n∑

i=1

(
yi −

n∑

j=1

βjgj(xi)
)2

+ λTV
{( n∑

j=1

βjgj(xi)
)(k)}

, (29)

and then we have f̂(x) =
∑n
j=1 β̂jgj(x)

• Now define the basis matrix G ∈ Rn×n by

Gij = gj(xi), i = 1, . . . , n.

Suppose we choose g1, . . . , gn to be the truncated power basis. Denoting Tk = {t1, . . . , tn−k−1},
we compute

( n∑

j=1

βjgj(xi)
)(k)

= k! + k!

n∑

j=k+2

βj1{x ≥ tj−k−1},

and so

TV
{( n∑

j=1

βjgj(xi)
)(k)}

= k!

n∑

j=k+2

|βj |.

Hence the locally adaptive regression spline problem (29) can be expressed as

β̂ = argmin
β∈Rn

‖y −Gβ‖22 + λk!

n∑

i=k+2

|βi|. (30)

This is a lasso regression problem on the truncated power basis matrix G, with the first k+ 1
coefficients (those corresponding to the pure polynomial functions, in the basis expansion) left
unpenalized

• This reveals a key difference between the locally adaptive regression splines (30) (originally,
problem (28)) and the smoothing splines (14) (originally, problem (9)). In the first problem,
the total variation penalty is translated into an `1 penalty on the coefficients of the truncated
power basis, and hence this acts a knot selector for the estimated function. That is, at the
solution in (30), the estimated spline has knots at a subset of Tk (at a subset of the input
points x1, . . . , xn), with fewer knots when λ is larger. In contrast, recall, at the smoothing
spline solution in (14), the estimated function has knots at each of the inputs x1, . . . , xn. This
is a major difference between the `1 and `2 penalties
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• From a computational perspective, the locally adaptive regression spline problem in (30) is
actually a lot harder than the smoothing spline problem in (14). Recall that the latter reduces
to solving a single banded linear system, which takes O(n) operations. On the other hand,
fitting locally adaptive regression splines in (30) requires solving a lasso problem with a dense
n × n regression matrix G; this takes something like O(n3) operations. So when n = 10, 000,
there is a big difference between the two!

• There is a tradeoff here, as with extra computation comes much improved local adaptivity of
the fits. See Figure 10 for an example. Theoretically, when f0 ∈ F (k,C) for a constant C > 0,
Mammen & van de Geer (1997) show the locally adaptive regression spline estimator, denoted
f̂ lrs, with λ � n1/(2k+3), satisfies

‖f̂ lrs − f0‖2n . n−(2k+2)/(2k+3) in probability,

so (like wavelets) it achieves the minimax optimal rate over n−(2k+2)/(2k+3). In this regard,
as we discussed previously, they actually have a big advantage over any linear smoother (not
just smoothing splines)

6.4 Trend filtering

• At a high level, you can think of trend filtering as computationally efficient version of locally
adaptive regression splines, though their original construction (Steidl et al. 2006, Kim et al.
2009) comes from a fairly different perspective. We will begin by describing their connection
to locally adaptive regression splines, following Tibshirani (2014)

• Revisit the formulation of locally adaptive regression splines in (28), where the minimization
domain is Gk = span{g1, . . . , gn}, and g1, . . . , gn are the kth-order truncated power basis in (8)
having knots in a set Tk ⊆ {x1, . . . xn} with size |Tk| = n− k − 1. The trend filtering problem
is given by replacing Gk with a different function space,

f̂ = argmin
f∈Hk

n∑

i=1

(
yi − f(xi)

)2
+ λTV(f (k)), (31)

where the new domain is Hk = span{h1, . . . , hn}. Assuming that the input points are ordered,
x1 < . . . < xn, the functions h1, . . . , hn are defined by

hj(x) =

j−1∏

`=1

(x− x`), j = 1, . . . , k + 1,

hk+1+j(x) =

k∏

`=1

(x− xj+`) · 1{x ≥ xj+k}, j = 1, . . . , n− k − 1.

(32)

(Our convention is to take the empty product to be 1, so that h1(x) = 1.) These are dubbed
the falling factorial basis, and are piecewise polynomial functions, taking an analogous form
to the truncated power basis functions in (8). Loosely speaking, they are given by replacing
an rth-order power function in the truncated power basis with an appropriate r-term product,
e.g., replacing x2 with (x−x2)(x−x1), and (x−tj)k with (x−xj+k)(x−xj+k−1)·. . . , (x−xj+1)

• Defining the falling factorial basis matrix

Hij = hj(xi), i, j = 1, . . . , n,
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Figure 10: The top left plot shows a simulated true regression function, which has inhomogeneous
smoothness: smoother towards the left part of the domain, wigglier towards the right. The top right
plot shows the locally adaptive regression spline estimate with 19 degrees of freedom; notice that it
picks up the right level of smoothness throughout. The bottom left plot shows the smoothing spline
estimate with the same degrees of freedom; it picks up the right level of smoothness on the left, but
is undersmoothed on the right. The bottom right panel shows the smoothing spline estimate with
33 degrees of freedom; now it is appropriately wiggly on the right, but oversmoothed on the left.
Smoothing splines cannot simultaneously represent different levels of smoothness at different regions
in the domain; the same is true of any linear smoother
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it is now straightforward to check that the proposed problem of study, trend filtering in (31),
is equivalent to

β̂ = argmin
β∈Rn

‖y −Hβ‖22 + λk!

n∑

i=k+2

|βi|. (33)

This is still a lasso problem, but now in the falling factorial basis matrix H. Compared to the
locally adaptive regression spline problem (30), there may not seem to be much of a difference
here—like G, the matrix H is dense, and solving (33) would be slow. So why did we go to all
the trouble of defining trend filtering, i.e., introducing the somewhat odd basis h1, . . . , hn in
(32)?

• The usefulness of trend filtering (33) is seen after reparametrizing the problem, by inverting
H. Let θ = Hβ, and rewrite the trend filtering problem as

θ̂ = argmin
θ∈Rn

‖y − θ‖22 + λ‖Dθ‖1, (34)

where D ∈ R(n−k−1)×n denotes the last n− k− 1 rows of k! ·H−1. Explicit calculation shows
that D is a banded matrix (Tibshirani 2014, Wang et al. 2014). For simplicity of exposition,
consider the case when xi = i, i = 1, . . . , n. Then, e.g., the first 3 orders of difference operators
are:

D =

[ −1 1 0 . . .
0 −1 1 . . .

.

.

.

]
, D =




1 −2 1 0 . . .
0 1 −2 1 . . .
0 0 1 −2 . . .

.

.

.


, D =



−1 3 −3 1 . . .
0 −1 3 −3 . . .
0 0 −1 3 . . .

.

.

.




when k = 0 when k = 1 when k = 2.

One can hence interpret D as a type of discrete derivative operator, of order k + 1. This also
suggests an intuitive interpretation of trend filtering (34) as a discrete approximation to the
original locally adaptive regression spline problem in (27)

• The bandedness of D means that the trend filtering problem (34) can be solved efficiently, in
close to linear time (complexity O(n1.5) in the worst case). Thus trend filtering estimates are
much easier to fit than locally adaptive regression splines

• But what of their statistical relevancy? Did switching over to the falling factorial basis (32)
wreck the local adaptivity properties that we cared about in the first place? Fortunately, the
answer is no, and in fact, trend filtering and locally adaptive regression spline estimates are
extremely hard to distinguish in practice. See Figure 11

• Moreover, Tibshirani (2014), Wang et al. (2014) prove that the estimates from trend filtering
and locally adaptive regression spline estimates, denoted f̂ tf and f̂ lrs, respectively, when the
tuning parameter λ for each scales as n1/(2k+3), satisfy

‖f̂ tv − f̂ lrs‖2n . n−(2k+2)/(2k+3) in probability.

This coupling shows that trend filtering converges to the underlying function f0 at the rate
n−(2k+2)/(2k+3) whenever locally adaptive regression splines do, making them also minimax
optimal over F (k,C). In short, trend filtering offers provably significant improvements over
linear smoothers, with a computational cost that is not too much steeper than a single banded
linear system solve
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Figure 11: Trend filtering and locally adaptive regression spline estimates, fit on the same data set
as in Figure 10. The two are tuned at the same level, and the estimates are visually indistinguishable

7 Additive models

7.1 Motivation and definition

• Computational efficiency and statisical efficiency are both very real concerns as the dimension
d grows large, in nonparametric regression. If you’re trying to fit a kernel, thin-plate spline,
or RKHS estimate in > 20 dimensions, without any other kind of structural constraints, then
you’ll probably be in trouble (unless you have a very fast computer and tons of data)

• Recall from (7) that the minimax rate over the Holder class Hd(α,L) is n−2α/(2α+d), which
has an exponentially bad dependence on the dimension d. This is usually called the curse of
dimensionality (though the term apparently originated with Bellman (1962), who encountered
an analogous issue but in a separate context—dynamic programming)

• What can we do? One answer is to change what we’re looking for, and fit estimates with less
flexibility in high dimensions. Think of a linear model in d variables: there is a big difference
between this and a fully nonparametric model in d variables. Is there some middle man that
we can consider, that would make sense?

• Additive models play the role of this middle man. Instead of considering a full d-dimensional
function of the form

f(x) = f(x·1, . . . , x·d), (35)

we restrict our attention to functions of the form

f(x) = f1(x·1) + . . .+ fd(x·d). (36)

(Here the notation x·j denotes the jth component of x ∈ Rd, slightly cumbersome notation
used so as not to confuse with the labeling of the d-dimensional inputs x1, . . . , xn). As each
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function fj , j = 1, . . . , d is univariate, fitting an estimate of the form (36) is certainly less
ambitious than fitting one of the form (35). On the other hand, the scope of (36) is still big
enough that we can capture interesting (marginal) behavior in high dimensions

• The choice of modeler (36) need not be regarded as an assumption we make about the true
function f0, just like we don’t always assume that the true model is linear when using linear
regression. In many cases, we fit an additive model because we think it may provide a useful
approximation to the truth, and is able to scale well with the number of dimensions d

• A classic result by Stone (1985) encapsulates this idea precisely. He shows that, while it may
be difficult to estimate an arbitrary regression function f0 in multiple dimensions, we can still
estimate its best additive approximation f̄add well. Assuming each component function f̄add0,j ,
j = 1, . . . , d lies in the Holder class H1(α,L), for constant L > 0, and we can use an additive
model, with each component f̂j , j = 1, . . . , d estimated using an appropriate kth degree spline,
to give

E‖f̂j − f̄addj ‖22 . n−2α/(2α+1), j = 1, . . . , d.

Hence each component of the best additive approximation f̄add to f0 can be estimated at the
optimal univariate rate. Loosely speaking, though we cannot hope to recover f0 arbitrarily,
we can recover its major structure along the coordinate axes

7.2 Backfitting

• Estimation with additive models is actually very simple; we can just choose our favorite uni-
variate smoother (i.e., nonparametric estimator), and cycle through estimating each function
fj , j = 1, . . . , d individually (like a block coordinate descent algorithm). Denote the result of
running our chosen univariate smoother to regress y = (y1, . . . , yn) ∈ Rn over the input points
z = (z1, . . . , zn) ∈ Rn as

f̂ = Smooth(z, y).

E.g., we might choose Smooth(·, ·) to be a cubic smoothing spline with some fixed value of the
tuning parameter λ, or even with the tuning parameter selected by generalized cross-validation

• Once our univariate smoother has been chosen, we initialize f̂1, . . . , f̂d (say, to all to zero) and
cycle over the following steps for j = 1, . . . , d, 1, . . . , d, . . .:

1. define ri = yi −
∑
` 6=j f̂`(xi`), i = 1, . . . , n;

2. smooth f̂j = Smooth(x·j , r);

3. center f̂j = f̂j − 1
n

∑n
i=1 f̂j(xij).

This algorithm is known as backfitting. In last step above, we are removing the mean from
each fitted function f̂j , j = 1, . . . , d, otherwise the model would not be identifiable. Our final
estimate therefore takes the form

f̂(x) = ȳ + f̂1(x·1) + . . .+ f̂d(x·d),

where ȳ = 1
n

∑n
i=1 yi. Hastie & Tibshirani (1990) provide a very nice exposition on the some

of the more practical aspects of backfitting and additive models

• In many cases, backfitting is equivalent to blockwise coordinate descent performed on a joint
optimization criterion that determines the total additive estimate. E.g., for the additive cubic
smoothing spline optimization problem,

f̂1, . . . , f̂d = argmin
f1,...,fd

n∑

i=1

(
yi −

d∑

j=1

fj(xij)

)2

+

d∑

j=1

λj

∫ 1

0

f ′′j (t)2 dt,
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backfitting is exactly blockwise coordinate descent (after we reparametrize the above to be in
finite-dimensional form, using a natural cubic spline basis)

• The beauty of backfitting is that it allows us to think algorithmically, and plug in whatever
we want for the univariate smoothers. This allows for several extensions. One extension: we
don’t need to use the same univariate smoother for each dimension, rather, we could mix and
match, choosing Smoothj(·, ·), j = 1, . . . , d to come from entirely different methods or giving
estimates with entirely different structures

• Another extension: to capture correlations, we can perform smoothing over (small) groups
of variables instead of individual variables; e.g., if we thought that variables 1, 2 might have
reasonable correlation, then we could lump the backfitting steps over variables 1, 2 together
and perform (say) a 2-dimensional kernel smooth, giving an estimate of the form

f̂(x) = ȳ + f̂12(x·1, x·2) + f̂3(x·,3) + . . .+ f̂d(x·d),

7.3 Error rates

• Error rates for additive models are both kind of what you’d expect and suprising. What you’d
expect: if the underlying function f0 is additive, and we place standard assumptions on its
component functions, such as f0,j ∈W1(m,C), j = 1, . . . , d, for a constant C > 0, a somewhat
straightforward argument building on univariate minimax theory gives us the lower bound

inf
f̂

sup
f0∈⊕d

j=1W1(m,C)

E‖f̂ − f0‖22 & dn−2m/(2m+1).

This is simply d times the univariate minimax rate. (Note that we have been careful to track
the role of d here, i.e., it is not being treated like a constant.) Also, standard methods like
backfitting with univariate smoothing splines of polynomial order k = 2m− 1, will also match
this upper bound in error rate (though the proof to get the sharp linear dependence on d is a
bit trickier)

• Surprising: an additive model with different levels of smoothness among its component func-
tions behaves in an interesting manner. Just in d = 2 dimensions, let us consider f0(x) =
f0,1(x·1) + f0,2(x·2), where f0,1 is a lot smoother than f0,2, e.g., f0,1 ∈ W1(2, C1) and f0,2 ∈
F (0, C2), so ∫ 1

0

f ′′0,1(t)2 dt ≤ C1 and TV(f0,2) ≤ C2,

for constants C1, C2 > 0. Suppose also that we used an additive model to estimate f0, with
(say) a 3rd-order smoothing spline for the first component smoother, and a 0th-order locally
adaptive regression spline for the second component smoother. Now, assuming each smoother
was appropriately tuned, should we expect that

‖f̂1 − f0,1‖2n . n−4/5 and ‖f̂2 − f0,2‖2n . n−2/3, (37)

each having the error rate associated with their corresponding univariate problem, or

‖f̂1 − f0,1‖2n . n−2/3 and ‖f̂2 − f0,2‖2n . n−2/3, (38)

where the rougher of the two components dictates both rates? Recent work by van de Geer &
Muro (2015) shows that (provided x·1, x·2 are not too correlated) it is the first case (37) that
occurs
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• This is somewhat surprising, because if you think about it from the perspective of backfitting,
at convergence, we have

f̂1 = Smooth1

(
x·2,

(
yi − f̂2(xi2)

)n
i=1

)
,

a cubic smoothing spline fit to the effective responses ri = yi − f̂2(xi2), i = 1, . . . , n. If we
were actually fitting a smoothing spline to f0,1(xi1) + εi, i = 1, . . . , n, then we’d see a n−4/5

error rate. But we’re not; instead we’re fitting a cubic smoothing spline to

yi − f̂2(xi2) = f0,1(xi1) + εi +
(
f0,2(xi2)− f̂2(xi2)

)
︸ ︷︷ ︸

e2i

, i = 1, . . . , n.

The terms denoted e2i, i = 1, . . . , n above are the errors in estimating the second component
function at the input points. In the best case, we should hope for ‖e2‖22/n � n−2/3. Doesn’t
this n−2/3 pertubation mess up our estimation of f0,1? Surprisingly, it does not.

It is worth noting that the proof given by van de Geer & Muro (2015) is very intricate, and
does not obviously extend beyond d = 2 components. (Also, it is worth noting that this result
relates to older, classic results from semiparametric estimation.)

7.4 Sparse additive models

• Recently, sparse additive models have received a good deal of attention. In truly high dimen-
sions, we might believe that only a small subset of the variables play a useful role in modeling
the regression function, so might posit a modification of (36) of the form

f(x) =
∑

j∈S
fj(x·j),

where S ⊆ {1, . . . , d} is an unknown subset of the full set of dimensions

• This is a natural idea, and to estimate a sparse additive model, we can use methods that are
like nonparametric analogies of the lasso (more accurately, the group lasso). This is a research
topic still very much in development; some recent works are Lin & Zhang (2006), Ravikumar
et al. (2009), Raskutti et al. (2012). We’ll cover this in more detail when we talk about the
sparsity, the lasso, and high-dimensional estimation

8 Nonparametric classification

8.1 From regression to classification

• What about nonparametric classification? In all fairness, this topic deserves a more thorough
treatment on its own, but here we show that many of our ideas from nonparametric regression
carry over nicely to classification. An excellent general, theoretical reference is Devroye et al.
(1996) (similar to to the book by Gyorfi et al. (2002) for nonparametric regression)

• For (X,Y ) ∈ Rd × {0, 1}, consider the regression function, defined as usual as

f0(x) = E(Y |X = x) = P(Y = 1|X = x),

which now becomes the conditional probability of observing class 1, given X = x. Given i.i.d.
samples (xi, yi) ∈ Rd×{0, 1}, i = 1, . . . , n, that have the same joint distribution as (X,Y ), we
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can use any nonparametric regression method to form an estimate f̂ of f0, and then define a
plug-in classifier via

Ĉ(x) =

{
0 if f̂(x) > 1/2

1 if f̂(x) ≤ 1/2
. (39)

This of course estimates the optimal classification rule, called the Bayes classifier,

C0(x) =

{
0 if f0(x) > 1/2

1 if f0(x) ≤ 1/2
(40)

• Consider now the risk, with respect to the 0-1 loss, of a generic classifier C, defined as

r(C) = P
(
Y 6= C(X)

)
.

It is not hard to show that the Bayes classifier defined in (40) it optimal precisely in the sense
that it achieves the smallest risk, i.e., r(C0) is minimal among all classifiers C. We consider,
for any classifier C and any fixed x,

P
(
Y 6= C(X)|X = x

)
= 1−

[
P
(
Y = 1, C(X) = 1|X = x

)
+ P

(
Y = 0, C(X) = 0|X = x

)

= 1−
[
C(x)f0(x) +

(
1− C(x)

)(
1− f0(x)

)]

= f0(x) +
(
1− 2f0(x)

)
C(x).

Thus, we can compute the conditional risk difference between C and C0 as

P
(
Y 6= C(X)|X = x

)
− P

(
Y 6= C0(X)|X = x

)
=
(
2f0(x)− 1

)(
C0(x)− C(x)

)
.

When f0(x) > 1/2, we have C0(x) = 1 by construction, and so the right-hand side above is
nonnegative. When f0(x) ≤ 1/2, we have C0(x) = 0 by construction, and again the above is
nonnegative. Therefore we have shown P(Y 6= C(X)|X = x)− P((Y 6= C0(X)|X = x) ≥ 0 for
every x; integrating out with respect to the distribution of X gives the result

• Moreover, from the above calculation, we can learn a very important fact about any plug-in
classifier, as defined in (39). We have, as before

P
(
Y 6= Ĉ(X)|X = x

)
− P

(
Y 6= C0(X)|X = x

)
=
(
2f0(x)− 1

)(
C0(x)− Ĉ(x)

)

= 2|f0(x)− 1/2|1{C0(x) 6= Ĉ(x)}.

When C0(x) and Ĉ(x) do not match, note that |f0(x)− 1/2| ≤ |f0(x)− f̂(x)| (because f0(x)
and f̂(x) must be on opposite sides of 1/2). Thus

r(Ĉ)− r(C0) =

∫ [
P
(
Y 6= Ĉ(X)|X = x

)
− P

(
Y 6= C0(X)|X = x

)]
dPX(x)

= 2

∫
|f0(x)− 1/2|1{C0(x) 6= Ĉ(x)} dPX(x)

≤ 2

∫
|f0(x)− f̂(x)|1{C0(x) 6= Ĉ(x)} dPX(x)

≤ 2

∫
|f0(x)− f̂(x)| dPX(x)

≤ 2

√∫ (
f0(x)− f̂(x)

)2
dPX(x),

where in the last line we used the Cauchy-Schwartz inequality
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• Abbreviate the L2 regression risk by R(f̂) = E‖f̂ − f0‖22 =
∫

(f̂(x)− f0(x))2 dPX(x). Then to
rewrite the above, have established

r(Ĉ)− r(C0) ≤ 2

√
R(f̂), (41)

and hence, any bound on the L2 risk of the estimator f̂ for regression function f0 translates
into a bound on the excess classification risk of the plug-in classifier Ĉ. This sounds pretty
great, because we have seen a lot of risk guarantees so far for nonparametric regression, and
so we should be able to generate a lot of classification guarantees for plug-in classifiers! E.g.,
if f0 ∈ Hd(α,L) for a constant L > 0, then for a suitable regression estimate f̂ ,

R(f̂) . n−2α/(2α+d) ⇒ r(Ĉ)− r(C0) . n−α/(2α+d)

8.2 Classification: easier or harder?

• Of course, the result in (41) is just an upper bound, and we don’t necessarily know that it is
tight. An interesting result in Chapter 6.7 of Devroye et al. (1996) suggests that actually (41)
could be quite pessimistic, and hence classification could be a lot easier than regression (in a
sense): they show that if R(f̂)→ 0 as n→∞, and Ĉ is the plug-in classifier defined based on
f̂ , then

r(f̂)− r(C0)

R(f̂)1/2
→ 0 as n→∞. (42)

The proof is straightforward. From the above calculation (leading up to (41)) we have, for any
fixed ε > 0,

r(Ĉ)− r(C0) ≤ 2

∫
|f0(x)− f̂(x)|1{C0(x) 6= Ĉ(x)}1{f0(X) 6= 1/2} dPX(x)

≤ 2E|f0(X)− f̂(X)|1{C0(X) 6= Ĉ(X)}1{|f0(X)− 1/2| ≤ ε, f0(X) 6= 1/2}+

2E|f0(X)− f̂(X)|1{C0(X) 6= Ĉ(X)}1{|f0(X)− 1/2| > ε}

≤ 2

√
R(f̂)

([
P
(
C0(X) 6= Ĉ(X), |f0(X)− 1/2| ≤ ε, f0(X) 6= 1/2

)
︸ ︷︷ ︸

a

]1/2
+

[
P
(
C0(X) 6= Ĉ(X), |f0(X)− 1/2| > ε

)
︸ ︷︷ ︸

b

]1/2)
,

where in the last line we again applied the Cauchy-Schwartz inequality. For the second term
in brackets above, note b ≤ P(|f0(X)− f̂(X)| > ε) ≤ R(f̂)/ε2 → 0 as n → ∞, where we used
Markov’s inequality. On the other hand, the term a can be made arbitrarily small as ε → 0.
This verifies (42)

• While it is striking at first, the result in (42) says nothing about how slow this convergence is.
So instead of just accepting that the excess classification risk is smaller than the L2 regression
risk, we should ask about rate. E.g., for Holder functions of smoothness α in d dimensions, we
should ask: is an excess classification risk of n−α/(2α+d) good or bad?

• As usual, minimax theory provides us with a good grounding here. Yang (1999) showed that,
as long as the class of functions (say) F that we consider for f0 is sufficiently rich, the upper
bound in (41) will be tight up to rate, in that the minimax rate for r(Ĉ)− r(C0) over F will
be the square root of that for R(f̂) over F , i.e.,

inf
f̂

sup
f0∈F

R(f̂) � r2n and inf
Ĉ

sup
f0∈F

r(Ĉ)− r(C0) � rn (43)
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• The richness condition given in Yang (1999) is described in terms the metric entropy (or log
covering number) of the function class F in question. (This concept is often used to derive not
only minimax lower bounds, but also upper bounds, e.g., for smoothing splines over Sobolev
smoothness classes. We will cover this concept precisely later in the course.) It can be shown
this richness condition is satisfied by the (d-dimensional) Holder class with Hd(α,C) for any
α > 0, and the (univariate) total variation class F (k,C) for any k ≥ 0

• In summary, provided the function class is rich enough—like the generic Holder and bounded
variation classes—we can simply do plug-in classification to get a classification risk bound like
(41), and we can be certain from the minimax theory in (43) that we are not missing anything
in terms of rates

8.3 k-nearest-neighbors classification

• The plug-in estimator (39) when we estimate f̂ , using k-nearest-neighbors regression, is called
k-nearest-neighbors classification. This idea is itself quite natural and worth discussing. Recall
that here the regression estimate is f̂(x) = 1

k

∑
i∈Nk(x)

yi, and so Ĉ(x) = 1 if and only if more
than half of the neighbors Nk(x) of x are of class 1. In words, this classifier “votes” based on
class memberships of neighboring points to decide the predicted class

• From (41) and the result in (3) for k-nearest-neighbors regression, from near the beginning of
these lectures notes, we know that the excess classification risk of k-nearest-neighbors classifi-
cation, when f0 is Lipschitz, and k � n2/(2+d), satisfies

r(Ĉ)− r(C0) . n−1/(2+d). (44)

We also know from the remarks in the previous subsection that this rate cannot be improved
in general for the excess classification risk over Lipschitz functions (recalling that L-Lipschitz
functions are precisely Hd(1, L))

• There are some well-known and somewhat remarkable distribution-free results for k-nearest-
neighbors classification. The oldest, and most famous result, is due to Cover & Hart (1967).
They show that, for basically any joint distribution of the data (X,Y ), the 1-nearest-neighbor
classifier Ĉ = Ĉn, where the notation here emphasizes that it has been trained on n samples
(xi, yi), i = 1, . . . , n, satisfies

lim
n→∞

r(Ĉn) = lim
n→∞

P
(
Y 6= Ĉn(X)

)
= 2E

(
f0(X)(1− f0(X)

)
.

(Here n→∞ with d fixed.) Furthermore,

2E
(
f0(X)(1− f0(X)

)
≤ 2Ef0(X)

(
1− Ef0(X)

)
= 2r(C0)(1− r(C0)) ≤ 2r(C0).

The first inequality follows from direct integration, and the subsequent equality follows as the
Bayes risk is r(C0) = Emin{f0(X), 1− f0(X)}. Putting the above two displays together, we
get what is sometimes called the Cover-Hart inequality,

lim
n→∞

r(Ĉn) ≤ 2r(C0),

or in words, the asymptotic probability of error of the 1-nearest-neighbor classifier is no more
than twice the Bayes error. For more, see Chapter 5 of Devroye et al. (1996)
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8.4 Nonparametric logisitic regression

• One opposition to “naive” plug-in methods: it might seem a bit funny to estimate f0 using a
standard nonparametric regression tool, because these tools are usually defined by a squared
error loss criterion, and f0 always lies between 0 and 1. An alternative approach would be to
change the loss function so that it is appropriate for the classification setting. A favorite of
statisticians is to instead directly model the conditional log odds,

g0(x) = log
(P(Y = 1|X = x)

P(Y = 1|X = x)

)
,

and this leads to a nonparametric logistic regression model

• As an example, the logistic smoothing spline estimate of polynomial order k ≥ 0 is defined by

ĝ = argmin
g

n∑

i=1

(
− yig(xi) + log(1 + e−g(xi))

)
+ λ
(
g(m)(x)

)2
dx, where m = (k + 1)/2.

Let η1, . . . , ηn denote the natural kth-order spline basis with knots over the inputs x1, . . . , xn,
and define the basis matrix N ∈ Rn×n and penalty matrix Ω ∈ Rn×n just as we did before,
for smoothing splines in regression, in (13). Then we can reformulate the above problem as

β̂ = argmin
β∈Rn

−yTNβ +

n∑

i=1

log(1 + e−(Nβ)i) + λβTΩβ,

a logistic regression problem with a generalized ridge penalty. Our classifier Ĉ(x) now outputs
1 when ĝ(x) =

∑n
j=1 β̂jηj(x) > 0, and outputs 0 otherwise

• Deriving an error bound for ĝ as an estimate of the conditional log odds g0 is more difficult
than the analogous calculation for smoothing splines in regression; but altogether, the final
bounds are fairly similar. See Chapter 10.2 of van de Geer (2000)

• Finally, it is worth noting that an approach like that above extends seamlessly to the additive
model setting, and also to any loss derived from an exponential family distribution. This lies
at the heart of generalized additive models for producing flexible nonparametric estimates in
multiple dimensions, whether predicting a continuous response (regression), a binary response
(logistic regression), or counts (Poisson regression), etc. See Hastie & Tibshirani (1990)
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