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1 You (should) already know this stuff: statistical prediction
and the bias-variance tradeoff

• Suppose that we observe (X,Y ) from some unknown joint distribution, and we want to predict
Y from X. Over all functions f , the expected prediction error, measured in terms of squared
loss,

E
[(
Y − f(X)

)2]
is minimized at f(x) = E(Y |X = x). This is called the true regression function associated
with the pair (X,Y ). Note that we can always write

Y = f(X) + ε,

for some noise term satisfying E(ε) = 0. Why? Just take ε = Y − f(X).

• Now suppose that we observe training samples (x1, y1), . . . (xn, yn) i.i.d. from the same joint
distribution as (X,Y ). We use these training samples to construct a prediction function f̂ ;
this mimics f(x) = E(Y |X = x), which is optimal but unknowable in practice. The expected
prediction error, or expected test error, of f̂ is

E
[(
Y − f̂(X)

)2]
, (1)

where the expectation is over all that is random, namely, the training set (xi, yi), i = 1, . . . n
and the test point (X,Y )

• Why would we be interested in (1)? Here are two reasons:

1. Model assessment: sometimes we want to know how well we can predict a future obser-
vation, in absolute terms

2. Model selection: often we want to choose between different prediction functions; this
might mean choosing between two different model classes entirely, or choosing an under-
lying tuning parameter for a single method. In principle, we could do this by comparing
expected test errors

• The expected test error in (1) has an important property: it decomposes into informative
parts. But before we show this, let’s think about a few points:

– Can we ever predict Y from X with zero error? Generally, no. Even the true regression
function f cannot generically do this, and will incur some error due to noise. We call this
irreducible error
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– What happens if our fitted function f̂ belongs to a model class that is far from the true
regression function f? E.g., we choose to fit a linear model in a setting where the true
relationship is far from linear? As a result, we encounter error, what we call estimation
bias

– What happens if our fitted (random) function f̂ is itself quite variable? In other words,
over different copies of the training set, we end up constructing substantially different
functions f̂? This is another source of error, that we’ll call estimation variance

• More so than just these intuitive descriptions, the expected test error mathematically decom-
poses into a sum of three corresponding parts. Begin by writing the model

Y = f(X) + ε,

where ε has mean zero, variance σ2, and is independent of X. Note that the independence
condition is the an actual (nontrivial) assumption. Recall that (xi, yi), i = 1, . . . n are inde-
pendent of each other and of (X,Y ), all with the same distribution. We’ll look at the expected
test error, conditional on X = x for some arbitrary input x. It follows that

E
[(
Y − f̂(x)

)2∣∣X = x
]

= σ2 + E
[(
f(x)− f̂(x)

)2]︸ ︷︷ ︸
Risk(f̂(x))

.

The first term σ2 is the irreducible error, or sometimes referred to as the Bayes error, and the
second term is called the risk, or mean squared error (MSE). The risk further decomposes into
two parts, so that

E
[(
Y − f̂(x)

)2∣∣X = x
]

= σ2 +
(
f(x)− E[f̂(x)]

)2︸ ︷︷ ︸
Bias2(f̂(x))

+E
[(
f̂(x)− E[f̂(x)]

)2]︸ ︷︷ ︸
Var(f̂(x))

, (2)

the latter terms being the squared estimation bias or simply bias, and the estimation variance or
simply variance, respectively. The decomposition (2) is called the bias-variance decomposition
or bias-variance tradeoff

• From the bias-variance tradeoff (2), we can see that even if our prediction is unbiased, i.e.,
E[f̂(x)] = f(x), we can still incur a large error if it is highly variable. Meanwhile, even when
our prediction is stable and not variable, we can incur a large error if it is badly biased. There
is a tradeoff here, but it need it is really never be one-to-one; e.g., in some cases, it can be
worth sacrificying a little bit of bias to gain large decrease in variance

• Typical trend: underfitting means high bias and low variance, overfitting means low bias but
high variance. E.g., think about k in k-nearest-neighbors regression: recall that, trained on
(xi, yi), i = 1, . . . n, the k-nearest-neighbors regression fit at an input point x is

f̂(x) =
1

k

∑
i∈Nk(x)

yi, (3)

where Nk(x) denotes the indices of the k training inputs closest to x. How do the bias and
variance behave for small k, and for large k?

Let’s consider the input training points x1, . . . xn all fixed (nonrandom) for simplicity. Then
for the k-nearest-neighbors fit f̂ ,

E
[(
Y − f̂(X)

)2∣∣X = x
]

= σ2 +
(
f(x)− 1

k

∑
i∈Nk(x)

f(xi)
)2

+
σ2

k
.
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Hence we can explicitly see that as k increases, the variance decreases, and the bias (likely)
increases. Note that, for fixed x1, . . . xn, the k-nearest-neighbors fit f̂(x) in (3), at any input
x, is just a linear function of y1, . . . yn. This is an example of what is called a linear smoother,
which we’ll discuss more later in Section 5

• Finally, unconditionally over X, the bias-variance decomposition reads

E
[(
Y − f̂(X)

)2]
= σ2 +

∫
Bias2(f̂(x))PX(dx) +

∫
Var(f̂(x))PX(dx),

where PX is the distribution of X (this follows from taking an expectation over X in (2)). In
words, the expected test error is the Bayes error + average (squared) bias + average variance

2 Training error and optimism

• Now that we have convinced ourselves that the expected test error (1) is a useful quantity,
how do we estimate it? Clearly if we had a test set (x′1, y

′
1), . . . (x′m, y

′
m), independent of the

training set and from the same distribution, then the observed average test error

1

m

m∑
i=1

(
y′i − f̂(x′i)

)2
would serve as an unbiased estimate for E[(Y − f̂(X))2]. But we are often not this fortunate
to have test data

• What’s wrong with the average training error

1

n

n∑
i=1

(
yi − f̂(xi)

)2
?

This measures the squared error of f̂ around the data we used to fit it—the problem is that
this will be, generally speaking, far too optimistic. Why? Because we chose f̂ so that it fit
well to the training data (xi, yi), i = 1, . . . n, of course its error is going to look too small

• This rules out using the training error for the first purpose described above, model assessment.
But if the expected training error was systematically (always) different than the expected
test error by the same amount, then we could use it for the second purpose, model selection.
E.g., if it the training error curve had the right shape with k (but just not the right height),
then we could still use it to choose k in k-nearest-neighbors regression. Unforunately, this is
essentially never the case; in almost all real examples, the training error curve has both the
wrong magnitude and the wrong shape. (What is the 1-nearest-neighbor training error?)

• The expected test and training errors can be linked in a useful way, if we again assume that
fixed inputs, for simplicity. That is, let (x1, y

′
1), . . . (xn, y

′
n) denote a test set, independent of

and having the same distribution as as (x1, y1), . . . (xn, yn). The inputs x1, . . . xn are fixed in
both sets, and only the observations yi, y

′
i, i = 1, . . . n are random, drawn according to

yi = f(xi) + εi, i = 1, . . . n,

y′i = f(xi) + ε′i, i = 1, . . . n,

all errors εi, ε
′
i, i = 1, . . . n i.i.d. with mean zero and variance σ2
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In vector notation, write y, y′ ∈ Rn for the training and test observations, and write f̂ =
(f̂(x1), . . . f̂(xn)) ∈ Rn for the training fitted values. Then the expected test error is

1

n
E‖y′ − f̂‖22,

where the expectation is taken over y, y′. Now write f = (f(x1), . . . f(xn)) ∈ Rn, and decom-
pose

1

n
E‖y′ − f̂‖22 =

1

n
E‖y′ − f + f − f̂‖22

= σ2 +
1

n
E‖f − f̂‖22

= 2σ2 +
1

n
E‖y − f̂‖22 +

2

n
E(f − y)T (y − f̂)

=
1

n
E‖y − f̂‖22 +

2

n
tr
(
Cov(y, f̂)

)
.

In other words, the optimism—difference in expected test and expected training errors—can
be expressed as

1

n
E‖y′ − f̂‖22 −

1

n
E‖y − f̂‖22 =

2

n
tr
(
Cov(y, f̂)

)
=

2

n

n∑
i=1

Cov
(
yi, f̂(xi)

)
. (4)

So the higher the correlation between yi and its fitted value f̂(xi), the greater the optimism.
We’ll see that in many cases we can either evaluate or estimate the right-hand side above,
which can be extremely useful

3 Degrees of freedom and unbiased risk estimation

• For f̂ = (f̂(x1), . . . f̂(xn)) ∈ Rn and the same setup as before—that is, x1, . . . xn considered
fixed, and f̂ trained on (x1, y1), . . . (xn, yn)—the degrees of freedom of f̂ is defined as

df(f̂) =
1

σ2

n∑
i=1

Cov
(
yi, f̂(xi)

)
. (5)

Hence the optimism in (4) can be more succintly written as

1

n
E‖y′ − f̂‖22 −

1

n
E‖y − f̂‖22 =

2σ2

n
df(f̂). (6)

Intuitively, we can think of df(f̂) as the effective number of parameters used by the fit f̂ , a
measure of complexity of f̂ . A few simple examples that support this intuition:

– If f̂ = (y1, . . . yn), then df(f̂) = n

– If f̂(xi) = ȳ = 1
n

∑n
j=1 yj for each i = 1, . . . n, then df(f̂) = 1

– If f̂(xi) = 1
k

∑
j∈Nk(x) yj for each i = 1, . . . n, then df(f̂) = n/k

• Suppose that we can compute the degrees of freedom of f̂ , or even more broadly, compute an
unbiased estimate d̂f(f̂), with the property

E[d̂f(f̂)] = df(f̂).

4



Then following from (6), the quantity

T̂ =
1

n
‖y − f̂‖22 +

2σ2

n
d̂f(f̂)

serves as unbiased estimate for the expected test error of f̂ , i.e.,

E(T̂ ) =
1

n
E‖y′ − f̂‖22

• Often times you will encounter this principle referred to in terms of unbiased risk estimation,
since

R̂ = T̂ − σ2 =
1

n
‖y − f̂‖22 +

2σ2

n
d̂f(f̂)− σ2

serves as an unbiased estimate for the risk,

E(R̂) =
1

n
E‖f − f̂‖22

We’ll see how to explicitly compute degrees of freedom for linear smoothers, in Section 5.
This is a suprisingly broad class. Later in the course, we’ll see how to use Stein’s formula to
compute unbiased estimates of degrees of freedom in an even more general setting, too

• Note: all of the above assumes that σ2 is known, which is not realisic. In practice, we’d have
to estimate it

• An example of how to use this for model selection: suppose that we were considering fitted
models f̂θ indexed by a parameter θ ∈ Θ; e.g., this could represent the number of neighbors k
in k-nearest-neighbors regression. Suppose also that had access to d̂f(f̂θ) at each value of θ.
Then we could choose the parameter by minimizing our test error estimate,

θ̂ = argmin
θ∈Θ

1

n
‖y − f̂θ‖22 +

2σ2

n
d̂f(f̂θ).

An important point to be aware of: while T̂ (f̂θ) = 1
n‖y − f̂θ‖

2
2 + 2σ2

n d̂f(f̂θ) gives an unbiased
estimate for the expected test error at any fixed θ, we should anticipate that T̂ (f̂θ̂) is itself
downward biased (optimistic) as an estimate for the expected test error at θ̂. Why?

4 Cross-validation

• Cross-validation (CV) is quite a general tool for estimating the expected test error (1), that
makes minimal assumptions—i.e., it doesn’t assume that Y = f(X) + ε with ε independent of
X, it doesn’t assume that the training inputs x1, . . . xn are fixed, all it really assumes is that
the training samples (x1, y1), . . . (xn, yn) are i.i.d.

We split up our training set into K divisions or folds, for some number K; usually this is done
randomly. Write these as F1, . . . FK , so F1∪. . .∪FK = {1, . . . n}. Now for each k = 1, . . .K, we
fit our prediction function on all points but those in the kth fold, denoted f̂−(k), and evaluate
squared errors on the points in the kth fold,

CVk(f̂−(k)) =
1

nk

∑
i∈Fk

(
yi − f̂−(k)(xi)

)2
.
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Here nk denotes the number of points in the kth fold, nk = |Fk|. We average these fold-based
errors to yield an estimate of the expected test error,

CV(f̂) =
1

K

K∑
k=1

CVk(f̂−(k)). (7)

This is called K-fold cross-validation; the special case when K = n is referred to as leave-one-
out cross-validation

• What is the difference between choosing say K = 5 (a common choice) versus K = n?

– When K = 5, the function f̂−(k) in each fold k is fit on about 4/5 · n samples, and so
we are looking at the errors incurred by a procedure that is trained on less data than the
full f̂ in (1). Therefore the mean of the CV estimate (7) could be off. When K = n, this
is not really an issue, since each f−(k) is trained on n− 1 samples

– When K = n, the CV estimate (7) is an average of n extremely correlated quantities;
this is because each f̂−(k) and f̂−(`) are fit on n− 2 common training points. Hence the
CV estimate will likely have very high variance. When K = 5, the CV estimate will have
lower variance, since it the average of quantities that are less correlated, as the fits f̂−(k),
k = 1, . . . 5 do not share as much overlapping training data

This is tradeoff (the bias-variance tradeoff, in fact!). Usually, a choice like K = 5 or K = 10
is more common in practice than K = n, but this is probably an issue of debate

• For K-fold CV, it’s can be helpful to assign a notion of variability to the CV error estimate.
We argue that

Var
(
CV(f̂)

)
= Var

( 1

K

K∑
k=1

CVk(f̂−(k))
)
≈ 1

K
Var(CV1(f̂−(1))). (8)

Why is this an approximation? This would hold exactly if CV1(f̂−(1)), . . .CVK(f̂−(K)) were
i.i.d., but they’re not. This approximation is valid for small K (e.g., K = 5 or 10) but not
really for big K (e.g., K = n), because then the quantities CV1(f̂−(1)), . . .CVK(f̂−(K)) are
highly correlated

• For small K (e.g., K = 5 or 10), we can leverage (8) to get an estimate of the variance of the
CV error estimate. We just use the sample variance appropriately, so that

1

K

K∑
k=1

(
CVk(f̂−(k))− CV(f̂)

)2

is our estimate of the variance of CV(f̂)

• We can use this variance estimate to draw approximate standard deviation bands around a
CV error curve, and this leads to model selection heuristics like the one-standard-error rule.
That is, the usual rule for selecting a parameter θ in a family of fitted models f̂θ, θ ∈ Θ would
be to minimize the CV error:

θ̂ = argmin
θ∈Θ

CV(f̂θ).

The one-standard-error rule, instead, chooses the simplest model that is within one standard
error (i.e., one standard deviation) of the minimum CV error. How to measure simplicity?
Well, degrees of freedom is one way to do so! Often, the parametrization f̂θ will be such
that df(f̂θ) behaves monotonically with θ; e.g., in k-nearest-neighbors, the degrees of freedom
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increases as k increases (in fact, it equals k). When df(f̂θ) is monotone increasing with θ, the
one-standard-error rule can be written as

θ̃ = min
{
θ ∈ Θ : CV(f̂θ) ≤ CV(f̂θ̂) + SE(f̂θ̂)

}
,

where SE(f̂θ) denotes our estimate of the standard deviation of CV(f̂θ), as explained above.
Just to be perfectly clear, this is

SE(f̂θ) =
1√
K

[ K∑
k=1

(
CVk(f̂

−(k)
θ )− CV(f̂θ)

)2
]1/2

5 Linear smoothers

• Consider a prediction function f̂ trained on (xi, yi), i = 1, . . . n, that can be written as

f̂(x) =
n∑
i=1

wi(x)yi = w(x)T y.

Here the weights wi(x), i = 1, . . . n are allowed to depend on the query point x and x1, . . . xn.
With x1, . . . xn considered fixed, this just a linear function of y1, . . . yn, and therefore such a
function f̂ is called a linear smoother

• We saw that the k-nearest-neighbor regression fit is a linear smoother, but so are many other
interesting examples. We’ll see a lot more in the the nonparametric regression lectures, but
e.g., both linear regression and ridge regression are examples of linear smoothers. In these
cases, each xi ∈ Rp, i = 1, . . . n, and we write X ∈ Rn×p as the matrix whose ith row is xi.
Then for linear regression of y on X,

f̂(x) = xT β̂ = xT (XTX)−1XT y,

and for ridge regression of y on X, with tuning parameter λ ≥ 0,

f̂(x) = xT β̂λ = xT (XTX + λI)−1XT y

• A linear smoother produces fitted values f̂ = (f̂(x1), . . . f̂(xn)) of the form

f̂ = Sy

for a matrix S ∈ Rn×n, whose ith row is wi(x). Just to emphasize, the matrix S can depend
on x1, . . . xn, and also on external quantities like a tuning parameter, but it cannot depend
on y = (y1, . . . yn). E.g., for linear regression, S = X(XTX)−1XT , and for ridge regression,
S = X(XTX + λI)−1XT

• It turns out that a lot of specific things can be said about linear smoothers. The degrees of
freedom of a linear smoother is easily computed:

df(f̂) =
1

σ2
tr
(
Cov(y, ŷ)

)
= tr(S),

with tr(S) denoting the trace of the smoother matrix S. For linear regression, this turns out
to be tr(X(XTX)−1XT ) = p, and for ridge regression, this is tr(X(XTX + λI)−1XT ) < p
when λ > 0. We’ll return to linear smoothers when we cover nonparametric regression, where
we’ll see that they admit many other nice properties
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