
10/36-702 Review and Introduction

These are things you should know from 36-705 and 10-715. Plus I will introduce a few new
topics that we will cover in more detail later in the course.

1 Probability

1. Xn
P→ 0 means that means that, for every ε > 0 P(|Xn| > ε)→ 0 as n→∞.

2. Xn  Z means that P(Xn ≤ z)→ P(Z ≤ z) at all continuity points z.

3. Xn = OP (an) means that, Xn/an is bounded in probability: for every ε > 0 there is

an M > 0 such that, for all large n, P
(∣∣∣Xn

an

∣∣∣ > M
)
≤ ε.

4. Xn = op(an) means that Xn/an goes to 0 in probability: for every ε > 0

P
(∣∣∣∣Xn

an

∣∣∣∣ > ε

)
→ 0 as n→∞.

5. Law of large numbers: X1, . . . , Xn ∼ P then

Xn
P→ µ

where Xn = 1
n

∑n
i=1Xi and µ = E[Xi].

6. Central limit theorem: X1, . . . , Xn ∼ P then

√
n(Xn − µ)

σ
 N(0, 1)

where σ2 = Var(Xi).

2 Basic Statistics

1. Bias and Variance. Let θ̂ be an estimator of θ. Then

E(θ̂ − θ)2 = bias2 + Var

where bias = E[θ̂]− θ and Var = Var(θ̂).

2. Maximum Likelihood. Parametric model {pθ : θ ∈ Θ}. We also write pθ(x) =

p(x; θ). Let X1, . . . , Xn ∼ pθ. MLE θ̂n (maximum likelihood estimator) maximizes the
likelihood function

L(θ) =
n∏
i=1

p(Xi; θ).
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3. Fisher information In(θ) = nI(θ) where

I(θ) = −E
[
∂2 log p(X; θ)

∂θ2

]
.

4. Then
θ̂n − θ
sn

 N(0, 1)

where sn =
√

1

nI(θ̂)
.

5. Asymptotic 1− α confidence interval Cn = θ̂n ± zα/2 sn. Then

P(θ ∈ Cn)→ 1− α.

6. Minimax Risk. Let P be a set of distributions. Let θ be a parameter and let L(θ̂, θ)
be a loss function. The minimax risk is

Rn = inf
θ̂

sup
P∈P

EP [L(θ̂, θ)].

If
sup
P∈P

EP [L(θ̂, θ)] = Rn

then θ̂ is a minimax estimator.

3 Regression

1. Y ∈ R, X ∈ Rd and prediction risk is

E(Y −m(X))2.

2. Minimizer is m(x) = E(Y |X = x).

3. Best linear predictor: minimize
E(Y − βTX)2

where X(1) = 1 so that β1 is the intercept. Minimizer is

β = Λ−1α

where Λ(j, k) = E[X(j)X(k)] and α(j) = E(Y X(j)).

4. The data are
(X1, Y1), . . . , (Xn, Yn).

Given new X predict Y .
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5. Minimize training error

R̂(β) =
1

n

∑
i

(Yi − βTXi)
2.

Solution: least squares:
β̂ = (XTX)−1XTY

where X(i, j) = Xi(j).

6. Predicted values Ŷ = Xβ̂ = HY where H = X(XTX)−1XT is the hat matrix: the
projector onto the column space of X.

7. Bias-Variance tradeoff: Write Y = m(X) + ε and let Ŷ = m̂(X) where m̂(x) = xT β̂.
Then

R = E(Ŷ − Y )2 = σ2 +

∫
b2(x)p(x)dx+

∫
v(x)p(x)dx

where b(x) = E[m̂(x)]−m(x), v(x) = Var(m̂(x)) and σ2 = Var(ε).

4 Classification

1. X ∈ Rd and Y ∈ {0, 1}.
2. Classifier h : Rd → {0, 1}.
3. Risk:

R(h) = P(Y 6= h(X)).

Bayes rule minimizes R(h):

h(x) = I(m(x) > 1/2) = I(π1p1(x) > π0p0(x))

where m(x) = P(Y = 1|X = x), π1 = P(Y = 1), π0 = P(Y = 0), p1(x) = p(x|Y = 1)
and p0(x) = p(x|Y = 0).

4. Now code Y as Y ∈ {−1,+1}. Then many classifiers can be written as

h(x) = sign(ψ(x))

for some ψ. For linear classifiers, ψ(x) = βTx.

5. The risk is
R = P(Y 6= h(X)) = P(Y ψ(X) < 0)

which is a non-convex function of yψ(x).

6. Often we replace the loss function with a convex surrogate function such as the logistic

L(Y, ψ(X)) = log(1 + exp(−Y ψ(X))),

the adaboost loss
L(Y, ψ(X)) = exp(−Y ψ(X))
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or the hinge loss
L(Y, ψ(X)) = [1− Y ψ(X)]+.

The linear classifier that minimizes the hinge loss is called a support vector machine
(SVM).

5 Some Things We did Not Cover in 705

Here are some things we did not cover in 705 but you have probably come across them. We
will cover them in detail in this course.

1. High dimensional linear regression. We want to predict Y using βTX where X ∈ Rd

with d > n. We will consider three approaches:

(a) Ridge regression: minimize

1

n

∑
i

(Yi − βTXi)
2 + λ

∑
j

β2
j .

Minimizer:
β̂ = (XTX + λI)−1XTY.

λ small: low bias-high variance. λ big: high bias-low variance. Choose λ by CV.

(b) Greedy variable selection: choose S ⊂ {1, . . . , d}. Bias-variance trade-off. Large
S means large variance, low bias. Small S means small variance, large bias.
Choosing the best subset is NP-hard so we use a greedy method (forward stepwise
regression).

(c) Lasso. Best subset selection minimizes

1

n

∑
i

(Yi − βTXi)
2 + λ||β||0.

Instead of a greedy approximation, we use convex relaxation: minimize

1

n

∑
i

(Yi − βTXi)
2 + λ||β||1

where ||β||1 =
∑

j |βj|. Returns a sparse estimator. Choose λ by CV.

2. Nonparametric regression. We want to estimate m(x) = E[Y |x = x] assuming that
m ∈M whereM is a large function space. A simple estimator is the kernel regression
estimator

m̂(x) =

∑
i YiKh(x,Xi)∑
iKh(x,Xi)

where Kh is a kernel such as Kh(x, y) = e−||x−y||
2/(2h). We will study this and other

estimators. We also want to know the minimax risk for this problem.
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3. Risk Estimation/Cross-Validation. We will have to estimate the risk to choose tuning
parameters. For example: fit on part of the data. Estimate risk from held out data.
Flavors: data splitting, k-fold, leave-one-out. For leave-one-out:

R̂ =
1

n

n∑
i=1

(Yi − Ŷ(−i))2 =
1

n

n∑
i=1

(
Yi − Ŷi
1−Hii

)2

≈

(
1

1− d
n

)2
1

n

∑
i

(Ŷi − Yi)2 GCV

≈ 1

n

∑
i

(Ŷi − Yi)2 + 2dσ̂2 Cp.

How accurate are these methods?

6 Why Study Theory?

Inventing machine learning methods is easy. But the methods are not useful unless we
understand when they work, and when they fail. Theory provides us with the ability to
answer questions like the following:

1. Why is one classifier better than another?

2. Why do some prediction methods work well in certain high dimensional problems?

3. How do we chose tuning parameters in prediction algorithms?

4. Which is more important, choosing a good prediction algorithm or choosing the tuning
parameters within a given algorithm?

5. Under what assumptions does a predictor work well? What is the best any method
can do under these assumptions?

A good example is deep learning. Some people think this is a great breakthrough. Others
think it is smoke and mirrors. Rigorous theory is still missing. Without it, all we have are
examples.
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