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A lofty goal?

Given i.i.d. pairs (Xi, Yi) ∼ P , i = 1, . . . , n, from a distribution P
on X × R (e.g., X = Rd)

Goal. Build prediction band Ĉn : X → P(R), such that for a new
i.i.d. pair (Xn+1, Yn+1):

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
≥ 1− α

(where the probability is over all n+ 1 pairs)

Can we do so without any assumptions on the distribution P , and
hope for something nontrivial?
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Starting simple

Suppose we have only i.i.d. Yi ∼ P , i = 1, . . . , n (no features). By
taking the sample (1− α)-quantile

q̂n = Quantile(1− α; {Yi}ni=1)

we have the approximate result

P(Yn+1 ≤ q̂n) ≈ 1− α

and this becomes exact as n→∞, under standard conditions

For some modified estimate q̂n, can we get finite-sample coverage

P(Yn+1 ≤ q̂n) ≥ 1− α?

2



Small tweak

With just a small tweak we can achieve this! Defining

q̂n = Quantile
(
d(1−α)(n+1)e

n ; {Yi}ni=1

)
we indeed get P(Yn+1 ≤ q̂n) ≥ 1− α

Why? Note that Yn+1 ≤ q̂n is equivalent to

Yn+1 ≤ d(1− α)(n+ 1)e smallest of Y1, . . . , Yn

which is in turn equivalent to

Yn+1 is among the d(1− α)(n+ 1)e smallest of Y1, . . . , Yn+1

and by exchangeability this occurs with probability at least 1− α
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Simple illustration

… …

Y(1) Y(2) Y(3) Y(4) Y⌈(1−α)(n+1)⌉ Y(n+1)

1 − α fraction       is equally likely to take 
any of the values (ranks)

Yn+1
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Upper bound

As we learned from the picture, if there are almost surely no ties,
then

Yn+1 is among the d(1− α)(n+ 1)e smallest of Y1, . . . , Yn+1

occurs with probability exactly

d(1− α)(n+ 1)e
n+ 1

≤ 1− α+
1

n+ 1

So under exchangeability and a continuous distribution for each Yi
(or suitable randomization), we get both lower and upper bounds:

P(Yn+1 ≤ q̂n) ∈
[
1− α, 1− α+ 1

n+1

]
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Naive attempt

Back to our original problem: given (Xi, Yi), i = 1, . . . , n, suppose
we compute f̂n, where f̂n(x) estimates E[Y |X = x]. Then let

Ri = |Yi − f̂n(Xi)|, i = 1, . . . , n

let q̂n = d(1− α)(n+ 1)e smallest of R1, . . . , Rn, and define

Ĉn(x) =
[
f̂n(x)− q̂n, f̂n(x) + q̂n

]
Note this will not work in general ...

Given new (Xn+1, Yn+1), the residual Rn+1 = |Yn+1 − f̂n(Xn+1)|
is not exchangeable with the first n residuals—so we have broken
symmetry
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Conformal prediction: split

One way to preserve symmetry (achieve exchangeability): split the
training data into proper training set D1 and calibration set D2

Leads to split conformal prediction:

• Compute f̂n1 on proper training set (Xi, Yi), i ∈ D1

• Form calibration set residuals Ri = |Yi − f̂n1(Xi)|, i ∈ D2

• Let q̂n2 = d(1− α)(n2 + 1)e smallest of Ri, i ∈ D2, and define

Ĉn(x) =
[
f̂n1(x)− q̂n2 , f̂n1(x) + q̂n2

]
By exchangeability, we have finite-sample coverage:

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
∈
[
1− α, 1− α+ 1

n2+1

]
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Some remarks

• No assumptions on P , no asymptotics

• Naive band is going to generally undercover. Close to correct
when estimate f̂n is accurate enough (requires assumptions)

• Split conformal band is protected against overfitting as test
residual is is compared to calibration set residuals

• Gives prediction bands with exactly constant length in x

• Generally, the better the estimate f̂n1 , the tighter the band

• Multiple splits, say k splits, can be used, each at the nominal
level 1− α/k. Then Ĉn(x) =

⋂k
j=1 Ĉ

j
n(x) will have coverage

at least 1− α (this is just Bonferroni)
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Worked example: split

Example: split conformal, using smoothing spline with 5 df
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Conditional coverage?

Calibration set residuals and test residuals are actually exchangeable
conditional on the proper training set ... leads to

P
(
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ {(Xi, Yi)}i∈D1

)
∈
[
1− α, 1− α+ 1

n2+1

]
What about coverage conditional on Xn+1? This does not hold!
The split conformal coverage guarantee is marginal over Xn+1:∫

P
(
Yn+1 ∈ Ĉn(x)

∣∣∣ {(Xi, Yi)}i∈D1 , Xn+1 = x
)
dPX(x)

∈
[
1− α, 1− α+ 1

n2+1

]
Distribution-free, finite-sample coverage conditional on Xn+1 = x,
at each x, would be nice. Alas, this is asking for too much ...
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Conformal prediction: full

Can we do this without splitting? Enter conformal prediction. Fix
x ∈ X . For each trial value y ∈ R:

• Compute f̂n,(x,y) on (X1, Y1), . . . , (Xn, Yn), (x, y)

• Form residuals R
(x,y)
i = |Yi − f̂n,(x,y)(Xi)|, i = 1, . . . , n, and

R
(x,y)
n+1 = |y − f̂n,(x,y)(x)|

• Define

Ĉn(x) =
{
y ∈ R : R

(x,y)
n+1 ≤

d(1− α)(n+ 1)e smallest of R
(x,y)
1 , . . . , R(x,y)

n

}
By exchangeability, we have finite-sample coverage:

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
∈
[
1− α, 1− α+ 1

n+1

]
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Simple illustration

… …

R(1) R(2) R(3) R(4) R⌈(1−α)(n+1)⌉ R(n+1)

1 − α fraction       is equally likely to take 
any of the values (ranks)

Rn+1

Here each Ri = R
(x,y)
i and we are seeking y such that R

(x,y)
n+1 is

among red points
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Some remarks

• Again, no assumptions on P , no asymptotics

• Conformal band is protected against overfitting as computation
of f̂n,(x,y) involves new point (x, y)

• Again, the better the regression algorithm, the tighter the band

• Let p(y) be fraction of residuals R
(x,y)
1 , . . . , R

(x,y)
n larger than

R
(x,y)
n+1 . Essentially, Ĉn(x) contains all y such that p(y) ≥ α

• Informally, p(y) is a p-value for testing H0 : Yn+1 = y

• The residuals can be replaced by suitable nonconformity score,
Ri = S((Xi, Yi), {(Xi, Yi)}n+1

i=1 ) (works for both full and split)
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Worked example: full

Example: conformal prediction, using smoothing spline with 15 df
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Conditional coverage?

As in split version, coverage guarantee in full conformal prediction is
marginal over Xn+1, not conditional. Repeat: not conditional!

Theorem (Vovk, 2012; Lei and Wasserman, 2014). Let Ĉn be a
prediction band satisfying:

P
(
Yn+1 ∈ Ĉn(x)

∣∣∣Xn+1 = x
)
≥ 1− α, for all P , and a.e. x.

Then for any P and any non-atom point x0:

P
(

lim
δ→0

sup
x∈Bδ(x0)

µ
(
Ĉn(x)

)
=∞

)
= 1

Note: we can get asymptotic conditional coverage, but this requires
assumptions strong enough for consistency (Lei, G’Sell, Rinaldo, T.,
Wasserman 2018)
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Approximate conditional coverage?

How about replacing conditional requirement by:

P
(
Yn+1 ∈ Ĉn(x)

∣∣∣Xn+1 ∈ X0

)
≥ 1− α,

for all P , and X0 ⊆ X such that PX(X0) ≥ δ

Barber, Candes, Ramdas, T. (2021) show that this is still too hard,
in that the only solutions are “trivial”

• In order for this to be tractable, we must restrict our attention
somehow, and cannot ask for every subset X0 ⊆ X
• For example, a finite collection {X1, . . . ,Xk} (then we can just

run local conformal prediction)

• Or, an infinite collection of “nice” subsets X0 (i.e., a collection
with low VC dimension)
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Conformal: locally-weighted

Using locally-weighted residuals in conformal methods can bring us
closer to conditional coverage in practice, under heteroskedasticity:

replace Ri = |Yi − f̂n(Xi)| by Vi =
|Yi − f̂n(Xi)|
σ̂n(Xi)

where σ̂2n(x) is an estimate of the variance function of the absolute
residual Var(|Y − f̂n(X)| |X = x). (Note: f̂n, σ̂n can be estimated
jointly, or separately)

The effect of local-weighting on the prediction band: its local length
can vary considerably, as needed. In the split version:

Ĉn(x) =
[
f̂n1(x)− σ̂n1(x)q̂n2 , f̂n1(x) + σ̂n1(x)q̂n2

]
,

where q̂n2 = d(1− α)(n2 + 1)e smallest of Vi, i ∈ D2
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Example: local weighting (Lei et al. 2018)
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Example: local weighting (Lei et al. 2018)
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A little history

• The idea behind conformal prediction was apparently born out
of conversations between Vovk, Gammerman, Vapnik in 1990s

• Definitive reference is Vovk, Gammerman, Shafer (2005)

• Vovk and collaborators still very active, 36 papers on this topic
since 2009 (http://alrw.net)

• Lei and Wasserman sparked interest in statistics: conformal for
nonparametric density estimation and regression (2013, 2014)

• Lei, G’Sell, Rinaldo, T., Wasserman (2018): conformal for high-
dimensional regression, some new theory & methods

• Barber, Candes, Ramdas, T. (2019-22): conformal for covariate
shift, jackknife+ and CV+, control beyond exchangeability

• Explosion of interest in ML (2020+): 1000s of new papers

20
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Outline

Rest of talk:

• Experiments

• Jackknife+

• CQR

• Classification

• Covariate shift

• Distribution shift

• Conclusion
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Experiments
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Experimental setup

From Lei et al. (2018). Settings:

• A: linear mean, uncorrelated features, normal errors

• B: nonlinear mean, uncorrelated features, heavy-tailed errors

• C: linear mean, correlated features, heteroskedastic errors

For n = 200 and d = 2000, we’ll compare coverages, lengths, and
test errors across various base algorithms:

• lasso

• elastic net

• stepwise regression

• sparse additive models

• random forests
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Coverage (Lei et al. 2018)

Coverages: pretty much exactly at the nominal level, 1− α = 0.9
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Length and test error (Lei et al. 2018)

Setting A: linear mean, uncorrelated features, normal errors
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Length and test error (Lei et al. 2018)

Setting B: nonlinear mean, uncorrelated features, heavy-tailed errors
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Length and test error (Lei et al. 2018)

Setting C: linear mean, correlated features, heteroskedastic errors
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An observation

In all cases, average interval length correlates pretty strongly with
test error (theory in Lei et al. 2018 supports this)

Both intuitive and surprising, considering that the coverage is nearly
exact, regardless of the algorithm/choice of tuning parameter

How can this be? Average length is:

E
(
µ
(
Ĉn(Xn+1)

))
= EPn

[ ∫ ∫
Ĉn(x)

dµ(y) dPX(x)

]
Meanwhile, coverage is:

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
= EPn

[ ∫ ∫
Ĉn(x)

dPY |X(y) dPX(x)

]
Therefore an inefficient algorithm puts mass in low density regions
of PY |X , which does not hurt its coverage, but inflates its length
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Software tools

R package conformalInference, available at:

https://github.com/ryantibs/conformal/

• Conformal methods: full, split, jackknife, locally-weighted, ...

• Base algorithms: built-in or custom ones (functional approach)

• Reproduce all results from Lei et al. (2018) and T. et al. (2019)

Code example:

funs = rf.funs(ntree = 2000)

obj = conformal.pred(x, y, x0, alpha = 0.1,

train.fun = funs$train,

predict.fun = funs$predict)

See also Angelopoulos & Bates (2021) and references therein
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Jackknife+
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Classical jackknife

Jackknife has a rich history in statistics. Can we use it for predictive
inference?

• For each i = 1, . . . , n, fit estimate f̂
(−i)
n−1 on (Xj , Yj), j 6= i

• Form jackknife (leave-one-out) residuals Ri = |Yi − f̂ (−i)n−1 (Xi)|,
i = 1, . . . , n

• Let q̂n = d(1− α)(n+ 1)e smallest of R1, . . . , Rn, and define

Ĉn(x) =
[
f̂n(x)− q̂n, f̂n(x) + q̂n

]
Remarks:

• Computational cost is in between full and split conformal (can
get big speed ups for some special linear smoothers)

• But unlike conformal methods, we do not have out-of-sample
coverage guarantees ... jackknife is only in-sample symmetric
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Just add a plus

Notation: Q+
n,α{vi} = d(1− α)(n+ 1)e smallest of v1, . . . , vn, and

Q−n,α{vi} = −q−n,α{−vi}. Jackknife interval can be written as:

Ĉn(x) =
[
Q−n,α

{
f̂n(x)−Ri

}
, Q+

n,α

{
f̂n(x) +Ri

}]
Jackknife+ interval (Barber, Candes, Ramdas, T. 2021):

Ĉ+
n (x) =

[
Q−n,α

{
f̂ (−i)n (x)−Ri

}
, Q+

n,α

{
f̂ (−i)n (x) +Ri

}]
Under exchangeability, we have finite-sample coverage:

P
(
Yn+1 ∈ Ĉ+

n (Xn+1)
)
≥ 1− 2α

Barber et al. (2021) also derive cross-validation variant called CV+.
Closely related to cross-conformal of Vovk (2015)
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Jackknife+ illustration (Barber et al. 2021)
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Jackknife+ examples (Barber et al. 2021)
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CQR
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Challenges of local weighting

When implementing local-weighted conformal, easiest approach is to
fit f̂n, σ̂n separately: first fit f̂n, then fit σ̂n based on residuals to f̂

Challenge: if using training residuals, and f̂n is complex, then very
little information is left in residuals to estimate σ̂n

To circumvent this, we must either:

• split further (undesirable); or

• train jointly, which is typically not easy to do out-of-the-box

Once jointly estimating f̂n, σ̂n, may as well estimate and calibrate a
conditional quantile of Y = X|x, which leads us to ...
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Conformal quantile regression

Conformal quantile regression (CQR, Romano et al. 2019): employs
a particular nonconformity score based on quantile regression. In the
split version:

• Compute f̂
α/2
n1 and f̂

1−α/2
n1 on (Xi, Yi), i ∈ D1, where f̂ τn1

(x)
estimates Quantile(τ ;Y |X = x)

• Form calibration set “residuals”

Ri = max
{
f̂α/2n1

(Xi)− Yi, Yi − f̂1−α/2n1
(Xi)

}
, i ∈ D2

• Let q̂n2 = d(1− α)(n2 + 1)e smallest of Ri, i ∈ D2, and define

Ĉn(x) =
[
f̂α/2n1

(x)− q̂n2 , f̂
1−α/2
n1

(x) + q̂n2

]
(This has the exact same guarantees as traditional split conformal)
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CQR example (Romano et al. 2019)
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Classification
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Conformal classification

Conformal prediction fluidly applies to classification problems, just
by changing the nonconformity score

For example, in the split version, using a probabilistic classifier on K
classes:

• Compute f̂n1 on (Xi, Yi), i ∈ D1, where f̂n1(x; k) estimates
P(Y = k|X = x), k = 1, . . . ,K

• Form calibration set scores Ri = f̂n1(Xi;Yi), i ∈ D2

• Let q̂n2 = d(1− α)(n2 + 1)e largest of Ri, i ∈ D2, and define

Ĉn(x) =
{
k : f̂n1(x; k) ≥ q̂n2

}
(This has the exact same guarantees as traditional split conformal)

40



Adaptive prediction sets

Seeking to make this more adaptive: smaller sets for easy problems,
larger for harder problems. Following Romano et al. (2020), define:

Ri =

ki∑
j=1

f̂n1(Xi;πi(j)), i ∈ D2

where πi permutes 1, . . . ,K in decreasing order of f̂n1(Xi; k), and
πi(ki) = Yi

As before, we let q̂n2 = d(1− α)(n2 + 1)e smallest of Ri, i ∈ D2,
and the conformal set becomes

Ĉn(x) = {πx(1), . . . , πx(kx)},

where kx = min

{
k :

k∑
j=1

f̂n1(x;πx(j)) ≤ q̂n2

}
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APS illustration (Angelopoulos and Bates 2021)

At test time, order class by decreasing predicted probability, include
classes until cumulative probability exceeds q̂n2
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APS examples (Angelopoulos et al. 2021)
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Covariate shift
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Challenges of covariate shift

Consider now i.i.d. training data (Xi, Yi) ∼ P , i = 1, . . . , n, but
(Xn+1, Yn+1) ∼ P̃ . When P = PX × PY |X and P̃ = P̃X × PY |X ,
this is called covariate shift

Conformal prediction:

Ĉn(x) =

{
y ∈ R : R

(x,y)
n+1 ≤

Quantile

(
1− α;

1

n+ 1

n∑
i=1

δ
R

(x,y)
i

+
1

n+ 1
δ∞

)}
will in general fail, because the nonconformity scores will not be
exchangeable. What to do?

Basic idea: from a set of test covariate points, could use importance
sampling to get a subset that “looks like” it came from PX
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Covariate shift example (T. et al. 2019)
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Covariate shift example (T. et al. 2019)
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Conformal for covariate shift

Using importance weighting, this same idea can be applied without
sampling (T., Barber, Candes, Ramdas 2019):

Ĉn(x) =

{
y ∈ R : R

(x,y)
n+1 ≤

Quantile

(
1− α;

∑n
i=1w(Xi)δR(x,y)

i

+ w(x)δ∞∑n
i=1w(Xi) + w(x)

)}
where w = dP̃X/dPX . Leads to familiar conclusion:

P
(
Yn+1 ∈ Ĉn(Xn+1)

)
≥ 1− α

(Note that probability is taken over (Xi, Yi) ∼ P , i = 1, . . . , n, and
(Xn+1, Yn+1) ∼ P̃ ... interestingly, upper bound does not translate)
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Covariate shift example (T. et al. 2019)
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Covariate shift example (T. et al. 2019)
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Distribution shift
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Conformal under distribution shift

What can we say beyond specific joint dependence conditions (exch,
covariate shift, etc.)? Consider conformal prediction sets built from
custom-weighted quantiles (arbitrary 0 ≤ wi ≤ 1, i = 1, . . . , n):

Ĉwn (x) =

{
y ∈ R : R

(x,y)
n+1 ≤

Quantile

(
1− α;

∑n
i=1wiδR(x,y)

i

+ δ∞∑n
i=1wi + 1

)}
Barber, Candes, Ramdas, T. (2022) prove that for any joint law of
Zi = (Xi, Yi), i = 1, . . . , n,

P
(
Yn+1 ∈ Ĉwn (Xn+1)

)
≥ 1− α−

n∑
i=1

wi · dTV(Z,Zi)

where Z = (Z1, . . . , Zn+1), and Zi is the result of swapping i, n+ 1
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Some remarks

• In exchangeable case, each dTV(Z,Zi) = 0, which reveals that
arbitrarily-weighted conformal has 1− α coverage

• In independent case, each dTV(Z,Zi) ≤ 2dTV(Zi, Zn+1), so if
we “guess right” (lower wi on Zi farther from Zn+1), then we
get good coverage

• In general, the coverage gap is ≤
∑n

i=1wi · dTV(R(Z), R(Zi))
where R(Z) is the vector of scores on Z, and same for R(Zi)

• In fact, Barber et al. (2022) even allow the nonconformity score
to be nonsymmetric ... uses internal randomization scheme for
conformal quantiles

Choosing weights in practice is highly nontrivial, more work should
be done; but simple schemes seem to work pretty well in general
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NexCP example (Barber. et al. 2022)
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Conclusion
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Summary

• Conformal inference, pioneered by Vovk (and others) acts as a
wrapper on top of an arbitrary prediction algorithm: it maps

predictions 7→ prediction sets

with finite-sample validity for i.i.d. or exchangeable data

• Split conformal is much faster and simpler, has same guarantee

• The better the base algorithm, the smaller the prediction set

• The sets have average coverage over the feature space; getting
conditional coverage is a much harder problem

• Local weighting, quantile scores, other methods can help here

• Many other extensions available, and yet still lots of work to be
done, especially beyond exchangeability
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Bonus time
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Split conformal: more coverage details

Recall in split conformal we get coverage conditional on the proper
training set:

P
(
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ {(Xi, Yi)}i∈D1

)
∈
[
1− α, 1− α+ 1

n2+1

]
What about coverage conditional on the entire training set? We get

P
(
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ {(Xi, Yi)}i∈D1 , {(Xi, Yi)}i∈D2 ,
)

∼ Beta(kα, n2 + 1− kα)

where kα = d(1−α)(n2 + 1)e (and randomness is over Xn+1, Yn+1)
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Beta coverage illustration
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Adaptive conformal inference

In sequential setting, let Ĉt(α) denote level 1− α prediction set at
time t (formed using data at times s < t)

Gibbs and Candes (2021) propose simple iterative scheme to achieve
nominal 1− α coverage:

errt = 1{Yt /∈ Ĉt(αt)}
αt+1 = αt + γ(α− errt)

Called adaptive conformal inference (ACI), it can be seen as online
gradient descent on a certain loss function. They show:

lim
T→∞

1

T

T∑
t=1

errt = α almost surely

... under essentially no conditions on the family of prediction sets!
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ACI example (Gibbs and Candes 2021)
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Conformal feature importance

Let:

• f̂n be an estimate of interest fit on n training points

• f̂ (−j)n be the estimate fit without access to feature j

• ∆̂j(x, y) = |y − f̂ (−j)n (x)| − |y − f̂n(x)|, error inflation

(As a concrete example, consider the lasso with λ selected by CV)

Let Ĉn(x) denote prediction band from (split) conformal inference.
Define:

Wj(x) =
{
|y − f̂ (−j)n (x)| − |y − f̂n(x)| : y ∈ Ĉn(x)

}
Then:

P
(

∆̂j(Xn+1, Yn+1) ∈Wj(Xn+1), j = 1, . . . , d
)
≥ 1− α

Importantly, note the simultaneity over j (hence holds for random j)
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Feature importance example (Lei et al. 2018)

Additive model in d = 6 dimensions with f4 = f5 = f6 = 0
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Feature importance example (Lei et al. 2018)

Feature importance intervals Wj(Xi), for j = 1, . . . , d
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