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What can we do without a model?

Given i.i.d. (Xi, Y i), i = 1, . . . , n, from a distribution P on Rd ×R.
Denote f(x) = E(Y |X = x)

Main question: without assuming model for P (or for PY |X), what
can we say in terms of variable importance? For selected variables?

Depends if we care about testing hypotheses or covering parameters
(p-values versus confidence intervals)

• Many interesting model-free hypothesis tests ...

• But model-free parameters? (I.e., functionals?)

Oxymoron aside, this is an important practical question ... often we
are interested in effect sizes. Main question, rephrased: are there
interesting functionals that measure effect sizes in model-free way?
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Stats view of the world
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ML view of the world
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Other approaches?

• Projection parameter: for some class of functions fθ, “working
model” (typically parametric, e.g., fθ(x) = θTx), consider

θ∗ = arg min
θ

E
[
Y − fθ(X)

]2
Studied by Larry’s group, Jon’s group, etc. Do inferences on
fθ∗ . Somewhat limiting?

• Distance-to-independence: for some choice of distance d (e.g.,
KL, TV, Wasserstein), consider

d
(
P (Xj , Y |X−j), P (Xj |X−j)× P (Y |X−j)

)
How to cover this? Lacks interpretability?
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Outline

• The LOCO approach

• The good/bad/ugly

• An algorithm-free target

• Purely predictive variant

• Conclusions
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The LOCO approach
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LOCO inference

In Lei et al. (2016), we proposed a simple idea for measuring variable
importance, called leave-one-covariate-out (LOCO) inference:

• Split samples into two parts, D1 ∪D2 = {1, . . . n}
• Run algorithm to compute estimate f̂n1 on first part D1

• Select some interesting variable j, recompute f̂−jn1 on first part
(rerun algorithm without access to variable j)

• Use second part D2 to construct finite-sample, distribution-free
confidence interval (e.g., use sign test or Wilcoxon test) for

θj(D1) = med
(
|Y − f̂−jn1

(X)| − |Y − f̂n1(X)|
∣∣∣D1

)
Note: algorithm for estimating f(x) = E(Y |X = x) can be arbitrary
(lasso, lasso + CV, random forest, gradient boosting, neural net ...)
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Examples of LOCO

Example: n = 200, d = 500, with data model Y = βTX + ε, such
that X ∼ N(0, Id), ε ∼ N(0, 1), and

βj

{
∼ N(0, 2) j = 1, . . . , 5

= 0 otherwise

• Algorithm is the lasso, with 5-fold CV and 1se rule to select λ

• Compute an interval for

θj(D1) = med
(
|Y − f̂−jn1

(X)| − |Y − f̂n1(X)|
∣∣∣D1

)
for each j in lasso active set

• Use Bonferroni correction: if s variables are selected, then we
compute each LOCO interval at level 1− α/s
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Examples of LOCO
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Examples of LOCO
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Examples of LOCO
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Examples of LOCO
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Examples of LOCO
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The good/bad/ugly
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The good

• Algorithmically flexible: any algorithm can be used to measure
variable importance

• Computationally cheap(-ish): one refitting of the algorithm at
hand per variable considered

• No distributional assumptions: intervals for θj(D1) have exact
coverage in finite-sample, for any distribution P of (X,Y )

• Selective validity: intervals cover the selected variables

• Accuracy: Rinaldo et al. (2016) show intervals (with Bonferroni
correction, for s variables) have length O(

√
log(sn)/n)

• Simplicity: very simple/portable! Easy implementation
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The bad

• The LOCO parameter is not on an intuitive scale

• Results we declare in practice are tied to choice of algorithm

• Results are also sensitive to ratio of training to test set sizes

Fixes.

I Rescale LOCO parameter

θj(D1) =
med

(
|Y − f̂−j

n1
(X)| − |Y − f̂n1

(X)|
∣∣∣D1

)
mad(Y )

I In defining algorithm, use something like CV (or meta-CV)
I Cover both LOCO parameter and

θ0(D1) =
med

(
|Y − f̂n1

(X)| −mad(Y )
∣∣∣D1

)
mad(Y )
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Examples of LOCO
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Examples of LOCO
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The ugly
(aside from the name)

The parameter

θj(D1) = med
(
|Y − f̂−jn1

(X)| − |Y − f̂n1(X)|
∣∣∣D1

)
is conditional on D1. It measures “how important is variable j, to
our algorithm’s estimates on D1?”

Compare this to

θj = med
(
|Y − f̂−jn1

(X)| − |Y − f̂n1(X)|
)

which measures “how important is variable j, to our algorithm run
on n1 samples ?”

These are not the same!
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Examples of LOCO
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Marginal or conditional?

• Parameter θj itself is (arguably) more natural/interesting

• Asymptotically, interval for θj(D1) need not be centered around
θj , even in simple settings (Taylor, personal communication)

• Generic multi-splitting won’t work either—each time we cover
a different parameter, and not clear how to combine inferences

• Multi-splitting can work if we take small training sets, adopt a
U-statistic view, but now parameter has very different meaning

• Markovic, Xia, Taylor (2017) cover θj using randomization +
normal approximation ... requires assumptions

• Distribution-free inference for θj is an open problem
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An algorithm-free target
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Sans algorithm

Absent of any algorithm, we can still consider

φj =
‖Y − E(Y |X−j)‖2 − ‖Y − E(Y |X)‖2

Var(Y )

(where ‖Z‖2 = E(Z2)). This is like a nonparametric proportion of
variance explained by Xj .

Equivalent form:

φj =
‖E(Y |X−j)− E(Y |X)‖2

Var(Y )

We could also study more robust version (expectations → medians)
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Study φj or θj?

LOCO was initially motivated by (more robust version of):

θj =
‖Y − Ê(Y |X−j)‖2 − ‖Y − Ê(Y |X)‖2

Var(Y )

for particular plug-in estimators of the conditional expectations

This was done to get distribution-free, finite-sample results. But we
could also motivate our study by φj , which is algorithm-free

• Problem is we must ask for consistency, resort to asymptotics

• Williamson et al. (2017) show how to do inference for φj using
semiparametric theory ... requires assumptions

• Again, assumption-lean inference for φj is an open problem
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Purely predictive variant
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Predictive perspective

Consider the random variable:

∆j(X,Y ) = |Y − f̂ (−j)n (X)| − |Y − f̂n(X)|

where f̂n, f̂
(−j)
n are fit on full data set, and (X,Y ) is a new pair

Somewhat remarkably, using theory of conformal inference, we can
get a distribution-free, finite-sample prediction band for ∆j(X,Y ):

P
(

∆j(X,Y ) ∈ Cj(X), j = 1, . . . , d
)
≥ 1− α

Note the simultaneity over all variables j! Two important notes:

• Coverage is marginal over f̂n, f̂
(−j)
n

• Coverage is also marginal over X

(Could this give an avenue for assumption-lean inference on θj?)
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Conclusions
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Summary

• Inference on effect sizes for variable importance in a model-free
way is an important problem

• LOCO provides a fast, simple, distribution-free coverage of the
median excess test error after omitting any given variable

• We can put target on a natural scale: prop of mad explained,
weaken practical dependence on algorithm, and interpret in an
algorithm-free way (under consistency)

• Biggest unresolved downside is conditional crutch: parameter is
conditional on D1 (first half of data). Important practice issue.
Model-free inference for marginal parameter is an open problem
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Bonus time
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Conformal variable importance

Example: n = 1000, d = 6, additive model with f4 = f5 = f6 = 0
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Conformal variable importance

Variable importance intervals Cj(Xi), for j = 1, . . . , d, i = 1, . . . , n
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