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What can we do without a model?

Given iid. (X, Y?),i=1,...,n, from a distribution P on R% x R.
Denote f(z) =E(Y|X = z)

Main question: without assuming model for P (or for Py|x), what
can we say in terms of variable importance? For selected variables?

Depends if we care about testing hypotheses or covering parameters
(p-values versus confidence intervals)
e Many interesting model-free hypothesis tests ...

e But model-free parameters? (l.e., functionals?)

Oxymoron aside, this is an important practical question ... often we
are interested in effect sizes. Main question, rephrased: are there
interesting functionals that measure effect sizes in model-free way?
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Other approaches?

e Projection parameter: for some class of functions fy, “working
model” (typically parametric, e.g., fo(z) = 67 x), consider

0" = argemin E[Y — fg(X)]2

Studied by Larry’s group, Jon's group, etc. Do inferences on
fo+. Somewhat limiting?

e Distance-to-independence: for some choice of distance d (e.g.,
KL, TV, Wasserstein), consider

d(P(X;,YIX-), P(GIX-5) x P(Y]X;))

How to cover this? Lacks interpretability?
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The LOCO approach



LOCO inference

In Lei et al. (2016), we proposed a simple idea for measuring variable
importance, called leave-one-covariate-out (LOCO) inference:

e Split samples into two parts, D1 U Dy = {1,...n}

e Run algorithm to compute estimate fnl on first part D;

e Select some interesting variable j, recompute fn_lj on first part
(rerun algorithm without access to variable j5)

e Use second part Dy to construct finite-sample, distribution-free
confidence interval (e.g., use sign test or Wilcoxon test) for

0;(D1) = med (Y = o7 (O] = |Y = fu (X)] | D1)

Note: algorithm for estimating f(x) = E(Y'|X = x) can be arbitrary
(lasso, lasso + CV, random forest, gradient boosting, neural net ...)



Examples of LOCO

Example: n = 200, d = 500, with data model Y = 6TX + €, such
that X ~ N(0, 1), e ~ N(0,1), and

=0 otherwise

~N(0,2) j=1,....5
@{ 0,2) j=1,...,

e Algorithm is the lasso, with 5-fold CV and 1se rule to select A

e Compute an interval for
0;(D1) = med (Y = f7 (X)| = [Y = fu (X)] | D1)

for each j in lasso active set

e Use Bonferroni correction: if s variables are selected, then we
compute each LOCO interval at level 1 — a/s
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Examples of LOCO

LOCO Intervals using Lasso + CV

B
2 4 22 73 122 147 157 242 316 471
1 3 5 61 106 140 150 221 293 433 475
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Examples of LOCO

LOCO Intervals using Stepwise + CV

PPyt
2 4 20__32__73 _140 157 322 406 475
1 3 5 22 37 122 147 242 394 433
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Examples of LOCO

LOCO Intervals using SPAM + CV

Variable
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Test error diff
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Examples of LOCO

LOCO Intervals using Random Forest

PPyt
4 21 __150 242 306 316 422 442 463 _492
1 5 57 218 277 315 331 433 448 471

Variable
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Density
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Examples of LOCO

Histogram of Test Errors

Lasso
SPAM
Random forest

Absolute error
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The good/bad/ugly
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The good

Algorithmically flexible: any algorithm can be used to measure
variable importance

Computationally cheap(-ish): one refitting of the algorithm at
hand per variable considered

No distributional assumptions: intervals for 6;(D;) have exact
coverage in finite-sample, for any distribution P of (X,Y)

Selective validity: intervals cover the selected variables

Accuracy: Rinaldo et al. (2016) show intervals (with Bonferroni
correction, for s variables) have length O(4/log(sn)/n)

Simplicity: very simple/portable! Easy implementation
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The bad

e The LOCO parameter is not on an intuitive scale
e Results we declare in practice are tied to choice of algorithm
e Results are also sensitive to ratio of training to test set sizes

Fixes.

» Rescale LOCO parameter

med([Y = 7 (X)) = [Y = fu, ()] D)

0;(D1) = mad(Y")

» In defining algorithm, use something like CV (or meta-CV)
» Cover both LOCO parameter and

med<|Y—fn1( )] — mad(Y ‘Dl)

fo(Dr) = mad(Y)
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Examples of LOCO

LOCO Intervals Rescaled
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Prop of mad explained
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Examples of LOCO

LOCO using Lasso + SPAM + RF + CV

B
2 4 22 73 122 147 157 242 316 471
1 3 5 61 106 140 150 221 293 433 475

Variable
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The ugly

(aside from the name)

The parameter
0;(D1) = med |V = f7 (X)| = [¥ = fu, (X)]| D1)

is conditional on Dy. It measures “how important is variable 7, to
our algorithm’s estimates on D1?"

Compare this to
0]' = med(\Y - f;;l](X)‘ - ’Y - fnl (X)|>

which measures “how important is variable j, to our algorithm run
on ny samples?"

These are not the same!
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Prop of mad explained
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LOCO Intervals with Population Centers

Lasso

SPAM

Random forest

Conditional &
. Marginal 6
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Variable
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Marginal or conditional?

Parameter 6; itself is (arguably) more natural/interesting

Asymptotically, interval for 6;(D1) need not be centered around
6;, even in simple settings (Taylor, personal communication)

Generic multi-splitting won't work either—each time we cover
a different parameter, and not clear how to combine inferences

Multi-splitting can work if we take small training sets, adopt a
U-statistic view, but now parameter has very different meaning

Markovic, Xia, Taylor (2017) cover 6; using randomization +
normal approximation ... requires assumptions

Distribution-free inference for f); is an open problem
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An algorithm-free target
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Sans algorithm

Absent of any algorithm, we can still consider

_ Y —EXX_))? - Iy - E{ X))
Var(Y')

?;

(where || Z||? = E(Z?)). This is like a nonparametric proportion of
variance explained by X;.

Equivalent form:

_E(YIX-,) — BV
Var(Y)

?;

We could also study more robust version (expectations — medians)
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Study ¢; or 0;7

LOCO was initially motivated by (more robust version of):

Y —EIX )1~ Y - B0
Var(Y)

0;
for particular plug-in estimators of the conditional expectations

This was done to get distribution-free, finite-sample results. But we
could also motivate our study by ¢;, which is algorithm-free

e Problem is we must ask for consistency, resort to asymptotics

e Williamson et al. (2017) show how to do inference for ¢; using
semiparametric theory ... requires assumptions

e Again, assumption-lean inference for ¢; is an open problem
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Purely predictive variant
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Predictive perspective

Consider the random variable:
AG(X,Y) =Y = fU(X)] =Y = fu(X))|
where f,,, fr(fj) are fit on full data set, and (X,Y) is a new pair

Somewhat remarkably, using theory of conformal inference, we can
get a distribution-free, finite-sample prediction band for A;(X,Y):

P(A(X,Y)€Ci(X), j=1,....d) >1-a

Note the simultaneity over all variables j! Two important notes:

e Coverage is marginal over f,, ffl_])

o Coverage is also marginal over X

(Could this give an avenue for assumption-lean inference on 6;7)
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Conclusions
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Summary

Inference on effect sizes for variable importance in a model-free
way is an important problem

LOCO provides a fast, simple, distribution-free coverage of the
median excess test error after omitting any given variable

We can put target on a natural scale: prop of mad explained,
weaken practical dependence on algorithm, and interpret in an
algorithm-free way (under consistency)

Biggest unresolved downside is conditional crutch: parameter is

conditional on D; (first half of data). Important practice issue.

Model-free inference for marginal parameter is an open problem
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Thank you for listening!
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Bonus time
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Conformal variable importance

Example: n = 1000, d = 6, additive model with fy = f5 = fg =0
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Conformal variable importance

Variable importance intervals C;(X;), for j=1,...,d, i=1,...,n
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