
The Annals of Statistics

2017, Vol. 45, No. 1, 77–120
DOI: 10.1214/16-AOS1435
© Institute of Mathematical Statistics, 2017

STATISTICAL GUARANTEES FOR THE EM ALGORITHM:

FROM POPULATION TO SAMPLE-BASED ANALYSIS1
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The EM algorithm is a widely used tool in maximum-likelihood estima-
tion in incomplete data problems. Existing theoretical work has focused on
conditions under which the iterates or likelihood values converge, and the
associated rates of convergence. Such guarantees do not distinguish whether
the ultimate fixed point is a near global optimum or a bad local optimum of
the sample likelihood, nor do they relate the obtained fixed point to the global
optima of the idealized population likelihood (obtained in the limit of infinite
data). This paper develops a theoretical framework for quantifying when and
how quickly EM-type iterates converge to a small neighborhood of a given
global optimum of the population likelihood. For correctly specified models,
such a characterization yields rigorous guarantees on the performance of cer-
tain two-stage estimators in which a suitable initial pilot estimator is refined
with iterations of the EM algorithm. Our analysis is divided into two parts:
a treatment of the EM and first-order EM algorithms at the population level,
followed by results that apply to these algorithms on a finite set of samples.
Our conditions allow for a characterization of the region of convergence of
EM-type iterates to a given population fixed point, that is, the region of the
parameter space over which convergence is guaranteed to a point within a
small neighborhood of the specified population fixed point. We verify our
conditions and give tight characterizations of the region of convergence for
three canonical problems of interest: symmetric mixture of two Gaussians,
symmetric mixture of two regressions and linear regression with covariates
missing completely at random.

1. Introduction. Data problems with missing values, corruptions and latent
variables are common in practice. From a computational standpoint, computing
the maximum likelihood estimate (MLE) in such incomplete data problems can
be quite complex. To a certain extent, these concerns have been assuaged by the
development of the expectation-maximization (EM) algorithm, along with growth
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in computational resources. The EM algorithm is widely applied to incomplete
data problems, and there is now a very rich literature on its behavior (e.g., [11,
12, 17, 25, 27, 30, 32, 34, 42, 44, 49]). However, a major issue is that in most
models, although the MLE is known to have good statistical properties, the EM
algorithm is only guaranteed to return a local optimum of the sample likelihood
function. The goal of this paper is to address this gap between statistical and com-
putational guarantees, in particular by developing an understanding of conditions
under which the EM algorithm is guaranteed to converge to a local optimum that
matches the performance of maximum likelihood estimate up to constant factors.

The EM algorithm has a lengthy and rich history. Various algorithms of the
EM-type were analyzed in early work (e.g., [5, 6, 18, 19, 37, 40, 41]), before the
EM algorithm in its modern general form was introduced by Dempster, Laird and
Rubin [17]. Among other results, these authors established its well-known mono-
tonicity properties. Wu [50] established some of the most general convergence re-
sults known for the EM algorithm; see also the more recent papers [15, 43]. Among
the results in the paper, [50] is a guarantee for the EM algorithm to converge to
the unique global optimum when the likelihood is unimodal and certain regular-
ity conditions hold. However, in most interesting cases of the EM algorithm, the
likelihood function is multi-modal, in which case the best that can be guaranteed
is convergence to some local optimum of the likelihood at an asymptotically geo-
metric rate (see, e.g., [20, 29, 31, 33]). A guarantee of this type does not preclude
that the EM algorithm converges to a “poor” local optimum—meaning one that is
far away from any global optimum of the likelihood. For this reason, despite its
popularity and widespread practical effectiveness, the EM algorithm is in need of
further theoretical backing.

The goal of this paper is to take the next step in closing this gap between the
practical use of EM and its theoretical understanding. At a high level, our main
contribution is to provide a quantitative characterization of a basin of attraction
around the population global optimum with the following property: if the EM al-
gorithm is initialized within this basin, then it is guaranteed to converge to an EM
fixed point that is within statistical precision of a global optimum. The statistical
precision is a measure of the error in the maximum likelihood estimate, or any
other minimax optimal method; we define it more precisely in the sequel. Thus, in
sharp contrast with the classical theory [20, 29, 31, 33]—which guarantees asymp-
totic convergence to an arbitrary EM fixed point—our theory guarantees geometric
convergence to a “good” EM fixed point.

In more detail, we make advances over the classical results in the following
specific directions:

• Existing results on the rate of convergence of the EM algorithm guarantee that
there is some neighborhood of a fixed point over which the algorithm converges
to this fixed point, but do not quantify its size. In contrast, we formulate condi-
tions on the auxiliary Q-function underlying the EM algorithm, which allow us
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to give a quantitative characterization of the region of attraction around the pop-
ulation global optimum. As shown by our analysis for specific statistical mod-
els, its size is determined by readily interpretable problem-dependent quantities,
such as the signal-to-noise ratio (SNR) in mixture models, or the probability of
missing-ness in models with missing data. As a consequence, we can provide
concrete guarantees on the initializations of EM that lead to good fixed points.
For example, for Gaussian mixture models with a suitably large mean separa-
tion, we show that a relatively poor initialization suffices for the EM algorithm
to converge to a near-globally optimal solution.

• Classical results on the EM algorithm are all sample-based, in particular ap-
plying to any fixed point of the sample likelihood. However, given the non-
convexity of the likelihood, there is a priori no reason to believe that any fixed
points of the sample likelihood are close to the population MLE (i.e., a maxi-
mizer of the population likelihood), or equivalently (for a well-specified model)
close to the underlying true parameter. Indeed, it is easy to find cases in which
the likelihood function has spurious local maxima; see Figure 1 for one simple
example. In our approach, we first study the EM algorithm in the idealized limit
of infinite samples, referred to as the population level. For specific models, we
provide conditions under which there are in fact no spurious fixed points for two
algorithms of interest (the EM and first-order EM algorithms) at the population

FIG. 1. An illustration of the inadequacy of purely sample-based theory guaranteeing linear con-

vergence to any fixed point of the sample-based likelihood. The figure illustrates the population and

sample-based likelihoods for samples y ∼ 1
2N (−θ∗,1) + 1

2N (θ∗,1) with θ∗ = 0.7. There are two

global optima for the population-likelihood corresponding to θ∗ and −θ∗, while the sample-based

likelihood, for a small sample size, can have a single spurious maximum near 0. Our theory guaran-

tees that for a sufficiently large sample size this phenomenon is unlikely, and that in a large region

around θ∗ (of radius roughly ‖θ∗‖2), all maxima of the sample-based likelihood are extremely close

to θ∗, with an equivalent statement for a neighborhood of −θ∗.
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level. We then give a precise lower bound on the sample size that suffices to
ensure that, with high probability, the sample likelihood does not have spuri-
ous fixed points far away from the population MLE. These results show that the
behavior shown in Figure 1 is unlikely given a sufficiently large sample.

• In simulations, it is frequently observed that if the EM algorithm is given a
“suitable” initialization, then it converges to a statistically consistent estimate.
For instance, in application to a mixture of regressions problem, Chaganty and
Liang [13] empirically demonstrate good performance for a two-stage estima-
tor, in which the method of moments is used as an initialization, and then the
EM algorithm is applied to refine this initial estimator. Our theory allows us to
give a precise characterization of what type of initialization is suitable for these
types of two-stage methods. When the pilot estimator is consistent but does not
achieve the minimax-optimal rate (as is often the case for various moment-based
estimators in high dimensions), then these two-stage approaches are often much
better than the initial pilot estimator alone. Our theoretical results help explain
this behavior, and can further be used to characterize the refinement stage in new
examples.

In well-specified statistical models, our results provide sufficient conditions on
initializations that ensure that the EM algorithm converges geometrically to a fixed
point that is within statistical precision of the unknown true parameter. Such a
characterization is useful for a variety of reasons. First, there are many settings
(including mixture modeling) in which the statistician has the ability to collect a
few labeled samples in addition to many unlabeled ones, and understanding the
size of the region of convergence of EM can be used to guide the efforts of the
statistician, by characterizing the number of labeled samples that suffice to (with
high-probability) provide an initialization from which she can leverage the unla-
beled samples. In this setting, the typically small set of labeled samples are used
to construct an initial estimator which is then refined by the EM algorithm ap-
plied on the larger pool of unlabeled samples. Second, in practice, the EM algo-
rithm is run with numerous random initializations. Although we do not directly
attempt to address this in this paper, we note that a tight characterization of the
region of attraction can be used in a straightforward way to answer the question:
how many random initializations (from a specified distribution) suffice (with high-
probability) to find a near-globally optimal solution?

Roadmap. Our main results concern the population EM and first-order EM
algorithms and their finite-sample counterparts. We give conditions under which
the population algorithms are contractive to the MLE, when initialized in a ball
around the MLE. These conditions allow us to establish the region of attraction
of the population MLE. A bulk of our technical effort is in the treatment of three
examples—namely, a symmetric mixture of two Gaussians, a symmetric mixture
of two regressions and regression with missing covariates—for which we show
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that our conditions hold in a large region around the MLE, and that the size of this
region is determined by interpretable problem-dependent quantities.

The remainder of this paper is organized as follows. Section 2 provides an Intro-
duction to the EM and first-order EM algorithms, and develops some intuition for
the theoretical treatment of the first-order EM algorithm. Section 3 is devoted to
the analysis of the first-order EM at the population level: in particular, Theorem 1
specifies concrete conditions that ensure geometric convergence, and Corollaries 1,
2 and 3 show that these conditions hold for three specific classes of statistical
models: Gaussian mixtures, mixture of regressions and regression with missing
covariates. We follow with analysis of the sample-based form of the first-order
EM updates in Section 4, again stating two general theorems (Theorems 2 and 3),
and developing their consequences for our three specific models in Corollaries 4,
5 and 6. We also provide an analogous set of population and sample results for
the standard EM updates. The main results appear in Section 5. Due to space con-
straints, we defer detailed proofs as well as a treatment of concrete examples to the
Supplementary Material [3]. In addition, Appendix C contains additional analysis
of stochastic online forms of the first-order EM updates. Section 6 is devoted to
the proofs of our results on the first-order EM updates, with some more technical
aspects again deferred to appendices in the Supplementary Material.

2. Background and intuition. We begin with basic background on the stan-
dard EM algorithm as well as the first-order EM algorithm as they are applied at
the sample level. We follow this background by introducing the population-level
perspective that underlies the analysis of this paper, including the notion of the or-
acle iterates at the population level and the gradient smoothness condition, as well
as discussing the techniques required to translate from population based results to
finite-sample based results.

2.1. EM algorithm and its relatives. Let Y and Z be random variables taking
values in the sample spaces Y and Z , respectively. Suppose that the pair (Y,Z) has
a joint density function fθ∗ that belongs to some parameterized family {fθ |θ ∈ �}
where � is some nonempty convex set of parameters. Suppose that rather than ob-
serving the complete data (Y,Z), we observe only component Y . The component
Z corresponds to the missing or latent structure in the data. For each θ ∈ �, we let
kθ (z|y) denote the conditional density of z given y.

Our goal is to obtain an estimate of the unknown parameter θ∗ via maximizing
the log-likelihood. Throughout this paper, we assume that the generative model is
correctly specified, with an unknown true parameter θ∗. In the classical statistical
setting, we observe n i.i.d. samples {yi}ni=1 of the Y component. Formally, under
the i.i.d. assumption, we are interested in computing some θ̂ ∈ � maximizing the
log-likelihood function θ �→ ℓn(θ) where

ℓn(θ) = 1

n

n∑

i=1

log
[∫

Z

fθ (yi, zi) dzi

]
.
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Rather than attempting to maximize the likelihood directly, the EM framework
is based on using an auxiliary function to lower bound the log likelihood. More
precisely, we define a bivariate function Qn : � × � →R as follows.

DEFINITION 1 (Finite-sample Q-function).

Qn

(
θ |θ ′) =

1

n

n∑

i=1

(∫

Z

kθ ′(z|yi) logfθ (yi, z) dz

)
.(2.1)

The quantity Qn(θ |θ ′) provides a lower bound on the log-likelihood ℓn(θ) for
any θ , with equality holding when θ = θ ′—that is, ℓn(θ

′) = Qn(θ
′|θ ′).

The standard EM algorithm operates by maximizing this auxiliary function,
whereas the first-order EM algorithm operates by taking a gradient step.2 In more
detail:

• Given some initialization θ0 ∈ �, the standard EM algorithm performs the up-
dates

θ t+1 = arg max
θ∈�

Qn

(
θ |θ t ), t = 0,1, . . . .(2.2)

• Given some initialization θ0 ∈ � and an appropriately chosen step-size α ≥ 0,
the first-order EM algorithm performs the updates:

θ t+1 = θ t + α∇Qn

(
θ |θ t )|θ=θ t for t = 0,1, . . . ,(2.3)

where the gradient is taken with respect to the first argument of the Q-function.3

There is also a natural extension of the first-order EM iterates that includes a
constraint arising from the parameter space �, in which the update is projected
back using a Euclidean projection onto the constraint set �.

It is important to note that in typical examples, several of which are considered
in detail in this paper, the likelihood function ℓn is not concave, which makes
direct computation of a maximizer challenging. On the other hand, there are many
cases in which, for each fixed θ ′ ∈ �, the functions Qn(·|θ ′) are concave, thereby
rendering the EM updates tractable. In this paper, as is often the case in examples,
we focus on cases when the functions Qn(·|θ ′) are concave.

It is easy to verify that the gradient ∇Qn(θ |θ t ), when evaluated at the specific
point θ = θ t , is actually equal to the gradient ∇ℓn(θ

t ) of the log-likelihood at θ t .
Thus, the first-order EM algorithm is actually gradient ascent on the marginal log-
likelihood function. However, the description given in equation (2.3) emphasizes
the role of the Q-function, which plays a key role in our theoretical development,
and allows us to prove guarantees even when the log likelihood is not concave.

2We assume throughout that Qn and Q are differentiable in their first argument.
3Throughout this paper, we always consider the derivative of the Q-function with respect to its

first argument.
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2.2. Population-level perspective. The core of our analysis is based on analyz-
ing the log likelihood and the Q-functions at the population level, corresponding
to the idealized limit of an infinite sample size. The population counterpart of the
log likelihood is the function θ �→ ℓ(θ) given by

ℓ(θ) =
∫

Y

log
[∫

Z

fθ (y, z) dz

]
gθ∗(y) dy,(2.4)

where θ∗ denotes the true, unknown parameter and gθ∗ is the marginal density
of the observed data. A closely related object is the population analog of the
Q-function, defined as follows.

DEFINITION 2 (Population Q-function).

Q
(
θ |θ ′) =

∫

Y

(∫

Z

kθ ′(z|y) logfθ (y, z) dz

)
gθ∗(y) dy.(2.5)

We can then consider the population analogs of the standard EM and first-
order EM updates, obtained by replacing Qn and ∇Qn with Q and ∇Q in equa-
tions (2.2) and (2.3), respectively. Our main goal is to understand the region of the
parameter space over which these iterative schemes, are convergent to θ∗. For the
remainder of this section, let us focus exclusively on the population first-order EM
updates, given by

θ t+1 = θ t + α∇Q
(
θ |θ t )|θ=θ t , for t = 0,1,2, . . . .(2.6)

The concepts developed here are also useful in understanding the EM algorithm;
we provide a brief treatment of the EM algorithm in Section 5 and a full treatment
of it in Appendix B of the Supplementary Material.

2.3. Oracle auxiliary function and iterates. Our key insight is that in a local
neighborhood of θ∗, the first-order EM iterates (2.6) can be viewed as perturba-
tions of an alternate oracle iterative scheme, one that is guaranteed to converge
to θ∗. This leads us to a natural condition, relating the perturbed and oracle itera-
tive schemes, which gives an explicit way to characterize the region of convergence
of the first-order EM algorithm.

Since the vector θ∗ is a maximizer of the population log-likelihood, a classical
result [29] guarantees that it must then satisfy the condition

θ∗ = arg max
θ∈�

Q
(
θ |θ∗),(2.7)

a property known as self-consistency. Whenever the function Q is concave in its
first argument, this property allows us to express the fixed-point of interest θ∗ as the
solution of a concave maximization problem—namely one involving the auxiliary
function q : � →R given by the following.
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DEFINITION 3 (Oracle auxiliary function).

q(θ) := Q
(
θ |θ∗) =

∫

Y

(∫

Z

kθ∗(z|y) logfθ (y, z) dz

)
gθ∗(y) dy.(2.8)

Why is this oracle function useful? Assuming that it satisfies some standard reg-
ularity conditions—namely, strong concavity and smoothness—classical theory on
gradient methods yields that, with an appropriately chosen stepsize α, the iterates

θ̃ t+1 = θ̃ t + α∇q
(
θ̃ t ) for t = 0,1,2, . . .(2.9)

converge at a geometric rate to θ∗. Of course, even in the idealized population
setting, the statistician cannot compute the oracle function q , since it presumes
knowledge of the unknown parameter θ∗. However, with this perspective in mind,
the first-order EM iterates (2.3) can be viewed as a perturbation of the idealized
oracle iterates (2.9).

By comparing these two iterative schemes, we see that the only difference is
the replacement of ∇q(θ t ) = ∇Q(θ t |θ∗) with the quantity ∇Q(θ t |θ t ). Thus, we
are naturally led to consider a gradient smoothness condition which ensures the
closeness of these quantities. Particularly, we consider a condition of the form

∥∥∇q(θ) − ∇Q(θ |θ)
∥∥

2 ∈ γ
∥∥θ − θ∗∥∥

2 for all θ ∈ B2
(
r; θ∗),(2.10)

where B2(r; θ∗) denotes a Euclidean ball4 of radius r around the fixed point θ∗,
and γ is a smoothness parameter. Our first main result (Theorem 1) shows that
when the gradient smoothness condition (2.10) holds for appropriate values of γ ,
then for any initial point θ0 ∈ B2(r; θ∗), the first-order EM iterates converge at a
geometric rate to θ∗. In this way, we have a method for explicitly characterizing the
region of the parameter space � over which the first-order EM iterates converge
to θ∗.

Of course, there is no a priori reason to suspect that gradient smoothness con-
dition (2.10) holds for any nontrivial values of the radius r and with a sufficiently
small γ in concrete examples. Indeed, much of the technical work in our paper is
devoted to studying important and canonical examples of the EM algorithm, and
showing that the smoothness condition (2.10) does hold for reasonable choices of
the parameters r and γ , ones which yield accurate predictions of the behavior of
EM in practice.

2.4. From population to sample-based analysis. Our ultimate interest is in the
behavior of the finite-sample first-order EM algorithm. Since the finite-sample up-
dates (2.3) are based on the sample gradient ∇Qn instead of the population gradi-
ent ∇Q, a central object in our analysis is the empirical process given by

{
∇Q(θ |θ) − ∇Qn(θ |θ), θ ∈ B2

(
r; θ∗)}.(2.11)

4Our choice of a Euclidean ball is for concreteness; as the analysis in the sequel clarifies, other
convex local neighborhoods of θ∗ could also be used.
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FIG. 2. An illustration of Theorem 2. The theorem describes the geometric convergence of iterates

of the first-order EM algorithm to the ball of radius O(εunif
Q (n, δ)).

Let εunif
Q (n, δ) be an upper bound on the supremum of this empirical process that

holds with probability at least 1 − δ. With this notation, our second main result
(Theorem 2) shows that under our previous conditions at the population level, the
sample first-order EM iterates converge geometrically to a near-optimal solution—
namely, a point whose distance from θ∗ is at most a constant multiple of εunif

Q (n, δ).
Figure 2 provides an illustration of the convergence guarantee provided by Theo-
rem 2.

Of course, this type of approximate convergence to θ∗ is only useful if the bound
εunif
Q (n, δ) is small enough—ideally, of the same or lower order than the statistical

precision, as measured by the Euclidean distance from the MLE to θ∗. Conse-
quently, a large part of our technical effort is devoted to establishing such bounds
on the empirical process (2.11), making use of several techniques such as sym-
metrization, contraction and concentration inequalities. All of our finite-sample
results are nonasymptotic, and allow for the problem dimension d to scale with
the sample-size n. Our finite-sample bounds are minimax-optimal up to logarith-
mic factors, and in typical cases are only sensible for scalings of d and n for which
d ≪ n. This is the best one can hope for without additional structural assumptions.
We also note that after the initial posting of this work, the paper of Wang et al. [48]
utilized our population-level analysis in the analysis of a truncated EM algorithm
which under the structural assumption of sparsity of the unknown true parameter
achieves near minimax-optimal rates in the regime when d ≫ n.

The empirical process in equation (2.11) is tailored for analyzing the batch ver-
sion of sample EM, in which the entire data set is used in each update. In other
settings, it can also be useful to consider sample-splitting EM variants, in which
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each iteration uses a fresh batch of samples. The key benefit from a theoretical
standpoint of the sample-splitting variant is that at the price of a typically logarith-
mic overhead in sample size, analysis of the sample-splitting variant requires much
weaker control on the empirical process: instead of controlling the supremum of
the empirical process in equation (2.11), we only require a point-wise bound that
needs to hold at the sequence of iterates. Our third main result (Theorem 3) pro-
vides analogous guarantees on such a sample-splitting form of the EM updates.
Finally, in Appendix C, we analyze using a different technique, based on stochas-
tic approximation, the most extreme form of sample-splitting, in which each iterate
is based on a single fresh sample, corresponding to a form of stochastic EM. This
form of extreme sample-splitting leads to an estimator that can be computed in
an online/streaming fashion on an extremely large data-set which is an important
consideration in modern statistical practice.

3. Population-level analysis of the first-order EM algorithm. This section
is devoted to a detailed analysis of the first-order EM algorithm at the population
level. Letting θ∗ denote a given global maximum of the population likelihood,
our first main result (Theorem 1) characterizes a Euclidean ball around θ∗ over
which the population update is contractive. Thus, for any initial point falling in
this ball, we are guaranteed that the first-order EM updates converge to θ∗. In
Section 3.2, we derive some corollaries of this general theorem for three specific
statistical models: mixtures of Gaussians, mixtures of regressions and regression
with missing data.

3.1. A general population-level guarantee. Recall that the population-level
first-order EM algorithm is based on the recursion θ t+1 = θ t + α∇Q(θ |θ t )|θ=θ t ,
where α > 0 is a step size parameter to be chosen. The main contribution of this
section is to specify a set of conditions, defined on a Euclidean ball B2(r; θ∗) of

radius r around this point, that ensure that any such sequence, when initialized in
this ball, converges geometrically θ∗.

Our first requirement is the gradient smoothness condition previously discussed
in Section 2.3. Formally, we require the following.

CONDITION 1 (Gradient smoothness). For an appropriately small parameter
γ ≥ 0, we have that

∥∥∇q(θ) − ∇Q(θ |θ)
∥∥

2 ∈ γ
∥∥θ − θ∗∥∥

2 for all θ ∈ B2
(
r; θ∗).(3.1)

As specified more clearly in the sequel, a key requirement in the above condition
is that the parameter γ , be sufficiently small. Our remaining two requirements
apply to the oracle auxiliary function q(θ) := Q(θ |θ∗), as previously introduced
in Definition 3. We require the following.
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CONDITION 2 (λ-strong concavity). There is some λ > 0 such that

q(θ1) − q(θ2) −
〈
∇q(θ2), θ1 − θ2

〉
∈ −

λ

2
‖θ1 − θ2‖2

2
(3.2)

for all pairs θ1, θ2 ∈ B2
(
r; θ∗).

When we require this condition to hold for all pairs θ1, θ2 ∈ � we refer to this as
global λ-strong concavity.

CONDITION 3 (μ-smoothness). There is some μ > 0 such that

q(θ1) − q(θ2) −
〈
∇q(θ2), θ1 − θ2

〉
≥ −

μ

2
‖θ1 − θ2‖2

2
(3.3)

for all θ1, θ2 ∈ B2
(
r; θ∗).

As we illustrate, these conditions hold in many concrete instantiations of EM,
including the three model classes we study in the next section.

Before stating our first main result, let us provide some intuition as to why
these conditions ensure good behavior of the first-order EM iterates. As noted in
Section 2.3, the point θ∗ maximizes the function q , so that in the unconstrained
case, we are guaranteed that ∇q(θ∗) = 0. Now suppose that the λ-strong concavity
and γ -smoothness conditions hold for some γ < λ. Under these conditions, it is
easy to show (see Appendix A.4) that

〈
∇Q

(
θ t |θ t ),∇q

(
θ t )〉 > 0 for any θ t ∈ B2

(
r; θ∗) \

{
θ∗}.(3.4)

This condition guarantees that for any θ t �= θ∗, the direction ∇Q(θ t |θ t ) taken
by the first-order EM algorithm at iteration t always makes a positive angle with
∇q(θ t ), which is an ascent direction for the function q . Given our perspective of q

as a concave surrogate function for the nonconcave log-likelihood, we see condi-
tion (3.4) ensures that the first-order EM algorithm makes progress toward θ∗. Our
first main theorem makes this intuition precise, and in fact guarantees a geometric
rate of convergence toward θ∗.

THEOREM 1. For some radius r > 0, and a triplet (γ, λ,μ) such that 0 ∈ γ <

λ ∈ μ, suppose that Conditions 1, 2 and 3 hold, and suppose that the stepsize is

chosen as α = 2
μ+λ

. Then given any initialization θ0 ∈ B2(r; θ∗), the population

first-order EM iterates satisfy the bound

∥∥θ t − θ∗∥∥
2 ∈

(
1 −

2λ − γ

μ + λ

)t∥∥θ0 − θ∗∥∥
2 for all t = 1,2, . . . .(3.5)

Since (1 − 2λ−γ
μ+λ

) < 1, the bound (3.5) ensures that at the population level, the
first-order EM iterates converge geometrically to θ∗.

Although its proof (see Section 6.1) is relatively straightforward, applying The-
orem 1 to concrete examples requires some technical work in order to certify that
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Conditions 1 through 3 hold over the ball B2(r; θ∗) for a reasonably large choice
of the radius r . In the examples considered in this paper, the strong concavity and
smoothness conditions are usually relatively straightforward, whereas establishing
gradient smoothness (Condition 1) is more challenging. Intuitively, the gradient
smoothness condition is a smoothness condition on the Q-function with respect to
its second argument. Establishing that the gradient condition holds over (nearly)
optimally-sized regions involves carefully leveraging properties of the generative
model as well as smoothness properties of the log-likelihood function.

3.2. Population-level consequences for specific models. In this section, we de-
rive some concrete consequences of Theorem 1 in application to three classes of
statistical models for which the EM algorithm is frequently applied: Gaussian mix-
ture models in Section 3.2.1, mixtures of regressions in Section 3.2.2 and regres-
sion with missing covariates in Section 3.2.3. We refer the reader to Appendix A
for derivations of the exact form of the EM and first-order EM updates for these
three models, thereby leaving this section to focus on the consequences on the
theory.

3.2.1. Gaussian mixture models. Consider the two-component Gaussian mix-
ture model with balanced weights and isotropic covariances. It can be specified by
a density of the form

fθ (y) = 1
2φ

(
y; θ∗, σ 2Id

)
+ 1

2φ
(
y;−θ∗, σ 2Id

)
,(3.6)

where φ(·;μ,�) denotes the density of a N (μ,�) random vector in R
d , and we

have assumed that the two components are equally weighted. Suppose that the
variance σ 2 is known, so that our goal is to estimate the unknown mean vector θ∗.
In this example, the hidden variable Z ∈ {0,1} is an indicator variable for the
underlying mixture component, that is,

(Y |Z = 0) ∼ N
(
−θ∗, σ 2Id

)
and (Y |Z = 1) ∼ N

(
θ∗, σ 2Id

)
.

The difficulty of estimating such a mixture model can be characterized by the
signal-to-noise ratio ‖θ∗‖2

σ
, and our analysis requires the SNR to be lower bounded

as
‖θ∗‖2

σ
> η,(3.7)

for a sufficiently large constant η > 0. Past work by Redner and Walker [39] pro-
vides empirical evidence for the necessity of this assumption: for Gaussian mix-
tures with low SNR, they show that the ML solution has large variance, and fur-
thermore verify empirically that the convergence of the EM algorithm can be quite
slow. Other researchers [28, 51] also provide theoretical justification for the slow
convergence of EM on poorly separated Gaussian mixtures.

With the signal-to-noise ratio lower bound η defined above, we have the follow-
ing guarantee.
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COROLLARY 1 (Population result for the first-order EM algorithm for Gaussian
mixtures). Consider a Gaussian mixture model for which the SNR condition (3.7)
holds for a sufficiently large η, and define the radius r = ‖θ∗‖2

4 . Then there is

a contraction coefficient κ(η) ∈ e−cη2
where c is a universal constant such that

for any initialization θ0 ∈ B2(r; θ∗), the population first-order EM iterates with

stepsize 1, satisfy the bound
∥∥θ t − θ∗∥∥

2 ∈ κ t
∥∥θ0 − θ∗∥∥

2 for all t = 1,2, . . . .(3.8)

REMARKS.

• The above corollary guarantees that when the SNR is sufficiently large, the
population-level first-order EM algorithm converges to θ∗ when initialized at
any point in a ball of radius ‖θ∗‖2/4 around θ∗. Of course, an identical state-
ment is true for the other global maximum at −θ∗. At the population-level the
log-likelihood function is not concave: it has two global maxima at θ∗ and −θ∗,
a local minimum at 0 and a hyperplane of points that are attracted toward 0,
that is, any point that is equi-distant from θ∗ and −θ∗ is a point of the popu-
lation EM algorithm that is not attracted toward a global maximum. Observing
that the all-zeroes vectors is also a fixed point of the (population) first-order EM
algorithm—albeit a bad one—our corollary gives a characterization of the basin
of attraction that is optimal up to the factor of 1/4.

• In addition, the result shows that the first-order EM algorithm has two appealing
properties: (a) as the mean separation grows, the initialization can be further
away θ∗ while retaining the global convergence guarantee; and (b) as the SNR
grows, the first-order EM algorithm converges more rapidly. In particular, in a
high SNR problem a few iterations of first-order EM suffice to obtain a solution
that is very close to θ∗. Both of these effects have been observed empirically in
the work of Redner and Walker [39], and we give further evidence in our later
simulations in Section 4. To the best of our knowledge, Corollary 1 provides the
first rigorous theoretical characterization of this behavior.

• The proof of Corollary 1 involves establishing that for a sufficiently large SNR,
the Gaussian mixture model satisfies the gradient smoothness, λ-strong concav-
ity and μ-smoothness (Conditions 1–3). We provide the body of the proof in
Section 6.3.1, with the more technical details deferred to the Supplementary
Material ([3], Appendix D).

3.2.2. Mixture of regressions. We now consider the mixture of regressions
model, which is a latent variable extension of the usual regression model. In the
standard linear regression model, we observe i.i.d. samples of the pair (Y,X) ∈
R×R

d linked via the equation

yi =
〈
xi, θ

∗〉 + vi,(3.9)
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where vi ∼ N (0, σ 2) is the observation noise assumed to be independent of xi .
We assume a random design setting where xi ∼ N (0, I ) are the design vectors
and θ∗ ∈ R

d is the unknown regression vector to be estimated. In the mixture of
regressions problem, there are two underlying choices of regression vector—say θ∗

and −θ∗—and we observe a pair (yi, xi) drawn from the model (3.9) with prob-
ability 1

2 , and otherwise generated according to the alternative regression model
yi = 〈xi,−θ∗〉 + vi . Here, the hidden variables {zi}ni=1 correspond to labels of the
underlying regression model: say zi = 1 when the data is generated according to
the model (3.9), and zi = 0 otherwise. Some recent work [13, 14, 53] has analyzed
different methods for estimating a mixture of regressions. The work [14] analyzes
a convex relaxation approach while the work [13] analyzes an estimator based on
the method-of-moments. The work [53] focuses on the noiseless mixture of re-
gressions problem (where vi = 0), and provides analysis for an iterative algorithm
in this context. In the symmetric form we consider, the mixture of regressions
problem is also closely related to models for phase retrieval, albeit over R

d , as
considered in another line of recent work (e.g., [4, 10, 36]).

As in our analysis of the Gaussian mixture model, our theory applies when the
signal-to-noise ratio is sufficiently large, as enforced by a condition of the form

‖θ∗‖2

σ
> η,(3.10)

for a sufficiently large constant η > 0. Under a suitable lower bound on this quan-
tity, our first result guarantees that the first-order EM algorithm is locally conver-
gent to the global optimum θ∗ and provides a quantification of the local region of
convergence.

COROLLARY 2 (Population result for the first-order EM algorithm for MOR).
Consider any mixture of regressions model satisfying the SNR condition (3.10)
for a sufficiently large constant η, and define the radius r := ‖θ∗‖2

32 . Then for any

θ0 ∈ B2(r; θ∗), the population first-order EM iterates with stepsize 1, satisfy the

bound
∥∥θ t − θ∗∥∥

2 ∈
(1

2

)t∥∥θ0 − θ∗∥∥
2 for t = 1,2, . . . .(3.11)

REMARKS.

• As with the Gaussian mixture model, the population likelihood has global max-
ima at θ∗ and −θ∗, and a local minimum at 0. Consequently, the largest Eu-
clidean ball over which the iterates could converge to θ∗ would have radius
‖θ∗‖2. Thus, we see that our framework gives an order-optimal characterization
of the region of convergence.5

5Possibly the factor 1/32 could be sharpened with a more detailed analysis.
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• Our analysis shows that the rate of convergence is again a decreasing function
of the SNR parameter η. However, its functional form is not as explicit as in
the Gaussian mixture case, so to simplify the statement, we used the fact that
it is upper bounded by 1/2. The proof of Corollary 2 involves verifying that
the family of Q functions for the MOR model satisfies the required gradient
smoothness, concavity and smoothness properties (Conditions 1 through 3). We
provide the body of the argument in Section 6.3.2, with more technical aspects
deferred to the Supplementary Material ([3], Appendix E).

3.2.3. Linear regression with missing covariates. Our first two examples in-
volved mixture models in which the class membership variable was hidden. An-
other canonical use of the EM algorithm is in cases with corrupted or missing data.
In this section, we consider a particular instantiation of such a problem, namely
that of linear regression with the covariates missing completely at random.

In standard linear regression, we observe response–covariate pairs (yi, xi) ∈
R×R

d generated according to the linear model (3.9). In the missing data extension
of this problem, instead of observing the covariate vector xi ∈ R

d directly, we
observe the corrupted version x̃i ∈ R

d with components

x̃ij =
{

xij , with probability 1 − ρ,

∗, with probability ρ,
(3.12)

where ρ ∈ [0,1) is the probability of missingness.
For this model, the key parameter is the probability ρ ∈ [0,1) that any given

coordinate of the covariate vector is missing, and our analysis links this quantity
to the signal-to-noise ratio and the radius of contractivity r , that is, the radius of
the region around θ∗ within which the population EM algorithm is convergent to a
global optimum. Define

ξ1 :=
‖θ∗‖2

σ
and ξ2 :=

r

σ
.(3.13a)

With this notation, our theory applies whenever the missing probability satisfies
the bound

ρ <
1

1 + 2ξ(1 + ξ)
where ξ := (ξ1 + ξ2)

2.(3.13b)

COROLLARY 3 (Population contractivity for missing covariates). Given any

missing covariate regression model with missing probability ρ satisfying the

bound (3.13b), the first-order EM iterates with stepsize 1, satisfy the bound

∥∥θ t − θ∗∥∥
2 ∈ κ t

∥∥θ0 − θ∗∥∥
2 for t = 1,2, . . . ,(3.14)

where κ ≡ κ(ξ, ρ) := (
ξ+ρ(1+2ξ(1+ξ))

1+ξ
).
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REMARKS.

• When the inequality (3.13b) holds, it can be verified that κ(ξ, ρ) is strictly less
than 1, which guarantees that the iterates converge at a geometric rate.

• Relative to our previous results, this corollary is somewhat unusual, in that we
require an upper bound on the signal-to-noise ratio ‖θ∗‖2

σ
. Although this require-

ment might seem counter-intuitive at first sight, known minimax lower bounds
on regression with missing covariates [26] show that it is unavoidable, that is, it
is neither an artifact of our analysis nor a deficiency of the first-order EM algo-
rithm. Intuitively, such a bound is required because as the norm ‖θ∗‖2 increases,
unlike in the mixture models considered previously, the amount of missing infor-
mation increases in proportion to the amount of observed information. Figure 3
provides the results of simulations that confirm this behavior, in particular show-
ing that for regression with missing data, the radius of convergence eventually
decreases as ‖θ∗‖2 grows.

• We provide the proof of this corollary in Section 6.3.3. Understanding the tight-
ness of the above result remains an open problem. In particular, unlike in the
mixture model examples, we do not know of a natural way to upper bound the
radius of the region of convergence.

In conclusion, we have derived consequences of our main population-level re-
sult (Theorem 1) for three specific concrete models. In each of these examples,
the auxiliary function q is quadratic, so that verifying the strong concavity and

FIG. 3. Simulations of the radius of convergence for the first-order EM algorithm for problems of

dimension d = 10, sample size n = 1000 and variance σ 2 = 1. Radius of convergence is defined as

the maximum value of ‖θ0 − θ∗‖2 for which initialization at θ0 leads to convergence to an optimum

near θ∗. Consistent with the theory, for both the Gaussian mixture and mixture of regression models,
the radius of convergence grows with ‖θ∗‖2. In contrast, in the missing data case (here with ρ = 0.2),
increasing ‖θ∗‖2 can cause the EM algorithm to converge to bad local optima, which is consistent

with the prediction of Corollary 3.
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smoothness examples is relatively straightforward. In contrast, verifying the gradi-
ent smoothness (GS) bound in Condition 1 requires substantially more effort. We
believe that the GS condition is a canonical concept in the understanding of EM-
type iterations, as evidenced by its role in highlighting critical problem dependent
quantities—such as signal-to-noise ratio and probability of missingness—that de-
termine the region of attraction for global maxima of the population likelihood.

4. Analysis of sample-based first-order EM updates. Up to this point, we
have analyzed the first-order EM updates at the population level (2.6), whereas in
practice, the algorithm is applied with a finite set of samples. Accordingly, we now
turn to theoretical guarantees for the sample-based first-order EM updates (2.3).
As discussed in Section 2.4, the main challenge here is in controlling the empirical
process defined by the difference between the sample-based and population-level
updates.

4.1. Standard form of sample-based first-order EM. Recalling the defini-
tion (2.1) of the sample based Q-function, we are interested in the behavior of
the recursion

θ t+1 = θ t + α∇Qn

(
θ |θ t )|θ=θ t ,(4.1)

where α > 0 is an appropriately chosen stepsize. As mentioned previously, we
need to control the deviations of the sample gradient ∇Qn from the population
version ∇Q. Accordingly, for a given sample size n and tolerance parameter δ ∈
(0,1), we let εunif

Q (n, δ) be the smallest scalar such that

sup
θ∈B2(r;θ∗)

∥∥∇Qn(θ |θ) − ∇Q(θ |θ)
∥∥

2 ∈ εunif
Q (n, δ)(4.2)

with probability at least 1 − δ.
Our first main result on the performance of the sample-based first-order EM al-

gorithm depends on the same assumptions as Theorem 1: namely, that there exists
a radius r > 0 and a triplet (γ, λ,μ) with 0 ∈ γ < λ ∈ μ such that the gradient
smoothness, strong-concavity and smoothness conditions hold (Conditions 1–3),
and that we implement the algorithm with stepsize α = 2

μ+λ
.

THEOREM 2. Suppose that, in addition to the conditions of Theorem 1, the

sample size n is large enough to ensure that

εunif
Q (n, δ) ∈ (λ − γ )r.(4.3)

Then with probability at least 1 − δ, given any initial vector θ0 ∈ B2(r; θ∗), the

finite-sample first-order EM iterates {θ t }∞t=0 satisfy the bound

∥∥θ t − θ∗∥∥
2 ∈

(
1 −

2λ − 2γ

μ + λ

)t∥∥θ0 − θ∗∥∥
2 +

εunif
Q (n, δ)

λ − γ
(4.4)

for all t = 1,2, . . . .
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REMARKS.

• This result leverages the population-level result in Theorem 1. It is particularly
crucial that we have linear convergence at the population level, since this en-
sures that errors made at each iteration, which are bounded by εunif

Q (n, δ) with
probability at least 1−δ, do not accumulate too fast. The bound in equation (4.3)
ensures that the iterates of the finite-sample first-order EM algorithm remain in
B2(r; θ∗) with the same probability.

• Note that the bound (4.4) involves two terms, the first of which decreases ge-
ometrically in the iteration number t , whereas the second is independent of t .
Thus, we are guaranteed that the iterates converge geometrically to a ball of
radius O(εunif

Q (n, δ)). See Figure 4 for an illustration of this guarantee. In typ-

ical examples, we show that εunif
Q (n, δ) is on the order of the minimax rate for

estimating θ∗. For the d-dimensional parametric problems considered in this pa-
per, the minimax rate typically scales as O(

√
d/n). In these cases, Theorem 2

guarantees that the first-order EM algorithm, when initialized in B2(r; θ∗), con-
verges rapidly to a point that is within the minimax distance of the unknown true
parameter.

• For a fixed sample size n, the bound (4.4) suggests a reasonable choice of the
number of iterations. In particular, letting κ = 1 − 2λ−2γ

μ+λ
, consider any positive

FIG. 4. An illustration of Theorems 2 and 3. The first part of the theorem describes the geometric

convergence of iterates of the EM algorithm to the ball of radius O(εunif
Q (n, δ)) (in black). The second

part describes the geometric convergence of the sample-splitting EM algorithm to the ball of radius

O(εQ(n/T , δ/T )) (in red). In typical examples, the ball to which sample-splitting EM converges is

only a logarithmic factor larger than the ball O(εQ(n, δ)) (in blue).



STATISTICAL GUARANTEES FOR THE EM ALGORITHM 95

integer T such that

T ≥ log1/κ

(λ − γ )‖θ0 − θ∗‖2

εunif
Q (n, δ)

.(4.5)

As will be clarified in the sequel, such a choice of T exists in various concrete
models considered here. This choice ensures that the first term in the bound (4.4)
is dominated by the second term, and hence that

∥∥θT − θ∗∥∥
2 ∈

2εunif
Q (n, δ)

λ − γ
with probability at least 1 − δ.(4.6)

4.2. Sample-splitting in first-order EM. In this section, we consider the finite-
sample performance of a variant of the first-order EM algorithm that uses a fresh

batch of samples for each iteration. Although we introduce the sample-splitting
variant primarily for theoretical convenience, there are also some potential practi-
cal advantages, such as computational savings from having a smaller data set per
update. A disadvantage is that it can be difficult to correctly specify the number of
iterations in advance, and the first-order EM algorithm that uses sample-splitting is
likely to be less efficient from a statistical standpoint. Indeed, in our theory, the sta-
tistical guarantees are typically weaker by a logarithmic factor in the total sample
size n.

Formally, given a total of n samples and T iterations, suppose that we divide
the full data set into T subsets of size ⌊n/T ⌋, and then perform the updates

θ t+1 = θ t + α∇Q⌊n/T ⌋
(
θ |θ t )|θ=θ t ,(4.7)

where ∇Q⌊n/T ⌋ denotes the Q-function computed using a fresh subset of ⌊n/T ⌋
samples at each iteration. For a given sample size n and tolerance parameter δ ∈
(0,1), we let εQ(n, δ) be the smallest scalar such that, for any fixed θ ∈ B2(r; θ∗),

P
[∥∥∇Qn

(
θ |θ t )|θ=θ t − ∇Q

(
θ |θ t )|θ=θ t

∥∥
2 > εQ(n, δ)

]
∈ 1 − δ.(4.8)

The quantity εQ provides a bound that needs only to hold pointwise for each θ ∈
B2(r; θ∗), as opposed to the quantity εunif

Q for which the bound (4.2) must hold
uniformly over all θ . Due to this difference, establishing bounds on εQ(n, δ) can
be significantly easier than bounding εunif

Q (n, δ).
Our theory for the iterations (4.7) applies under the same conditions as Theo-

rem 1: namely, for some radius r > 0, and a triplet (γ, λ,μ) such that 0 ∈ γ < λ ∈
μ, the gradient smoothness, concavity and smoothness properties (Conditions 1–3)
hold, and the stepsize is chosen as α = 2

μ+λ
.

THEOREM 3. Suppose that, in addition to the conditions of Theorem 1, the

sample size n is large enough to ensure that

εQ

(
n

T
,

δ

T

)
∈ (λ − γ )r.(4.9a)
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Then with probability at least 1 − δ, given any initial vector θ0 ∈ B2(r; θ∗), the

sample-splitting first-order EM iterates satisfy the bound

∥∥θ t − θ∗∥∥
2 ∈

(
1 −

2λ − 2γ

μ + λ

)t∥∥θ0 − θ∗∥∥
2 +

εQ(n/T , δ/T )

λ − γ
.(4.9b)

See Appendix B.2 for the proof of this result. It has similar flavor to the guaran-
tee of Theorem 2, but requires a number of iterations T to be specified beforehand.
The optimal choice of T balances the two terms in the bound. As will be clearer
in the sequel, in typical cases the optimal choice of T will depend logarithmically
in εQ. Each iteration uses roughly n/ logn samples, and the iterates converge to a
ball of correspondingly larger radius.

4.3. Finite-sample consequences for specific models. We now state some con-
sequences of Theorems 2 and 3 for the three models previously considered at the
population-level in Section 3.2.

4.3.1. Mixture of gaussians. We begin by analyzing the sample-based first-
order EM updates (4.1) for the Gaussian mixture model, as previously introduced
in Section 3.2.1, where we showed in Corollary 1 that the population iterates con-
verge geometrically given a lower bound on the signal-to-noise ratio ‖θ∗‖2

σ
. In this

section, we provide an analogous guarantee for the sample-based updates, again
with a stepsize α = 1. See Appendix A for derivation of the specific form of the
first-order EM updates for this model.

Our guarantee involves the function ϕ(σ ; ‖θ∗‖2) := ‖θ∗‖2(1 + ‖θ∗‖2
2

σ 2 ), as well
as positive universal constants (c, c1, c2).

COROLLARY 4 (Sample-based first-order EM guarantees for Gaussian mix-
ture). In addition to the conditions of Corollary 1, suppose that the sample

size is lower bounded as n ≥ c1d log(1/δ). Then given any initialization θ0 ∈
B2(

‖θ∗‖2
4 ; θ∗), there is a contraction coefficient κ(η) ∈ e−cη2

such that the first-

order EM iterates {θ t }∞t=0 satisfy the bound

∥∥θ t − θ∗∥∥
2 ∈ κ t

∥∥θ0 − θ∗∥∥
2 +

c2

1 − κ
ϕ
(
σ ;

∥∥θ∗∥∥
2

)
√

d

n
log(1/δ)(4.10)

with probability at least 1 − δ.

REMARKS.

• We provide the proof of this result in Section 6.4.1, with some of the more tech-
nical aspects deferred to the Supplementary Material ([3], Appendix D). In the
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supplement ([3], Corollary 8) we also give guarantees for the EM updates with
sample-splitting, as described in equation (4.7) for the first-order EM algorithm.
These results have better dependence on ‖θ∗‖2 and σ , but the sample size re-
quirement is greater by a logarithmic factor.

• It is worth comparing with a related result of Dasgupta and Schulman [16] on
estimating Gaussian mixture models. They show that when the SNR is suffi-
ciently high—scaling roughly as d1/4—then a modified EM algorithm, with
an intermediate pruning step, reaches a near-optimal solution in two iterations.
On one hand, the SNR condition in our corollary is significantly weaker, re-
quiring only that it is larger than a fixed constant independent of dimension
(as opposed to scaling with d), but their theory is developed for more general
k-mixtures.

• The bound (4.10) provides a rough guide of how many iterations are re-
quired in order to achieve an estimation error of order

√
d/n, corresponding

to the minimax rate. In particular, consider the smallest positive integer such
that

T ≥ log1/κ

(‖θ0 − θ∗‖2(1 − κ)

ϕ(σ ; ‖θ∗‖2)

√
n

d

1

log(1/δ)

)
.(4.11a)

With this choice, we are guaranteed that the iterate θT satisfies the bound

∥∥θT − θ∗∥∥
2 ∈

(1 + c2)ϕ(σ ; ‖θ∗‖2)

1 − κ

√
d

n
log(1/δ)(4.11b)

with probability at least 1 − δ. To be fair, the iteration choice (4.11a) is not
computable based only on data, since it depends on unknown quantities such as
θ∗ and the contraction coefficient κ . However, as a rough guideline, it shows
that the number of iterations to be performed should grow logarithmically in the
ratio n/d .

• Corollary 4 makes a number of qualitative predictions that can be tested. To be-
gin, it predicts that the statistical error ‖θ t −θ∗‖2 should decrease geometrically,
and then level off at a plateau. Figure 5 shows the results of simulations designed
to test this prediction: for dimension d = 10 and sample size n = 1000, we per-
formed 10 trials with the standard EM updates applied to Gaussian mixture
models with SNR ‖θ∗‖2

σ
= 2. In panel (a), the red curves plot the log statistical

error versus the iteration number, whereas the blue curves show the log opti-
mization error versus iteration. As can be seen by the red curves, the statistical
error decreases geometrically before leveling off at a plateau. On the other hand,
the optimization error decreases geometrically to numerical tolerance. Panel (b)
shows that the first-order EM updates have a qualitatively similar behavior for
this model, although the overall convergence rate appears to be slower.
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FIG. 5. Plots of the iteration number versus log optimization error log(‖θ t − θ̂‖2) and log sta-

tistical error log(‖θ t − θ∗‖2). (a) Results for the EM algorithm6. (b) Results for the first-order

EM algorithm. Each plot shows 10 different problem instances with dimension d = 10, sample size

n = 1000 and signal-to-noise ratio
‖θ∗‖2

σ = 2. The optimization error decays geometrically up to

numerical precision, whereas the statistical error decays geometrically before leveling off.

• In conjunction with Corollary 1, Corollary 4 also predicts that the convergence
rate should increase as the signal-to-noise ratio ‖θ∗‖2

σ
is increased. Figure 6

shows the results of simulations designed to test this prediction: again, for mix-
ture models with dimension d = 10 and sample size n = 1000, we applied the
standard EM updates to Gaussian mixture models with varying SNR ‖θ∗‖2

σ
. For

each choice of SNR, we performed 10 trials, and plotted the log optimization
error log‖θ t − θ̂‖2 versus the iteration number. As expected, the convergence
rate is geometric (linear on this logarithmic scale), and the rate of convergence
increases as the SNR grows.7

4.3.2. Mixture of regressions. Recall the mixture of regressions (MOR) model
previously introduced in Section 3.2.2. In this section, we analyze the sample-
splitting first-order EM updates (4.7) for the MOR model. See Appendix A for a
derivation of the specific form of the updates for this model. Our result involves

the quantity ϕ(σ ; ‖θ∗‖2) =
√

σ 2 + ‖θ∗‖2
2, along with positive universal constants

(c1, c2).

6In this and subsequent figures, we show simulations for the standard (i.e., not sample-splitting)
versions of the EM and first-order EM algorithms.

7To be clear, Corollary 4 predicts geometric convergence of the statistical error ‖θ t − θ∗‖2,
whereas these plots show the optimization error ‖θ t − θ̂‖2. However, the analysis underlying Corol-
lary 4 can also be used to show geometric convergence of the optimization error.
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FIG. 6. Plot of the iteration number versus the (log) optimization error log(‖θ t − θ̂‖2)8 for dif-

ferent values of the SNR
‖θ∗‖2

σ . For each SNR, we performed 10 independent trials of a Gaussian

mixture model with dimension d = 10 and sample size n = 1000. Larger values of SNR lead to faster

convergence rates, consistent with Corollaries 4 and 7.

COROLLARY 5 (Sample-splitting first-order EM guarantees for MOR). In ad-

dition to the conditions of Corollary 2, suppose that the sample size is lower

bounded as n ≥ c1d log(T /δ). Then there is a contraction coefficient κ ∈ 1/2 such

that, for any initial vector θ0 ∈ B2(
‖θ∗‖2

32 ; θ∗), the sample-splitting first-order EM

iterates (4.7) with stepsize 1, based on n/T samples per step satisfy the bound

∥∥θ t − θ∗∥∥
2 ∈ κ t

∥∥θ0 − θ∗∥∥
2 + c2ϕ

(
σ ;

∥∥θ∗∥∥
2

)
√

d

n
T log(T /δ)(4.12)

with probability at least 1 − δ.

REMARKS.

• See Section 6.4.3 for the proof of this claim. As with Corollary 4, the
bound (4.12) again provides guidance on the number of iterations to per-
form: in particular, for a given sample size n, suppose we perform T =
⌈log(n/dϕ2(σ ; ‖θ∗‖2))⌉ iterations. The bound (4.12) then implies that

∥∥θT − θ∗∥∥
2 ∈ c3ϕ

(
σ ;

∥∥θ∗∥∥
2

)
√

d

n
log2

(
n

dϕ2(σ ; ‖θ∗‖2)

)
log(1/δ)(4.13)

8The fixed point θ̂ is determined by running the algorithm to convergence up to machine precision.
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FIG. 7. Plots of the iteration number versus log optimization error log(‖θ t − θ̂‖2) and log statis-

tical error log(‖θ t − θ∗‖2) for mixture of regressions. (a) Results for the EM algorithm. (b) Results

for the first-order EM algorithm. Each plot shows 10 independent trials with d = 10, sample size

n = 1000, and signal-to-noise ratio
‖θ∗‖2

σ = 2. In both plots, the optimization error decays geomet-

rically while the statistical error decays geometrically before leveling off.

with probability at least 1 − δ. Apart from the logarithmic penalty
log2( n

dϕ2(σ ;‖θ∗‖2)
), this guarantee matches the minimax rate for estimation of

a d-dimensional regression vector. We note that the logarithmic penalty can be
removed by instead analyzing the standard form of the first-order EM updates,
as we did for the Gaussian mixture model.

• As with Corollary 4, this corollary predicts that the statistical error ‖θ t − θ∗‖2
should decrease geometrically, and then level off at a plateau. Figure 7 shows
the results of simulations designed to test this prediction: see the caption for the
details.

4.3.3. Linear regression with missing covariates. Recall the problem of linear
regression with missing covariates, as previously described in Section 3.2.3. In this
section, we analyze the sample-splitting version (4.7) version of the first-order EM
updates. See Appendix A for the derivation of the concrete form of these updates
for this specific model.

COROLLARY 6 (Sample-splitting first-order EM guarantees for missing covari-
ates). In addition to the conditions of Corollary 3, suppose that the sample size is

lower bounded as n ≥ c1d log(1/δ). Then there is a contraction coefficient κ < 1
such that, for any initial vector θ0 ∈ B2(ξ2σ ; θ∗), the sample-splitting first-order

EM iterates (4.7) with stepsize 1, based on n/T samples per iteration satisfy the

bound

∥∥θ t − θ∗∥∥
2 ∈ κ t

∥∥θ0 − θ∗∥∥
2 +

c2
√

1 + σ 2

1 − κ

√
d

n
T log(T /δ)(4.14)
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FIG. 8. Plots of the iteration number versus log optimization error log(‖θ t − θ̂‖2) and log statis-

tical error log(‖θ t − θ∗‖2) for regression with missing covariates. (a) Results for the EM algorithm.
(b) Results for the first-order EM algorithm. Each plot shows 10 different problem instances of di-

mension d = 10, sample size n = 1000, signal-to-noise ratio
‖θ∗‖2

σ = 2, and missing probability

ρ = 0.2. In both plots, the optimization error decays geometrically while the statistical error decays

geometrically before leveling off.

with probability at least 1 − δ.

We prove this corollary in the Supplementary Material ([3], Appendix 6.4.3).
We note that the constant c2 is a monotonic function of the parameters (ξ1, ξ2), but
does not otherwise depend on n, d , σ 2 or other problem-dependent parameters.

REMARK. As with Corollary 9, this result provides guidance on the appro-
priate number of iterations to perform: in particular, if we set T = c logn for a
sufficiently large constant c, then the bound (4.14) implies that

∥∥θT − θ∗∥∥
2 ∈ c′

√
1 + σ 2

√
d

n
log2(n/δ)

with probability at least 1 − δ. This is illustrated in Figure 8. Modulo the logarith-
mic penalty in n, incurred due to the sample-splitting, this estimate achieves the

optimal
√

d
n

scaling of the ℓ2-error.

5. Extension of results to the EM algorithm. In this section, we develop uni-
fied population and finite-sample results for the EM algorithm. Particularly, at the
population-level we show in Theorem 4 that a closely related condition to the GS
condition can be used to give a bound on the region and rate of convergence of the
EM algorithm. Our next main result shows how to leverage this population-level
result along with control on an appropriate empirical process in order to provide
nonasymptotic finite-sample guarantees.
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5.1. Analysis of the EM algorithm at the population level. We assume
throughout this section that the function q is λ-strongly concave (but not necessar-
ily smooth). For any fixed θ , in order to relate the population EM updates to the
fixed point θ∗, we require control on the two gradient mappings ∇q(·) = ∇Q(·|θ∗)
and ∇Q(·|θ). These mappings are central in characterizing the fixed point θ∗ and
the EM update. In order to compactly represent the EM update, we define the
operator M : � → �,

M(θ) = arg max
θ ′∈�

Q
(
θ ′|θ

)
.(5.1)

Using this notation, the EM algorithm given some initialization θ0, produces a
sequence of iterates {θ t }∞t=0, where θ t+1 = M(θ t ).

By virtue of the self-consistency property (2.7) and the convexity of �, the fixed
point satisfies the first-order optimality (KKT) condition

〈
∇Q

(
θ∗|θ∗), θ ′ − θ∗〉 ∈ 0 for all θ ′ ∈ �.(5.2)

Similarly, for any θ ∈ �, since M(θ) maximizes the function θ ′ �→ Q(θ ′|θ)

over �, we have
〈
∇Q

(
M(θ)|θ

)
, θ ′ − θ

〉
∈ 0 for all θ ′ ∈ �.(5.3)

We note that for unconstrained problems, the terms ∇Q(θ∗|θ∗) and ∇Q(M(θ)|θ)

will be equal to zero, but we retain the forms of equations (5.2) and (5.3) to make
the analogy with the GS condition clearer.

Equations (5.2) and (5.3) are sets of inequalities that characterize the points
M(θ) and θ∗. Thus, at an intuitive level, in order to establish that θ t+1 and θ∗

are close, it suffices to verify that these two characterizations are close in a suit-
able sense. We also note that inequalities similar to the condition (5.3) are often
used as a starting point in the classical analysis of M-estimators (e.g., see van de
Geer [45]). In the analysis of EM, we obtain additional leverage from the condi-
tion (5.2) that characterizes θ∗.

With this intuition in mind, we introduce the following regularity condition in
order to relate conditions (5.3) and (5.2): The condition involves a Euclidean ball
of radius r around the fixed point θ∗, given by

B2
(
r; θ∗) :=

{
θ ∈ �|

∥∥θ − θ∗∥∥
2 ∈ r

}
.(5.4)

DEFINITION 4 [First-order stability (FOS)]. The functions {Q(·|θ), θ ∈ �}
satisfy condition FOS(γ ) over B2(r; θ∗) if

∥∥∇Q
(
M(θ)|θ∗) − ∇Q

(
M(θ)|θ

)∥∥
2 ∈ γ

∥∥θ − θ∗∥∥
2

(5.5)
for all θ ∈ B2

(
r; θ∗).
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To provide some high-level intuition, observe the condition (5.5) is always sat-
isfied at the fixed point θ∗, in particular with parameter γ = 0. Intuitively then, by
allowing for a strictly positive parameter γ , one might expect that this condition
would hold in a local neighborhood B2(r; θ∗) of the fixed point θ∗, as long as the
functions Q(·|θ) and the map M are sufficiently regular. As before with the GS
condition, we show in the sequel that every point around θ∗ for which the FOS
condition holds (with an appropriate γ ) is in the region of attraction of θ∗—the
population EM update produces an iterate closer to θ∗ than the original point.

Formally, under the conditions we have introduced, the following result guaran-
tees that the population EM operator is locally contractive.

THEOREM 4. For some radius r > 0 and pair (γ, λ) such that 0 ∈ γ < λ,
suppose that the function Q(·|θ∗) is globally λ-strongly concave (3.2), and that

the FOS(γ ) condition (5.5) holds on the ball B2(r; θ∗). Then the population EM

operator M is contractive over B2(r; θ∗), in particular with

∥∥M(θ) − θ∗∥∥
2 ∈

γ

λ

∥∥θ − θ∗∥∥
2 for all θ ∈ B2

(
r; θ∗).

The proof is a consequence of the KKT conditions from equations (5.2)
and (5.3), along with consequences of the strong concavity of Q(·|θ∗). We defer a
detailed proof to Appendix B.1.

REMARKS. As an immediate consequence, under the conditions of the the-
orem, for any initial point θ0 ∈ B2(r; θ∗), the population EM sequence {θ t }∞t=0
exhibits linear convergence, namely

∥∥θ t − θ∗∥∥
2 ∈

(
γ

λ

)t∥∥θ0 − θ∗∥∥
2 for all t = 1,2, . . . .(5.6)

5.2. Finite-sample analysis for the EM algorithm. We now turn to theoretical
results on the sample-based version of the EM algorithm. More specifically, we
define the sample-based operator Mn : � → �,

Mn(θ) = arg max
θ ′∈�

Qn

(
θ ′|θ

)
,(5.7)

where the sample-based Q-function was defined previously in equation (2.1).
Analogous to the situation with the first-order EM algorithm we also consider a
sample-splitting version of the EM algorithm, in which given a total of n samples
and T iterations, we divide the full data set into T subsets of size ⌊n/T ⌋, and then
perform the updates θ t+1 = Mn/T (θ t ), using a fresh subset of samples at each
iteration.

For a given sample size n and tolerance parameter δ ∈ (0,1), we let εM(n, δ) be
the smallest scalar such that, for any fixed θ ∈ B2(r; θ∗), we have

∥∥Mn(θ) − M(θ)
∥∥

2 ∈ εM(n, δ)(5.8)
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with probability at least 1 − δ. This tolerance parameter (5.8) enters our analysis
of the sample-splitting form of EM. On the other hand, in order to analyze the
standard sample-based form of EM, we require a stronger condition, namely one
in which the bound (5.8) holds uniformly over the ball B2(r; θ∗). Accordingly, we
let εunif

M (n, δ) be the smallest scalar for which

sup
θ∈B2(r;θ∗)

∥∥Mn(θ) − M(θ)
∥∥

2 ∈ εunif
M (n, δ)(5.9)

with probability at least 1 − δ. With these definitions, we have the following guar-
antees.

THEOREM 5. Suppose that the population EM operator M : � → � is con-

tractive with parameter κ ∈ (0,1) on the ball B2(r; θ∗), and the initial vector θ0

belongs to B2(r; θ∗).

(a) If the sample size n is large enough to ensure that

εunif
M (n, δ) ∈ (1 − κ)r,(5.10a)

then the EM iterates {θ t }∞t=0 satisfy the bound

∥∥θ t − θ∗∥∥
2 ∈ κ t

∥∥θ0 − θ∗∥∥
2 +

1

1 − κ
εunif
M (n, δ)(5.10b)

with probability at least 1 − δ.
(b) For a given iteration number T , suppose the sample size n is large enough

to ensure that

εM

(
n

T
,

δ

T

)
∈ (1 − κ)r.(5.11a)

Then the sample-splitting EM iterates {θ t }Tt=0 based on n
T

samples per round sat-

isfy the bound

∥∥θ t − θ∗∥∥
2 ∈ κ t

∥∥θ0 − θ∗∥∥
2 +

1

1 − κ
εM

(
n

T
,

δ

T

)
.(5.11b)

We provide a detailed proof of this Theorem in Appendix B.

REMARKS. In order to obtain readily interpretable bounds for specific mod-
els, it only remains to establish the κ-contractivity of the population operator, and
to compute either the function εM or the function εunif

M . In the Supplementary Ma-
terial, we revisit each of the three examples considered in this paper, and provide
population and finite-sample guarantees for the EM algorithm.

6. Proofs. In this section, we provide proofs of some of our previously stated
results, beginning with Theorems 1 and 2, followed by the proofs of Corollaries 1
through 3.
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6.1. Proof of Theorem 1. This proof relies on a classical result that ensures lin-
ear convergence of gradient ascent when applied to a smooth and strongly concave
function (see, e.g., [7, 8, 35]).

LEMMA 1. For a function q with the λ-strong concavity and μ-smoothness

properties (Conditions 2 and 3), the oracle iterates (2.9) with stepsize α = 2
μ+λ

are linearly convergent:
∥∥θ t + α∇q(θ)|θ=θ t − θ∗∥∥

2 ∈
(

μ − λ

μ + λ

)∥∥θ t − θ∗∥∥
2.(6.1)

Taking this result as given, we can now prove the theorem. By definition of the
first-order EM update (2.6), we have

∥∥θ t + α∇Q
(
θ |θ t )|θ=θ t − θ∗∥∥

2

=
∥∥θ t + α∇q(θ)|θ=θ t − α∇q(θ)|θ=θ t + α∇Q

(
θ |θ t )|θ=θ t − θ∗∥∥

2

(i)
∈

∥∥θ t + α∇q(θ)|θ=θ t − θ∗∥∥
2 + α

∥∥∇q(θ)|θ=θ t − ∇Q
(
θ |θ t )|θ=θ t

∥∥
2

(ii)
∈

(
μ − λ

μ + λ

)∥∥θ t − θ∗∥∥
2 + αγ

∥∥θ t − θ∗∥∥
2,

where step (i) follows from the triangle inequality, and step (ii) uses Lemma 1 and
condition GS. Substituting α = 2

μ+λ
and performing some algebra yields the claim.

6.2. Proof of Theorem 2. With probability at least 1 − δ we have that for any
θ s ∈ B2(r; θ∗),

∥∥∇Qn

(
θ |θ s)|θ=θ s − ∇Q

(
θ |θ s)|θ=θ s

∥∥
2 ∈ εunif

Q (n, δ).(6.2)

We perform the remainder of our analysis under this event.
Defining κ = (1 − 2λ−2γ

λ+μ
), it suffices to show that

∥∥θ s+1 − θ∗∥∥
2 ∈ κ

∥∥θ s − θ∗∥∥
2 + αεunif

Q (n, δ),
(6.3)

for each iteration s ∈ {0,1,2, . . .}.
Indeed, when this bound holds, we may iterate it to show that

∥∥θ t − θ∗∥∥
2 ∈ κ

∥∥θ t−1 − θ∗∥∥
2 + αεunif

Q (n, δ)

∈ κ
{
κ
∥∥θ t−2 − θ∗∥∥

2 + αεunif
Q (n, δ)

}
+ αεunif

Q (n, δ)

∈ κ t
∥∥θ0 − θ∗∥∥

2 +
{

t−1∑

s=0

κs

}
αεunif

Q (n, δ)

∈ κ t
∥∥θ0 − θ∗∥∥

2 +
α

1 − κ
εunif
Q (n, δ),

where the final step follows by summing the geometric series.
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It remains to prove the claim (6.3), and we do so via induction on the iteration
number. Beginning with s = 0, we have

∥∥θ1 − θ∗∥∥
2 =

∥∥θ0 + α∇Qn

(
θ |θ0)|θ=θ0 − θ∗∥∥

2

(i)
∈

∥∥θ0 + α∇Q
(
θ |θ0)|θ=θ0 − θ∗∥∥

2

+ α
∥∥∇Q

(
θ |θ0)|θ=θ0 − ∇Qn

(
θ |θ0)|θ=θ0

∥∥

(ii)
∈ κ

∥∥θ0 − θ∗∥∥
2 + αεunif

Q (n, δ),

where step (i) follows by triangle inequality, whereas step (ii) follows from the
bound (6.2), and the contractivity of the population operator applied to θ0 ∈
B2(r; θ∗), that is, Theorem 1. By our initialization condition and the assumed
bound (4.3), note that we are guaranteed that ‖θ1 − θ∗‖2 ∈ r .

In the induction from s �→ s + 1, suppose that ‖θ s − θ∗‖2 ∈ r , and the
bound (6.3) holds at iteration s. The same argument then implies that the
bound (6.3) also holds for iteration s + 1, and that ‖θ s+1 − θ∗‖2 ∈ r , thus com-
pleting the proof.

6.3. Proofs of population-based corollaries for first-order EM. In this section,
we prove Corollaries 1–3 on the behavior of first-order EM at the population level
for concrete models.

6.3.1. Proof of Corollary 1. We note at this point, and for subsequent exam-
ples that scaling the family of Q functions by a fixed constant does not affect any
of our conditions and their consequences. Particularly, in various examples, we
will re-scale Q functions by constants such as σ 2. In order to apply Theorem 1,
we need to verify the λ-concavity (3.2) and μ-smoothness (3.3) conditions, and the
GS(γ ) condition (3.1) over the ball B2(r; θ∗). The first-order EM update is given
in Appendix A. In this example, the q-function takes the form

q(θ) = Q
(
θ |θ∗) = −1

2E
[
wθ∗(Y )‖Y − θ‖2

2 +
(
1 − wθ∗(Y )

)
‖Y + θ‖2

2
]
,

where the weighting function is given by

wθ (y) :=
exp(−‖θ − y‖2

2/(2σ 2))

exp(−‖θ − y‖2
2/(2σ 2)) + exp(−‖θ + y‖2

2/(2σ 2))
.

The q-function is smooth and strongly-concave with parameters 1.
It remains to verify the GS(γ ) condition (3.1). The main technical effort, de-

ferred to the appendices, is in showing the following central lemma.

LEMMA 2. Under the conditions of Corollary 1, there is a constant γ ∈ (0,1)

with γ ∈ exp(−c2η
2) such that

∥∥E
[
2�w(Y )Y

]∥∥
2 ∈ γ

∥∥θ − θ∗∥∥
2,(6.4)

where �w(y) := wθ (y) − wθ∗(y).
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The proof of this result crucially exploits the generative model, as well as the
smoothness of the weighting function, in order to establish that the GS condition
holds over a relatively large region around the population global optima (θ∗ and
−θ∗). Intuitively, the generative model allows us to argue that with large proba-
bility the weighting function wθ (y) and the weighting function wθ∗(y) are quite
close, even when θ and θ∗ are relatively far, so that in expectation the GS condition
is satisfied.

Taking this result as given for the moment, let us now verify the GS condi-
tion (3.1). An inspection of the updates in equation (A.3), along with the claimed
smoothness and strong-concavity parameters lead to the conclusion that it suffices
to show that

∥∥E
[
2�w(Y )Y

]∥∥
2 <

∥∥θ − θ∗∥∥
2.

This follows immediately from Lemma 2. Thus, the GS condition holds when
γ < 1. The bound on the contraction parameter follows from the fact that γ ∈
exp(−c2η

2) and applying Theorem 1 yields Corollary 1.

6.3.2. Proof of Corollary 2. Once again we need to verify the λ-strong con-
cavity (3.2) and μ-smoothness (3.3) conditions, and the GS(γ ) condition (3.1) over
the ball B2(r; θ∗). In this example, the q-function takes the form:

q(θ) = Q
(
θ |θ∗)

:= −1
2E

[
wθ∗(X,Y )

(
Y − 〈X,θ〉

)2 +
(
1 − wθ∗(X,Y )

)(
Y + 〈X,θ〉

)2]
,

where wθ (x, y) := exp(−(y−〈x,θ〉)2/(2σ 2))

exp(−(y−〈x,θ〉)2/(2σ 2))+exp(−(y+〈x,θ〉)2/(2σ 2))
. Observe that func-

tion Q(·|θ∗) is λ-strongly concave and μ-smooth with λ and μ equal to the small-
est and largest (resp.) eigenvalue of the matrix E[XXT ]. Since E[XXT ] = I by
assumption, we see that strong concavity and smoothness hold with λ = μ = 1.

It remains to verify condition GS. Define the difference function �w(X,Y ) :=
wθ (X,Y ) − wθ∗(X,Y ), and the difference vector � = θ − θ∗. Using the updates
given in Appendix A in equation (A.6a), we need to show that

∥∥2E
[
�w(X,Y )YX

]∥∥
2 < ‖�‖2.

Fix any �̃ ∈ R
d \ {0}. It suffices for us to show that

〈
2E

[
�w(X,Y )YX

]
, �̃

〉
< ‖�‖2‖�̃‖2.

Note that we can write Y
d= (2Z − 1)〈X,θ∗〉 + v, where Z ∼ Ber(1/2) is a

Bernoulli variable, and v ∼ N (0,1). Using this notation, it is sufficient to show

E
[
�w(X,Y )(2Z − 1)

〈
X,θ∗〉〈X,�̃〉

]
+E

[
�w(X,Y )v〈X,�̃〉

]

(6.5)
∈ γ ‖�‖2‖�̃‖2
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for γ ∈ [0,1/2) in order to establish contractivity. In order to prove the theo-
rem with the desired upper bound on the coefficient of contraction we need to
show (6.5) with γ ∈ [0,1/4). Once again, the main technical effort is in establish-
ing the following lemma which provides control on the two terms.

LEMMA 3. Under the conditions of Corollary 2, there is a constant γ < 1/4
such that for any fixed vector �̃ we have

∣∣E
[
�w(X,Y )(2Z − 1)

〈
X,θ∗〉〈X,�̃〉

]∣∣ ∈
γ

2
‖�‖2‖�̃‖2 and(6.6a)

∣∣E
[
�w(X,Y )v〈X,�̃〉

]∣∣ ∈
γ

2
‖�‖2‖�̃‖2.(6.6b)

In conjunction, these bounds imply that 〈E[�w(X,Y )YX], �̃〉 ∈ γ ‖�‖2‖�̃‖2
with γ ∈ [0,1/4), as claimed.

6.3.3. Proof of Corollary 3. We need to verify the conditions of Theorem 1,
namely that the function q is μ-smooth, λ-strongly concave and that the GS con-
dition is satisfied. In this case, q is a quadratic of the form

q(θ) = 1
2

〈
θ,E

[
�θ∗(Xobs, Y )

]
θ
〉
−

〈
E
[
Yμθ∗(Xobs, Y )

]
, θ

〉
,

where the vector μθ∗ ∈ R
d and matrix �θ∗ are defined formally in the Appendix

[see equations (A.7a) and (A.7c), resp.]. Here, the expectation is over both the
patterns of missingness and the random (Xobs, Y ).

Smoothness and strong concavity. Note that q is a quadratic function with Hes-
sian ∇2q(θ) = E[�θ∗(Xobs, Y )]. Let us fix a pattern of missingness, and then av-
erage over (Xobs, Y ). Recalling the matrix Uθ∗ from equation (A.7b), we find that
a simple calculation yields

E
[
�θ∗(Xobs, Y )

]
=

⎡
⎣ I Uθ∗

[
I

θ∗T
obs

]

[
I θ∗

obs

]
UT

θ∗ I

⎤
⎦ =

[
I 0
0 I

]
,

showing that the expectation does not depend on the pattern of missingness. Conse-
quently, the quadratic function q has an identity Hessian, showing that smoothness
and strong concavity hold with μ = λ = 1.

Condition GS. We need to prove the existence of a scalar γ ∈ [0,1) such that
‖E[V ]‖2 ∈ γ ‖θ − θ∗‖2, where the vector V = V (θ, θ∗) is given by

V := �θ∗(Xobs, Y )θ − Yμθ∗(Xobs, Y ) − �θ (Xobs, Y )θ
(6.7)

+ Yμθ (Xobs, Y ).
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For a fixed pattern of missingness, we can compute the expectation over (Xobs, Y )

in closed form. Supposing that the first block is missing, we have

EXobs,Y [V ] =
[ (

θmis − θ∗
mis

)
+ π1θmis

π2
(
θobs − θ∗

obs

)
]
,(6.8)

where π1 := ‖θ∗
mis‖

2
2−‖θmis‖2

2+‖θobs−θ∗
obs‖

2
2

‖θmis‖2
2+σ 2 and π2 := ‖θmis‖2

2
‖θmis‖2

2+σ 2 . We claim that these

scalars can be bounded, independently of the missingness pattern, as

π1 ∈ 2(ξ1 + ξ2)
‖θ − θ∗‖2

σ
and π2 ∈ δ :=

1

1 + (1/(ξ1 + ξ2))2 < 1.(6.9)

Taking these bounds (6.9) as given for the moment, we can then average over
the missing pattern. Since each coordinate is missing independently with proba-
bility ρ, the expectation of the ith coordinate is at most |E[V ]|i ∈ |ρ|θi − θ∗

i | +
ρπ1|θi | + (1 − ρ)π2|θi − θ∗

i ||. Thus, defining η := (1 − ρ)δ + ρ < 1, we have
∥∥E[V ]

∥∥2
2 ∈ η2∥∥θ − θ∗∥∥2

2 + ρ2π2
1 ‖θ‖2

2 + 2π1ηρ
∣∣〈θ, θ − θ∗〉∣∣

∈
{
η2 + ρ2‖θ‖2

2
4(ξ1 + ξ2)

2

σ 2 +
4ηρ‖θ‖2(ξ1 + ξ2)

σ

}

︸ ︷︷ ︸
γ 2

∥∥θ − θ∗∥∥2
2,

where we have used our upper bound (6.9) on π1. We need to ensure that γ < 1.
By assumption, we have ‖θ∗‖2 ∈ ξ1σ and ‖θ − θ∗‖2 ∈ ξ2σ , and hence ‖θ‖2 ∈
(ξ1 + ξ2)σ . Thus, the coefficient γ 2 is upper bounded as

γ 2 ∈ η2 + 4ρ2(ξ1 + ξ2)
4 + 4ηρ(ξ1 + ξ2)

2.

Under the stated conditions of the corollary, we have γ < 1, thereby completing
the proof.

It remains to prove the bounds (6.9). By our assumptions, we have ‖θmis‖2 −
‖θ∗

mis‖2 ∈ ‖θmis − θ∗
mis‖2, and moreover

‖θmis‖2 ∈
∥∥θ∗

mis

∥∥
2 + ξ2σ ∈ (ξ1 + ξ2)σ.(6.10)

As consequence, we have
∥∥θ∗

mis

∥∥2
2 − ‖θmis‖2

2 =
(
‖θmis‖2 −

∥∥θ∗
mis

∥∥
2

)(
‖θmis‖2 +

∥∥θ∗
mis

∥∥
2

)

∈ (2ξ1 + ξ2)σ
∥∥θmis − θ∗

mis

∥∥
2.

Since ‖θobs − θ∗
obs‖2

2 ∈ ξ2σ‖θobs − θ∗
obs‖2, the stated bound on π1 follows.

On the other hand, we have

π2 =
‖θmis‖2

2

‖θmis‖2
2 + σ 2

=
1

1 + σ 2/‖θmis‖2
2

(i)
∈

1

1 + (1/(ξ1 + ξ2))2
︸ ︷︷ ︸

δ

< 1,

where step (i) follows from (6.10).



110 S. BALAKRISHNAN, M. J. WAINWRIGHT AND B. YU

6.4. Proofs of sample-based corollaries for first-order EM. This section is de-
voted to proofs of Corollaries 4 through 6 on the behavior of the first-order EM
algorithm in the finite sample setting.

6.4.1. Proof of Corollary 4. In order to prove this result, it suffices to bound
the quantity εunif

Q (n, δ) defined in equation (4.2). Utilizing the updates defined in

equation (A.3), and defining the set A := {θ ∈ R
d |‖θ − θ∗‖2 ∈ ‖θ∗‖2/4}, we need

to control the random variable

Z := sup
θ∈A

∥∥∥∥∥α
{

1

n

n∑

i=1

(
2wθ (yi) − 1

)
yi − θ

}
− α

[
2E

[
wθ (Y )Y

]
− θ

]
∥∥∥∥∥

2

.

In order to establish the Corollary it suffices to show that for sufficiently large
universal constants c1, c2 we have that, for n ≥ c1d log(1/δ)

Z ∈
c2‖θ∗‖2(‖θ∗‖2

2 + σ 2)

σ 2

√
d log(1/δ)

n

with probability at least 1 − δ.
For each unit-norm vector u ∈ R

d , define the random variable

Zu := sup
θ∈A

{
1

n

n∑

i=1

(
2wθ (yi) − 1

)
〈yi, u〉 −E

(
2wθ (Y ) − 1

)
〈Y,u〉

}
.

Recalling that we choose α = 1, we note that Z = supu∈Sd Zu. We begin by reduc-
ing our problem to a finite maximum over the sphere S

d . Let {u1, . . . , uM} denote
a 1/2-covering of the sphere S

d = {v ∈ R
d |‖v‖2 = 1}. For any v ∈ S

d , there is
some index j ∈ [M] such that ‖v − uj‖2 ∈ 1/2, and hence we can write

Zv ∈ Zuj + |Zv − Zuj | ∈ max
j∈[M]

Zuj + Z
∥∥v − uj

∥∥
2,

where the final step uses the fact that |Zu − Zv| ∈ Z‖u − v‖2 for any pair (u, v).
Putting together the pieces, we conclude that

Z = sup
v∈Sd

Zv ∈ 2 max
j∈[M]

Zuj .(6.11)

Consequently, it suffices to bound the random variable Zu for a fixed u ∈ S
d . Let-

ting {εi}ni=1 denote an i.i.d. sequence of Rademacher variables, for any λ > 0, we
have

E
[
eλZu

]
∈ E

[
exp

(
2

n
sup
θ∈A

n∑

i=1

εi

(
2wθ (yi) − 1

)
〈yi, u〉

)]
,

using a standard symmetrization result for empirical processes (e.g., [23, 24]).
Now observe that for any triplet of d-vectors y, θ and θ ′, we have the Lipschitz
property

∣∣2wθ (y) − 2wθ ′(y)
∣∣ ∈

1

σ 2

∣∣〈θ, y〉 −
〈
θ ′, y

〉∣∣.
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Consequently, by the Ledoux–Talagrand contraction for Rademacher processes
[23, 24], we have

E

[
exp

(
2

n
sup
θ∈A

n∑

i=1

εi

(
2wθ (yi) − 1

)
〈yi, u〉

)]

∈ E

[
exp

(
4

nσ 2 sup
θ∈A

n∑

i=1

εi〈θ, yi〉〈yi, u〉
)]

.

Since any θ ∈ A satisfies ‖θ‖2 ∈ 5
4‖θ∗‖2, we have

sup
θ∈A

1

n

n∑

i=1

εi〈θ, yi〉〈yi, u〉 ∈
5

4

∥∥θ∗∥∥
2

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

n

n∑

i=1

εiyiy
T
i

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
op

,

where ||| · |||op denotes the ℓ2-operator norm of a matrix (maximum singular value).
Repeating the same discretization argument over {u1, . . . , uM}, we find that

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

n

n∑

i=1

εiyiy
T
i

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
op

∈ 2 max
j∈[M]

1

n

n∑

i=1

εi

〈
yi, u

j 〉2.

Putting together the pieces, we conclude that

E
[
eλZu

]
∈ E

[
exp

(
10λ‖θ∗‖2

σ 2 max
j∈[M]

1

n

n∑

i=1

εi

〈
yi, u

j 〉2
)]

(6.12)

∈
M∑

j=1

E

[
exp

(
10λ‖θ∗‖2

σ 2

1

n

n∑

i=1

εi

〈
yi, u

j 〉2
)]

.

Now by assumption, the random vectors {yi}ni=1 are generated i.i.d. according
to the model y = ηθ∗ + w, where η is a Rademacher sign variable, and w ∼
N (0, σ 2I ). Consequently, for any u ∈R

d , we have

E
[
e〈u,y〉] = E

[
eη〈u,θ∗〉]

E
[
e〈u,w〉] ∈ e(‖θ∗‖2

2+σ 2)/2,

showing that the vectors yi are sub-Gaussian with parameter at most γ =√
‖θ∗‖2

2 + σ 2. Therefore, εi〈yi, u〉2 is zero mean sub-exponential, and has moment

generating function bounded as E[etεi〈yi ,u〉2] ∈ eγ 4t2/2 for all t > 0 sufficiently
small. Combined with our earlier inequality (6.12), we conclude that

E
[
eλZu

]
∈ Me

c
λ2‖θ∗‖2

2γ 4

nσ4 ∈ e
c

λ2‖θ∗‖2
2γ 4

nσ4 +2d

for all λ sufficiently small. Combined with our first discretization (6.11), we have
thus shown that

E
[
e

λ
2 Z]

∈ Me
c

λ2‖θ∗‖2
2γ 4

nσ4 +2d ∈ e
c

λ2‖θ∗‖2
2γ 4

nσ4 +4d
.
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Combined with the Chernoff approach, this bound on the MGF implies that, as
long as n ≥ c1d log(1/δ) for a sufficiently large constant c1, we have

Z ∈
c2‖θ∗‖2γ

2

σ 2

√
d log(1/δ)

n

with probability at least 1 − δ as desired.

6.4.2. Proof of Corollary 5. As before, it suffices to find a suitable upper
bound on the εQ(n, δ) from equation (4.8). Based on the specific form of the first-
order EM updates for this model [see equation (A.6a) in Appendix A], we need to
control the random variable

Z :=
∥∥∥∥∥α

{
1

n

n∑

i=1

(
2wθ (yi) − 1

)
yi − θ

}
− α

[
2E

[
wθ (Y )Y

]
− θ

]
∥∥∥∥∥

2

.

We claim that there are universal constants (c1, c2) such that given a sample size
n ≥ c1d log(1/δ), we have

P

[
Z >

c2‖θ∗‖2(‖θ∗‖2
2 + σ 2)

σ 2

√
d log(1/δ)

n

]
∈ δ.

Given our choice of stepsize α = 1, we have

Z ∈
∥∥∥∥∥

1

n

n∑

i=1

(
2wθ (xi, yi) − 1

)
yixi −E

(
2wθ (X,Y ) − 1

)
YX

∥∥∥∥∥
2

+
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣I −
1

n

n∑

i=1

xix
T
i

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
op

‖θ‖2.

Now define the matrices �̂ := 1
n

∑n
i=1 xix

T
i and � = E[XXT ] = I , as well as the

vector

v̂ :=
1

n

n∑

i=1

[
μθ (xi, yi)yixi

]
and v := E

[
μθ (X,Y )YX

]
,

where μθ (x, y) := 2wθ (x, y) − 1. Noting that E[YX] = 0, we have the bound

Z ∈ ‖v̂ − v‖2︸ ︷︷ ︸
T1

+
∣∣∣∣|�̂ − �|

∣∣∣∣
op‖θ‖2

︸ ︷︷ ︸
T2

.(6.13)

We bound each of the terms T1 and T2 in turn.
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Bounding T1. Let us write ‖v̂ − v‖2 = supu∈Sd Z(u), where

Z(u) :=
1

n

n∑

i=1

μθ (xi, yi)yi〈x,u〉 −E
[
μθ (X,Y )Y 〈X,u〉

]
.

By a discretization argument over a 1/2-cover of the sphere Sd—say {u1, . . . , uM},
we have the upper bound ‖v̂ − v‖2 ∈ 2 maxj∈[M] Z(uj ). Thus, it suffices to con-
trol the random variable Z(u) for a fixed u ∈ S

d . By a standard symmetrization
argument [46], we have

P
[
Z(u) ≥ t

]
∈ 2P

[
1

n

n∑

i=1

εiμθ (xi, yi)yi〈xi, u〉 ≥ t/2

]
,

where {εi}ni=1 are an i.i.d. sequence of Rademacher variables. Let us now define
the event E{ 1

n

∑n
i=1〈xi, u〉2 ∈ 2}. Since each variable 〈xi, u〉 is sub-Gaussian with

parameter one, standard tail bounds imply that P[Ec] ∈ e−n/32. Therefore, we can
write

P
[
Z(u) ≥ t

]
∈ 2P

[
1

n

n∑

i=1

εiμθ (xi, yi)yi〈xi, u〉 ≥ t/2
∣∣∣∣E

]
+ 2e−n/32.

As for the remaining term, we have

E

[
exp

(
λ

n

n∑

i=1

εiμθ (xi, yi)yi〈xi, u〉
)∣∣∣∣E

]
∈ E

[
exp

(
2λ

n

n∑

i=1

εiyi〈xi, u〉
)∣∣∣∣E

]
,

where we have applied the Ledoux–Talagrand contraction for Rademacher pro-
cesses [23, 24], using the fact that |μθ (x, y)| ∈ 1 for all pairs (x, y). Now condi-
tioned on xi , the random variable yi is zero-mean and sub-Gaussian with parame-

ter at most
√

‖θ∗‖2
2 + σ 2. Consequently, taking expectations over the distribution

(yi |xi) for each index i, we find that

E

[
exp

(
2λ

n

n∑

i=1

εiyi〈xi, u〉
)∣∣∣∣E

]
∈

[
exp

(
4λ2

n2

(∥∥θ∗∥∥2
2 + σ 2)

n∑

i=1

〈xi, u〉2

)∣∣∣∣E
]

∈ exp
(

8λ2

n

(∥∥θ∗∥∥2
2 + σ 2)

)
,

where the final inequality uses the definition of E . Using this bound on the
moment-generating function, we find that

P

[
1

n

n∑

i=1

εiμθ (xi, yi)yi〈xi, u〉 ≥ t/2
∣∣∣∣E

]
∈ exp

(
−

nt2

256(‖θ∗‖2
2 + σ 2)

)
.

Since the 1/2-cover of the unit sphere S
d has at most 2d elements, we conclude

that there is a universal constant c such that T1 ∈ c
√

‖θ∗‖2
2 + σ 2

√
d
n

log(1/δ) with
probability at least 1 − δ.
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Bounding T2. Since n > d by assumption, standard results in random ma-

trix theory [47] imply that |||�̂ − �|||op ∈ c
√

d
n

log(1/δ) with probability at least
1 − δ. On the other hand, observe that ‖θ‖2 ∈ 2‖θ∗‖2, since with the chosen
stepsize, each iteration decreases the distance to θ∗ and our initial iterate satis-

fies ‖θ‖2 ∈ 2‖θ∗‖2. Combining the pieces, we see that T2 ∈ c‖θ∗‖2

√
d
n

log(1/δ)

with probability at least 1 − δ.
Finally, substituting our bounds on T1 and T2 into the decomposition (6.13)

yields the claim.

6.4.3. Proof of Corollary 6. We need to upper bound the deviation function
εQ(n, δ) previously defined (4.8). For any fixed θ ∈ B2(r; θ∗) = {θ ∈ R

d |‖θ −
θ∗‖2 ∈ ξ2σ }, we need to upper bound the random variable,

Z =
∥∥∥∥∥

1

n

n∑

i=1

[
yiμθ (xobs,i, yi) − �θ (xobs,i, yi)θ

]

−E
[
Yμθ (Xobs, Y ) − �θ (Xobs, Y )θ

]
∥∥∥∥∥

2

,

with high probability. We define: T1 := ‖[E�θ (xobs, y)θ − 1
n

∑n
i=1 �θ (xobs,i,

yi)θ ]‖2, and

T2 :=
∥∥∥∥∥

[
E
(
yμθ (xobs, y)

)
−

1

n

n∑

i=1

yiμθ (xobs,i, yi)

]∥∥∥∥∥
2

.

For convenience, we let zi ∈ R
d be a {0,1}-valued indicator vector, with ones in

the positions of observed covariates. For ease of notation, we frequently use the
abbreviations �θ and μθ when the arguments are understood. We use the notation
⊙ to denote the element-wise product.

Controlling T1. Define the matrices

�̄ = E
[
�θ (xobs, y)

]
and �̂ =

1

n

n∑

i=1

�θ (xobs,i, yi).

With this notation, we have T1 ∈ |||�̄ − �̂|||op‖θ‖2 ∈ |||�̄ − �̂|||op(ξ1 + ξ2)σ , where
the second step follows since any vector θ ∈ B2(r; θ∗) has ℓ2-norm bounded as
‖θ‖2 ∈ (ξ1 + ξ2)σ . We claim that for any fixed vector u ∈ S

d , the random variable
〈u, (�̄ − �̂)u〉 is zero-mean and sub-exponential. When this tail condition holds
and n > d , standard arguments in random matrix theory [47] ensure that |||�̄ −
�̂|||op ∈ c

√
d
n

log(1/δ) with probability at least 1 − δ.
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It is clear that 〈u, (�̄ − �̂)u〉 has zero mean. It remains to prove that 〈u, (�̄ −
�̂)u〉 is sub-exponential. Note that �̂ is a rescaled sum of rank one matrices, each
of the form

�θ (xobs, y) = Imis + μθμ
T
θ −

(
(1 − z) ⊙ μθ

)(
(1 − z) ⊙ μθ

)T
,

where Imis denotes the identity matrix on the diagonal sub-block correspond-
ing to the missing entries. The square of any sub-Gaussian random variable has
sub-exponential tails. Thus, it suffices to show that each of the random variables
〈μθ , u〉, and 〈(1 − z) ⊙ μθ , u〉 are sub-Gaussian. The random vector z ⊙ x has
i.i.d. sub-Gaussian components with parameter at most 1 and ‖u‖2 = 1, so that
〈z ⊙ x,u〉 is sub-Gaussian with parameter at most 1. It remains to verify that μθ is
sub-Gaussian, a fact that we state for future reference as a lemma.

LEMMA 4. Under the conditions of Corollary 3, the random vector

μθ (xobs, y) is sub-Gaussian with a constant parameter.

PROOF. Introducing the shorthand ω = (1 − z) ⊙ θ , we have

μθ (xobs, y) = z ⊙ x +
1

σ 2 + ‖ω‖2
2

[
y − 〈z ⊙ θ, z ⊙ x〉

]
ω.

Moreover, since y = 〈x, θ∗〉 + v, we have

〈
μθ (xobs, y), u

〉
= 〈z ⊙ x,u〉︸ ︷︷ ︸

B1

+
〈x,ω〉〈ω,u〉
σ 2 + ‖ω‖2

2︸ ︷︷ ︸
B2

+
〈x, θ∗ − θ〉〈ω,u〉

σ 2 + ‖ω‖2
2︸ ︷︷ ︸

B3

+
v〈ω,u〉

σ 2 + ‖ω‖2
2︸ ︷︷ ︸

B4

.

It suffices to show that each of the variables {Bj }4
j=1 is sub-Gaussian with a con-

stant parameter. As discussed previously, the variable B1 is sub-Gaussian with
parameter at most one. On the other hand, note that x and ω are independent.
Moreover, with ω fixed, the variable 〈x,ω〉 is sub-Gaussian with parameter ‖ω‖2

2,
whence

E
[
eλB2

]
∈ exp

(
λ2 ‖ω‖2

2〈ω,u〉2

2(σ 2 + ‖ω‖2
2)

2

)
∈ eλ2/2,

where the final inequality uses the fact that 〈ω,u〉2 ∈ ‖ω‖2
2. We have thus shown

that B2 is sub-Gaussian with parameter one. Since ‖θ − θ∗‖2 ∈ ξ2σ , the same
argument shows that B3 is sub-Gaussian with parameter at most ξ2. Since v is sub-
Gaussian with parameter σ and independent of ω, the same argument shows that
B4 is sub-Gaussian with parameter at most one, thereby completing the proof of
the lemma. �
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Controlling T2. We now turn to the second term. Note the variational repre-
sentation

T2 = sup
‖u‖2=1

∣∣∣∣∣E
[
y
〈
μθ (xobs, y), u

〉]
−

1

n

n∑

i=1

yi

〈
μθ (xobs,i, yi), u

〉
∣∣∣∣∣.

By a discretization argument—say with a 1/2 cover {u1, . . . , uM} of the sphere
with M ∈ 2d elements, we obtain

T2 ∈ 2 max
j∈[M]

∣∣∣∣∣E
[
y
〈
μθ (xobs, y), uj 〉] −

1

n

n∑

i=1

yi

〈
μθ (xobs,i, yi), u

j 〉
∣∣∣∣∣.

Each term in this maximum is the product of two zero-mean variables, namely
y and 〈μθ , u〉. On one hand, the variable y is sub-Gaussian with parameter at

most
√

‖θ∗‖2
2 + σ 2 ∈ cσ ; on the other hand, Lemma 4 guarantees that 〈μθ , u〉

is sub-Gaussian with constant parameter. The product of any two sub-Gaussian
variables is sub-exponential, and thus, by standard sub-exponential tail bounds [9],

we have P[T2 ≥ t] ∈ 2M exp(−c min{ nt√
1+σ 2

, nt2

1+σ 2 }). Since M ∈ 2d and n > c1d ,

we conclude that T2 ∈ c
√

1 + σ 2
√

d
n

log(1/δ) with probability at least 1 − δ.

Combining our bounds on T1 and T2, we conclude that εQ(n, δ) ∈ c
√

1 + σ 2 ×√
d
n

log(1/δ) with probability at least 1 − δ. Thus, we see that Corollary 6 follows
from Theorem 2.

7. Discussion. In this paper, we have provided some general techniques for
studying the EM and first-order EM algorithms, at both the population and finite-
sample levels. Although this paper focuses on these specific algorithms, we expect
that the techniques could be useful in understanding the convergence behavior of
other algorithms for potentially nonconvex problems.

The analysis of this paper can be extended in various directions. For instance, in
the three concrete models that we treated, we assumed that the model was correctly
specified, and that the samples were drawn in an i.i.d. manner, both conditions that
may be violated in statistical practice. Maximum likelihood estimation is known
to have various robustness properties under model mis-specification. Developing
an understanding of the EM algorithm in this setting is an important open prob-
lem.

Finally, we note that in concrete examples our analysis guarantees good behav-
ior of the EM and first-order EM algorithms when they are given suitable initial-
ization. For the three model classes treated in this paper, simple pilot estimators
can be used to obtain such initializations—in particular using PCA for Gaussian
mixtures and mixtures of regressions (e.g., [53]), and the plug-in principle for re-
gression with missing data (e.g., [22, 52]). These estimators can be seen as par-
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ticular instantiations of the method of moments [38]. Although still an active area
of research, a line of recent work (e.g., [1, 2, 13, 21]) has demonstrated the util-
ity of moment-based estimators or initializations for other types of latent variable
models, and it would be interesting to analyze the behavior of EM for such mod-
els.
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Supplement to “Statistical guarantees for the EM algorithm: From popu-
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supplement [3] contains all remaining technical proofs omitted from the main text
due to space constraints.
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APPENDIX A: EM AND FIRST-ORDER EM UPDATES FOR EXAMPLES

In this appendix, we derive the precise forms of the EM and first-order EM updates at both
the population and finite-sample level for the three examples we consider. In Section A.4, we
prove the claim (3.4).

A.1. Mixture of Gaussians. Suppose that we are given n i.i.d. samples {yi}ni=1 drawn
from the mixture density (3.6). The complete data {(yi, zi)}ni=1 corresponds to the original
samples along with the component indicator variables zi ∈ {0, 1}. The sample-based function
Qn takes the form

Qn(θ
′|θ) = − 1

2n

n∑

i=1

[
wθ(yi)‖yi − θ′‖22 + (1− wθ(yi))‖yi + θ′‖22

]
,(A.1)

where wθ(y) := e−
‖θ−y‖22

2σ2

[
e−

‖θ−y‖22
2σ2 + e−

‖θ+y‖22
2σ2

]−1
.

EM updates:. This example is especially simple in that each iteration of the EM algorithm
has a closed form solution, given by

θt+1 := arg max
θ′∈Rd

Qn(θ
′|θt) =

2

n

n∑

i=1

wθt(yi)yi −
1

n

n∑

i=1

yi.(A.2a)

Iterations of the population EM algorithm are specified analogously

θt+1 = 2E
[
wθt(Y )Y

]
,(A.2b)

where the empirical expectation has been replaced by expectation under the mixture distri-
bution (3.6).

First-order EM updates:. On the other hand, the sample-based and population first-order
EM operators with step size α > 0 are given by

θt+1 = θt + α
{ 1

n

n∑

i=1

(2wθt(yi)− 1)yi − θt
}
, and θt+1 = θt + α

[
2E

[
wθt(Y )Y

]
− θt

]
,(A.3)

respectively.
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A.2. Mixture of regressions.

EM updates:. Define the weight function

wθ(x, y) =
exp

(−(y−〈x, θ〉)2
2σ2

)

exp
(−(y−〈x, θ〉)2

2σ2

)
+ exp

(−(y+〈x, θ〉)2
2σ2

) .(A.4a)

In terms of this notation, the sample EM update is based on maximizing the function

Qn(θ
′|θ) = − 1

2n

n∑

i=1

(
wθ(xi, yi)(yi − 〈xi, θ′〉)2 + (1− wθ(xi, yi))(yi + 〈xi, θ′〉)2

)
.(A.4b)

Again, there is a closed form solution to this maximization problem: more precisely,

θt+1 =
( n∑

i=1

xix
T
i

)−1( n∑

i=1

(2wθt(xi, yi)− 1)yixi

)
.(A.5a)

Similarly, by an easy calculation, we find that the population EM iterations have the form

θt+1 = 2E
[
wθt(X,Y )Y X

]
,(A.5b)

where the expectation is taken over the joint distribution of the pair (Y,X) ∈ R× R
d.

First-order EM updates:. On the other hand, the first-order EM operators are given by

θt+1 = θt + α
{ 1

n

n∑

i=1

[
(2wθt(xi, yi)− 1)yixi − xix

T
i θ

t
]}

, and(A.6a)

θt+1 = θt + αE

[
2wθt(X,Y )Y X − θt

]
,(A.6b)

where α > 0 is a step size parameter.

A.3. Linear regression with missing covariates. In this example, the E-step involves
imputing the mean and covariance of the jointly Gaussian distribution of covariate-response
pairs. For a given sample (x, y), let xobs denote the observed portion of x, and let θobs denote
the corresponding sub-vector of θ. Define the missing portions xmis and θmis in an analogous
fashion. With this notation, the EM algorithm imputes the conditional mean and conditional
covariance using the current parameter estimate θ. Using properties of joint Gaussians, the
conditional mean of X given (xobs, y) is found to be

µθ(xobs, y) :=

[
E(xmis|xobs, y, θ)

xobs

]
=

[
Uθzobs
xobs

]
,(A.7a)

where

Uθ =
1

‖θmis‖22 + σ2

[
−θmis θ

T
obs θmis

]
and zobs :=

[
xobs
y

]
∈ R

|xobs|+1.(A.7b)

Similarly, the conditional second moment matrix takes the form

Σθ(xobs, y) := E

[
XXT | xobs, y, θ

]
=

[
I Uθzobsx

T
obs

xobsz
T
obsU

T
θ xobsx

T
obs

]
.(A.7c)
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In writing all these expressions, we have assumed that the coordinates are permuted so that
the missing values are in the first block.

We now have the necessary notation in place to describe the EM and first-order EM updates.
For a given parameter θ, the EM update is based on maximizing

Qn(θ
′|θ) := − 1

2n

n∑

i=1

〈θ′, Σθ(xobs,i, yi)θ
′〉+ 1

n

n∑

i=1

yi〈µθ(xobs,i, yi), θ
′〉.(A.8)

The sample-based EM iterations are given as

θt+1 :=
[ n∑

i=1

Σθt(xobs,i, yi)
]−1[ n∑

i=1

yiµθt(xobs,i, yi)
]
,(A.9a)

accompanied by its population counterpart

θt+1 :=
{
E
[
Σθt(Xobs, Y )

]}−1
E
[
Y µθt(Xobs, Y )

]
.(A.9b)

On the other hand, the first-order EM algorithm with step size α performs the following
iterations:

θt+1 = θt + α
{ 1

n

n∑

i=1

[
yiµθt(xobs,i, yi)− Σθt(xobs,i, yi)θ

t
]}

,(A.10a)

along with the population counterpart

θt+1 = θt + αE
[
Y µθt(Xobs, Y )− Σθt(Xobs, Y )θt

]
.(A.10b)

A.4. Proof of the claim (3.4). From the strong-concavity of q, it is straightforward to
verify that

‖∇q(θ)‖22 ≥ λ2‖θ − θ∗‖22.

This inequality together with the gradient smoothness condition (3.1) yields

〈∇Q(θ|θ), ∇q(θ)〉 = 1

2

(
‖∇Q(θ|θ)‖22 + ‖∇q(θ)‖22 − ‖∇Q(θ|θ)−∇q(θ)‖22

)

≥ 1

2

(
λ2‖θ − θ∗‖22 − γ2‖θ − θ∗‖22

)

≥ 0,

where the final inequality is strict whenever θ 6= θ∗.

APPENDIX B: RESULTS FOR THE EM ALGORITHM

In this section, we revisit the examples introduced previously, and develop guarantees for
the EM algorithm applied to them.

Corollary 7 (Sample-based EM guarantees for Gaussian mixtures). In addition to the
conditions of Corollary 1, suppose that the sample size is lower bounded as n ≥ c1d log(1/δ).

Then given any initialization θ0 ∈ B2(
‖θ∗‖2

4 ; θ∗), there is a contraction coefficient κ(η) ≤ e−cη2

such that the standard EM iterates {θt}∞t=0 satisfy the bound

‖θt − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
c2

1− κ
ϕ(σ; ‖θ∗‖2)

√
d

n
log(1/δ)(B.1)

with probability at least 1− δ.
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We also have an analogous result for the EM algorithm with sample-splitting for the mixture
of Gaussians.

Corollary 8 (Sample-splitting EM guarantees for Gaussian mixtures). Consider a Gaus-
sian mixture model satisfying the SNR(η) condition (3.7), and any initialization θ0 such that

‖θ0 − θ∗‖2 ≤ ‖θ∗‖2
4 .

Given a sample size n ≥ 16T log(6T/δ), then with probability at least 1 − δ, the sample-
splitting EM iterates {θt}Tt=0 satisfy the bound

‖θt − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
c

1− κ

(
σ

√
dT log(T/δ)

n
+

√
T log(T/δ)

n
‖θ∗‖2

)
.(B.2)

It is worth comparing the result here to the result established earlier in Corollary 7. The
sample-splitting EM algorithm is more sensitive to the number of iterations which determines
the batch size and needs to be chosen in advance. Supposing that the number of iterations
were chosen optimally however the result has better dependence on ‖θ∗‖2 and σ at the cost of
a logarithmic factor in n.

Our next corollary gives a guarantee for the sample-splitting EM updates applied to the
mixture of regressions example. Let us now provide guarantees for a sample-splitting version
of the EM updates. For a given sample size n and iteration number T , suppose that we
split1 our full data set into T subsets, each of size n/T . We then generate the sequence
θt+1 = Mn/T (θ

t), where we use a fresh subset at each iteration. In the following result, we use

ϕ(σ; ‖θ∗‖2) =
√
σ2 + ‖θ∗‖22, along with positive universal constants (c1,c2).

Corollary 9 (Sample-splitting EM guarantees for MOR). In addition to the conditions
of Corollary 2, suppose that the sample size is lower bounded as n ≥ c1d log(T/δ). Then there

is a contraction coefficient κ ≤ 1/2 such that, for any initial vector θ0 ∈ B2(
‖θ∗‖2
32 ; θ∗), the

sample-splitting EM iterates {θt}Tt=1 based on n/T samples per step satisfy the bound

‖θt − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 + c2ϕ(σ; ‖θ∗‖2)
√

d

n
T log(T/δ)(B.3)

with probability at least 1− δ.

We devote the remaining technical sections of this Appendix section to the proofs of the
various claims made in this Appendix and earlier in Section 5.

B.1. Proof of Theorem 4. Since both M(θ) and θ∗ are in Ω, we may apply condi-
tion (5.2) with θ′ = M(θ) and condition (5.3) with θ′ = θ∗. Doing so, adding the resulting
inequalities and then performing some algebra yields the condition

〈∇Q(M(θ)|θ∗)−∇Q(θ∗|θ∗), θ∗ −M(θ)〉 ≤ 〈∇Q(M(θ)|θ∗)−∇Q(M(θ)|θ), θ∗ −M(θ)〉.
(B.4)

Now the λ-strong concavity condition (3.2) implies that the left-hand side is lower bounded
as

〈∇Q(M(θ)|θ∗)−∇Q(θ∗|θ∗), θ∗ −M(θ)〉 ≥ λ‖θ∗ −M(θ)‖22.(B.5a)

1To simplify exposition, assume that n/T is an integer.
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On the other hand, the FOS(γ) condition together with the Cauchy-Schwarz inequality implies
that the right-hand side is upper bounded as

〈∇Q(M(θ)|θ∗)−∇Q(M(θ)|θ), θ∗ −M(θ)〉 ≤ γ‖θ∗ −M(θ)‖2‖θ − θ∗‖2,(B.5b)

Combining inequalities (B.5a) and (B.5b) with the original bound (B.4) yields

λ‖θ∗ −M(θ)‖22 ≤ γ‖θ∗ −M(θ)‖2‖θ − θ∗‖2,

and canceling terms completes the proof.

B.2. Proof of Theorems 3 and 5. For concreteness we prove Theorem 3 in this section.
The proof of Theorem 5 follows in a similar manner. The proof follows along similar lines to
the proof of Theorem 2. For any iteration s ∈ {1, 2, . . . , T}, we have

‖∇Qn/T (θ|θs)|θ=θs −∇Q(θ|θs)|θ=θs‖2 ≤ εQ

(n

T
,
δ

T

)
(B.6)

with probability at least 1 − δ
T . Consequently, by a union bound over all T indices, the

bound (B.6) holds uniformly with probability at least 1 − δ. We perform the remainder of
our analysis under this event.

It suffices to show that

‖θs+1 − θ∗‖2 ≤ κ‖θs − θ∗‖2 + αεQ

(n

T
,
δ

T

)
for each iteration s ∈ {1, 2, . . . , T − 1}.(B.7)

Indeed, when this bound holds, we may iterate it to show that

‖θt − θ∗‖2 ≤ κ‖θt−1 − θ∗‖2 + αεQ

(n

T
,
δ

T

)

≤ κ
{
κ‖θt−2 − θ∗‖2 + αεQ

(n

T
,
δ

T

)}
+ αεQ

(n

T
,
δ

T

)

≤ κt‖θ0 − θ∗‖2 +
{ t−1∑

s=0

κs
}
αεQ

(n

T
,
δ

T

)

≤ κt‖θ0 − θ∗‖2 +
1

1− κ
αεQ

(n

T
,
δ

T

)
,

where the final step follows by summing the geometric series.
It remains to prove the claim (B.7), and we do so via induction on the iteration number.

Beginning with s = 1, we have

‖θ1 − θ∗‖2 = ‖θ0 + α∇Qn/T (θ|θ0)|θ=θ0 − θ∗‖2
(i)

≤ κ‖θ0 − θ∗‖2 + αεQ

(n

T
,
δ

T

)
,

where step (i) follows by triangle inequality, the bound (B.6), and the contractivity of the popu-
lation operator applied to θ0 ∈ B2(r; θ

∗). By our initialization condition and the bound (5.11a),
note that we are guaranteed that ‖θ1 − θ∗‖2 ≤ r.

In the induction from s 7→ s + 1, suppose that ‖θs − θ∗‖2 ≤ r, and the bound (6.3) holds
at iteration s. The same argument then implies that the bound (6.3) also holds for iteration
s+ 1, and that ‖θs+1 − θ∗‖2 ≤ r, thus completing the proof.
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B.3. Population contractivity of the EM operator. Much of the work in establishing
population level results for the first-order EM algorithm can be leveraged in establishing
population level results for the EM algorithm.

In particular, we observe that the FOS condition differs from the GS condition only in that
for the FOS condition we need to control the norm:

‖∇Q(M(θ)|θ)−∇Q(M(θ)|θ∗)‖2
as opposed to the norm:

‖∇Q(θ|θ)−∇Q(θ|θ∗)‖2.

It is a straightforward exercise to verify that in the two mixture model examples we consider in
the paper (and more generally when the Q function is a spherical quadratic function of its first
argument) the gradient of the Q function is independent of its first argument. Particularly,
we note that the population level results for EM applied to the mixture of regressions and
mixture of Gaussians follow directly from Corollaries 1 and 2, and the observation that for
these examples the FOS and GS conditions are equivalent. It then remains to analyze the
finite-sample performance of the EM algorithm in these examples, and we address this in the
following sections.

B.4. Proof of Corollary 8. The proof follows by establishing a bound on the function
εM (n, δ). Define S = {θ : ‖θ−θ∗‖2 ≤ ‖θ∗‖2

4 }. Recalling the updates in (A.2a) and (A.2b), note
that

‖M(θ)−Mn(θ)‖2 ≤ ‖ 1
n

n∑

i=1

Yi‖2
︸ ︷︷ ︸

T1

+ ‖ 1
n

n∑

i=1

wθ(Yi)Yi − Ewθ(Y )Y ‖2
︸ ︷︷ ︸

T2

.

We bound each of these terms in turn, in particular showing that

max{T1, T2} ≤
√

log(8/δ)

2n
‖θ∗‖2 + cσ

√
d log(1/δ)

n
,(B.8)

with probability at least 1− δ.

Control of T1:. Observe that since Y ∼ (2Z − 1)θ∗ + v we have

T1 = ‖ 1
n

n∑

i=1

Yi‖2 ≤ ‖ 1
n

n∑

i=1

vi‖2 +
∣∣∣ 1
n

n∑

i=1

(2Zi − 1)
∣∣∣‖θ∗‖2.

Since Zi are i.i.d Bernoulli variables, Hoeffding’s inequality implies that

∣∣∣ 1
n

n∑

i=1

(2Zi − 1)
∣∣∣ ≤

√
log(8/δ)

2n
.

with probability at least 1 − δ
4 . On the other hand, the vector U1 := 1

n

∑n
i=1 vi is zero-mean

and sub-Gaussian with parameter σ/
√
n, whence the squared norm ‖U1‖22 is sub-exponential.

Using standard bounds for sub-exponential variates and the condition n > σd, we obtain

‖U1‖2 ≤ c2σ

√
d log(1/δ)

n
.

with probability at least 1− δ/4. Combining the pieces yields the claimed bound (B.8) on T1.
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Control of T2:. By triangle inequality, we have

T2 ≤
∣∣ 1
n

n∑

i=1

wθ(Yi)(2Zi − 1)− Ewθ(Y )(2Z − 1)
∣∣‖θ∗‖2 + ‖ 1

n

n∑

i=1

wθ(Yi)vi − Ewθ(Y )v‖2.

The random variable wθ(Y )(2Z − 1) lies in the interval [−1, 1], so that Hoeffding’s inequality
implies that

∣∣ 1
n

n∑

i=1

wθ(Yi)(2Zi − 1)− Ewθ(Y )(2Z − 1)
∣∣‖θ∗‖2 ≤

√
log(6/δ)

2n
‖θ∗‖2.

with probability at least 1− δ/4.
Next observe that the random vector U2 :=

1
n

∑n
i=1wθt(Xi)vi−Ewθt(X)v is zero mean and

sub-Gaussian with parameter σ/
√
n. Consequently, as in our analysis of T1,we conclude that

‖U2‖2 ≤ cσ

√
d log(1/δ)

n
.

with probability at least 1− δ/4. Putting together the pieces yields the claimed bound (B.8)
on T2, thereby completing the proof of the corollary.

B.5. Proof of Corollary 7. In order to prove this corollary, it suffices to bound the
function εunifM (n, δ), as previously defined (5.9). Defining the set A :=

{
θ ∈ R

d | ‖θ − θ∗‖2 ≤
‖θ∗‖2/4

}
, our goal is to control the random variable Z := supθ∈A ‖M(θ)−Mn(θ)‖2. For each

unit-norm vector u ∈ R
d, define the random variable

Zu := sup
θ∈A

{ 1
n

n∑

i=1

(2wθ(yi)− 1)〈yi, u〉 − E(2wθ(Y )− 1)〈Y, u〉
}
.

Noting that Z = supu∈Sd Zu, we begin by reducing our problem to a finite maximum over the
sphere S

d. Let {u1, . . . , uM} denote a 1/2-covering of the sphere S
d = {v ∈ R

d | ‖v‖2 = 1}.
For any v ∈ S

d, there is some index j ∈ [M ] such that ‖v − uj‖2 ≤ 1/2, and hence we can
write

Zv ≤ Zuj + |Zv − Zuj | ≤ max
j∈[M ]

Zuj + Z ‖v − uj‖2,

where the final step uses the fact that |Zu − Zv| ≤ Z ‖u − v‖2 for any pair (u, v). Putting
together the pieces, we conclude that

Z = sup
v∈Sd

Zv ≤ 2 max
j∈[M ]

Zuj .(B.9)

Consequently, it suffices to bound the random variable Zu for a fixed u ∈ S
d. Letting {εi}ni=1

denote an i.i.d. sequence of Rademacher variables, for any λ > 0, we have

E
[
eλZu

]
≤ E

[
exp

( 2

n
sup
θ∈A

n∑

i=1

εi(2wθ(yi)− 1)〈yi, u〉
)]

,

using a standard symmetrization result for empirical processes (e.g., [4, 5]). Now observe that
for any triplet of d-vectors y, θ and θ′, we have the Lipschitz property

∣∣2wθ(y)− 2wθ′(y)
∣∣ ≤ 1

σ2

∣∣〈θ, y〉 − 〈θ′, y〉
∣∣.
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Consequently, by the Ledoux-Talagrand contraction for Rademacher processes [4, 5], we have

E

[
exp

( 2

n
sup
θ∈A

n∑

i=1

εi(2wθ(yi)− 1)〈yi, u〉
)]

≤ E

[
exp

( 4

nσ2
sup
θ∈A

n∑

i=1

εi〈θ, yi〉〈yi, u〉
)]

Since any θ ∈ A satisfies ‖θ‖2 ≤ 5
4‖θ∗‖2, we have

sup
θ∈A

1

n

n∑

i=1

εi〈θ, yi〉〈yi, u〉 ≤
5

4
‖θ∗‖2|||

1

n

n∑

i=1

εiyiy
T
i |||op,

where ||| · |||op denotes the ℓ2-operator norm of a matrix (maximum singular value). Repeating
the same discretization argument over {u1, . . . , uM}, we find that

||| 1
n

n∑

i=1

εiyiy
T
i |||op ≤ 2 max

j∈[M ]

1

n

n∑

i=1

εi〈yi, uj〉2.

Putting together the pieces, we conclude that

E
[
eλZu

]
≤ E

[
exp

(10λ‖θ∗‖2
σ2

max
j∈[M ]

1

n

n∑

i=1

εi〈yi, uj〉2
)]

≤
M∑

j=1

E

[
exp

(10λ‖θ∗‖2
σ2

1

n

n∑

i=1

εi〈yi, uj〉2
)]

.

(B.10)

Now by assumption, the random vectors {yi}ni=1 are generated i.i.d. according to the model
y = ηθ∗ + w, where η is a Rademacher sign variable, and w ∼ N (0, σ2I). Consequently, for
any u ∈ R

d, we have

E[e〈u, y〉] = E[eη〈u, θ
∗〉] E[e〈u,w〉] ≤ e

‖θ∗‖22+σ2

2 ,

showing that the vectors 〈yi, u〉 are sub-Gaussian with parameter at most γ =
√

‖θ∗‖22 + σ2.
Therefore, the vectors εi〈yi, u〉2 are zero mean sub-exponential, and have moment generating

function bounded as E[et(〈yi, u〉)
2
] ≤ e

γ4t2

2 for all t > 0 sufficiently small. Combined with our
earlier inequality (B.10), we conclude that

E
[
eλZu

]
≤ M ec

λ2‖θ∗‖22γ
4

nσ4 ≤ ec
λ2‖θ∗‖22γ

4

nσ4 +2d

for all λ sufficiently small. Combined with our first discretization (B.9), we have thus shown
that

E[e
λ
2
Z ] ≤ Mec

λ2‖θ∗‖22γ
4

nσ4 +2d ≤ ec
λ2‖θ∗‖22γ

4

nσ4 +4d.

Combined with the Chernoff approach, this bound on the MGF implies that, as long as n ≥
c1d log(1/δ) for a sufficiently large constant c1, we have

Z ≤ c2‖θ∗‖2γ2
σ2

√
d log(1/δ)

n

with probability at least 1− δ.
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B.5.1. Proof of Corollary 9. We need to compute an upper bound on the function εM (n, δ)
previously defined in equation (5.8). For this particular model, we have

‖M(θ)−Mn(θ)‖2 = ‖
( n∑

i=1

xix
T
i

)−1( n∑

i=1

(2wθ(xi, yi)− 1)yixi

)
− 2E[wθ(X,Y )Y X]‖2.

Define the matrices Σ̂ := 1
n

∑n
i=1 xix

T
i and Σ = E[XXT ] = I, as well as the vector

v̂ :=
1

n

n∑

i=1

[
µθ(xi, yi)yixi

]
, and v := E

[
µθ(X,Y )Y X

]
,

where µθ(x, y) := 2wθ(x, y) − 1. Noting that E[Y X] = 0, some straightforward algebra then
yields the bound

‖M(θ)−Mn(θ)‖2 ≤ |||Σ̂−1|||op‖v̂ − v‖2︸ ︷︷ ︸
T1

+ |||Σ̂−1 − Σ−1|||op‖v‖2︸ ︷︷ ︸
T2

.(B.11)

We bound each of the terms T1 and T2 in turn.

Bounding T1:. Recall the assumed lower bound on the sample size—namely n > c d log(1/δ)
for a sufficiently large constant c. Under this condition, standard bounds in random matrix
theory [11], guarantee that |||Σ̂ − Σ|||op ≤ 1

2 with probability at least 1 − δ. When this bound

holds, we have |||Σ̂−1|||op ≥ 1/2.
As for the other part of T1, let us write ‖v̂ − v‖2 = supu∈Sd Z(u), where

Z(u) :=
1

n

n∑

i=1

µθ(xi, yi)yi〈x, u〉 − E[µθ(X,Y )Y 〈X, u〉].

By a discretization argument over a 1/2-cover of the sphere S
d—say {u1, . . . , uM}—we have

the upper bound ‖v̂−v‖2 ≤ 2maxj∈[M ] Z(uj). Thus, it suffices to control the random variable

Z(u) for a fixed u ∈ S
d. By a standard symmetrization argument [10], we have

P
[
Z(u) ≥ t

]
≤ 2P

[ 1
n

n∑

i=1

εiµθ(xi, yi)yi〈xi, u〉 ≥ t/2
]
,

where {εi}ni=1 are an i.i.d. sequence of Rademacher variables. Let us now define the event
E
{

1
n

∑n
i=1〈xi, u〉2 ≤ 2}. Since each variable 〈xi, u〉 is sub-Gaussian with parameter one, stan-

dard tail bounds imply that P[Ec] ≤ e−n/32. Therefore, we can write

P
[
Z(u) ≥ t

]
≤ 2P

[ 1
n

n∑

i=1

εiµθ(xi, yi)yi〈xi, u〉 ≥ t/2 | E
]
+ 2e−n/32.

As for the remaining term, we have

E

[
exp

(λ
n

n∑

i=1

εiµθ(xi, yi)yi〈xi, u〉
)
| E

]
≤ E

[
exp

(2λ
n

n∑

i=1

εiyi〈xi, u〉
)
| E

]
,

where we have applied the Ledoux-Talagrand contraction for Rademacher processes [4, 5], using
the fact that |µθ(x, y)| ≤ 1 for all pairs (x, y). Now conditioned on xi, the random variable yi
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is zero-mean and sub-Gaussian with parameter at most
√
‖θ∗‖22 + σ2. Consequently, taking

expectations over the distribution (yi | xi) for each index i, we find that

E

[
exp

(2λ
n

n∑

i=1

εiyi〈xi, u〉
)
| E

]
≤

[
exp

(4λ2

n2

(
‖θ∗‖22 + σ2

) n∑

i=1

〈xi, u〉2
)
| E

]

≤ exp
(8λ2

n

(
‖θ∗‖22 + σ2

))
,

where the final inequality uses the definition of E . Using this bound on the moment-generating
function, we find that

P

[ 1
n

n∑

i=1

εiµθ(xi, yi)yi〈xi, u〉 ≥ t/2 | E
]
≤ exp

(
− nt2

256(‖θ∗‖22 + σ2)

)
.

Since the 1/2-cover of the unit sphere S
d has at most 2d elements, we conclude that there is a

universal constant c such that T1 ≤ c
√

‖θ∗‖22 + σ2
√

d
n log(1/δ) with probability at least 1−δ.

Bounding T2:. Since n > d by assumption, standard results in random matrix theory [11]

imply that |||Σ̂−1−Σ−1|||op ≤ c
√

d
n log(1/δ) with probability at least 1−δ. On the other hand,

observe that

‖v‖2 = ‖M(θ)‖2 ≤ 2‖θ∗‖2,
since the population operator M is a contraction, and ‖θ‖2 ≤ 2‖θ∗‖2. Combining the pieces,

we see that T2 ≤ c‖θ∗‖2
√

d
n log(1/δ) with probability at least 1− δ.

Finally, substituting our bounds on T1 and T2 into the decomposition (B.11) yields the claim.

APPENDIX C: A STOCHASTIC VERSION OF FIRST-ORDER EM

In this section, we analyze a sample-based variant of first-order EM that is inspired by
stochastic approximation. Online variants of the EM algorithm have been studied by various
authors (see for instance [3, 6]), who focus on the convergence and rate of convergence of
these algorithms to any stationary point of the log-likelihood. On the contrary, our focus in
particular applications is on the convergence of the algorithm to the MLE. The stochastic
algorithm we study can be viewed as an extreme form of sample-splitting, in which we use
only a single sample per iteration, but compensate for the noisiness using a decaying step size.
Throughout this section we assume that (a lower bound on) the radius of convergence r of the
population operator is known to the algorithm2.

C.1. Analysis of stochastic first-order EM. Given a sequence of positive step sizes
{αt}∞t=0, we analyze the recursion

θt+1 = Π
(
θt + αt∇Q1(θ

t|θt)
)
,(C.1)

where the gradient ∇Q1(θ
t|θt) is computed using a single fresh sample at each iteration. Here

Π denotes the projection onto the Euclidean ball B2(
r
2 ; θ

0) of radius r
2 centered at the initial

iterate θ0. Thus, given any initial vector θ0 in the ball of radius r/2 centered at θ∗, we are
guaranteed that all iterates remain within an r-ball of θ∗. The following result is stated in terms
of the constant ξ := 2µλ

λ+µ − γ > 0, and the uniform variance σ2
G := sup

θ∈B2(r;θ∗)
E‖∇Q1(θ|θ)‖22.

2This assumption can be restrictive in practice. We believe the requirement can be eliminated by a more
judicious choice of the step-size parameter in the first few iterations.
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Theorem 6. For a triplet (γ, λ, µ) such that 0 ≤ γ < λ ≤ µ, suppose that the population
function q is λ-strongly concave (3.2), µ-smooth (3.3), and satisfies the GS(γ) condition (3.1)
over the ball B2(r; θ

∗). Then given an initialization θ0 ∈ B2(
r
2 ; θ

∗), the stochastic EM gradient
updates (C.1) with step size αt := 3

2ξ (t+2) satisfy the bound

E[‖θt − θ∗‖22] ≤
9σ2

G

ξ2
1

(t+ 2)
+
( 2

t+ 2

)3/2
‖θ0 − θ∗‖22 for iterations t = 1, 2, . . ..(C.2)

While the stated claim (C.2) provides bounds in expectation, it is also possible to obtain
high-probability results.3

We prove this result in Appendix C.4. In order to obtain guarantees for stochastic first-order
EM applied to specific models, it only remains to prove the concavity and smoothness prop-
erties of the population function q, and to bound the uniform variance σG.

C.2. Stochastic updates for mixture of regressions. In order to illustrate Theorem 6
we first revisit the MOR model considered in Section 3.2.2. In particular, given a data set of
size n from this model, we run the algorithm for n iterations, with a step size αt := 3

t+2

for iterations t = 1, . . . , n. Once again our result is terms of ϕ(σ; ‖θ∗‖2) =
√
σ2 + ‖θ∗‖22 and

positive universal constants (c1,c2).

Corollary 10 (Stochastic first-order EM guarantees for MOR). In addition to the con-
ditions of Corollary 2, suppose that the sample size is lower bounded as n ≥ c1d log(1/δ). Then

given any initialization θ0 ∈ B2(
‖θ∗‖2
32 ; θ∗), performing n iterations of the stochastic first-order

EM gradient updates (C.1) yields an estimate θ̂ = θn such that

E[‖θ̂ − θ∗‖22] ≤ c2 ϕ
2(σ; ‖θ∗‖2)

d

n
.(C.3)

We prove this corollary in Appendix C.5. Figure 9 illustrates this corollary showing the error
as a function of iteration number (sample size) for the stochastic first-order EM algorithm.

C.3. Stochastic updates for missing data. We conclude our discussion of the stochas-
tic form of first-order EM by re-visiting the model with covariates missing completely at ran-
dom considered in Section 3.2.3. In particular, given a data set of size n from this model, we
run the algorithm for n iterations, with a step size αt := 3

t+2 for iterations t = 1, . . . , n.

Corollary 11 (Stochastic first-order EM guarantees for missing covariates). In ad-
dition to the conditions of Corollary 3, suppose that the sample size is lower bounded as
n ≥ c1d log(1/δ). Then given any initialization θ0 ∈ B2(ξ2σ; θ

∗), performing n iterations of
the stochastic EM gradient updates (C.1) with step sizes αt = 3

2 (1−κ)(t+2) yields an estimate

θ̂ = θn such that

E[‖θ̂ − θ∗‖22] ≤ c2(1 + σ2)
d

n
.(C.4)

We prove this corollary in Appendix C.6. Figure 10 provides an illustration of the performance
in practice.

3Although we do not consider this extension here, stronger exponential concentration results follow from
controlling the moment generating function of the random variable supθ∈B2(r;θ∗)

‖∇Q1(θ|θ)‖
2
2. For instance,

see Nemirovski et al. [7] for such results in the context of stochastic optimization.

46



0 200 400 600 800 1000
−3

−2

−1

0

1

Iteration #
L
o
g
st
a
ti
st
ic
a
l
e
rr
o
r

Stochastic Gradient EM, Mixture of Regressions

 

 

Stat. error

Fig 9. A plot of the (log) statistical error for the stochastic first-order EM algorithm as a
function of iteration number (sample size) for the mixture of regressions example. The plot

shows 10 different problem instances with d = 10, ‖θ∗‖2

σ
= 2 and ‖θ0−θ

∗‖2

σ
= 1. The statistical

error decays at the sub-linear rate O(1/
√
t) as a function of the iteration number t. An iteration

of stochastic first-order EM is however typically much faster and uses only a single sample.
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Fig 10. A plot of the (log) statistical error for the stochastic first-order EM algorithm as
a function of iteration number (sample size) for the problem of linear regression with missing

covariates. The plot shows 10 different problem instances with d = 10, ‖θ∗‖2

σ
= 2 and ‖θ0−θ

∗‖2

σ
=

1. The statistical error decays at the sub-linear rate O(1/
√
t) as a function of the iteration

number t.

C.4. Proof of Theorem 6. We first establish a recursion on the expected mean-squared
error. As with Theorem 1 this result is established by relating the population first-order EM op-
erator to the gradient ascent operator on the function q(·). This key recursion along with some
algebra lead to the theorem.

Lemma 5. Given the stochastic EM gradient iterates with step sizes {αt}∞t=0, the error
∆t+1 := θt+1 − θ∗ at iteration t+ 1 satisfies the recursion

E[‖∆t+1‖22] ≤
{
1− αtξ

}
E[‖∆t‖22] + (αt)2σ2

G,(C.5)

where σ2
G = sup

θ∈B2(r;θ∗)
E[‖∇Q1(θ|θ)‖22].

We prove this lemma in the sequel.

Using this result, we can now complete the proof of the bound (C.2). With the step size
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choice αt := a
ξ (t+2) where a = 3

2 , unwrapping the recursion (C.5) yields

E[‖∆t+1‖22] ≤
a2σ2

G

ξ2

t+1∑

τ=2

{ 1

τ2

t+2∏

ℓ=τ+1

(
1− a

ℓ

)}
+

a2σ2
G

ξ2(t+ 2)2
+

t+2∏

ℓ=2

(
1− a

ℓ

)
E[‖∆0‖22].(C.6)

In order to bound these terms we use the following fact: For any a ∈ (1, 2), we have

t+2∏

ℓ=τ+1

(
1− a

ℓ

)
≤

(τ + 1

t+ 3

)a
.

See Noorshams and Wainwright [9] for a proof. Applying this inequality in equation (C.6)
yields

E[‖∆t+1‖22] ≤
a2σ2

G

ξ2 (t+ 3)a

t+2∑

τ=2

(τ + 1)a

τ2
+
( 2

t+ 3

)a
E[‖∆0‖22]

≤ 2a2σ2
G

ξ2 (t+ 3)a

t+2∑

τ=2

1

τ2−a
+
( 2

t+ 3

)a
E[‖∆0‖22].

Finally, applying the integral upper bound
t+2∑
τ=2

1
τ2−a ≤

∫ t+2
1

1
x2−adx ≤ 2(t + 3)a−1 yields the

claim (C.2).
It only remains to prove Lemma 5. In order to establish Lemma 5 we require an analogue

of Theorem 1 that allows for a wider range of step sizes. Recall the classical gradient ascent
operator on the function q(θ) = Q(θ|θ∗). For step size α > 0, it takes the form T (θ) =
θ + α∇q(θ). Under the stated λ-concavity and µ-smoothness conditions, for any step size
0 < α ≤ 2

λ+µ , the classical gradient operator T is contractive with parameter

φ(α) = 1− 2αµλ

µ+ λ
.

This follows from the classical analysis of gradient descent (e.g., [1, 2, 8]). Using this fact, we
can prove the following about the population first-order EM operator:

Lemma 6. For any step size 0 < α ≤ 2
λ+µ , the population first-order EM operator G :

Ω → Ω is contractive with parameter κ(α) = 1− αξ, where

ξ :=
2µλ

λ+ µ
− γ.(C.7)

We omit the proof, since it follows from a similar argument to that of Theorem 1. With this
preliminary in place we can now begin the proof of Lemma 5.

C.4.1. Proof of Lemma 5. Let us write θt+1 = Π(θ̃t+1), where θ̃t+1 := θt + αt∇Q1(θ
t|θt)

is the update vector prior to projecting onto the ball B2(
r
2 ; θ

0). Defining the difference vectors

∆t+1 := θt+1 − θ∗ and ∆̃t+1 := θ̃t+1 − θ∗, we have

‖∆t+1‖22 − ‖∆t‖22 ≤ ‖∆̃t+1‖22 − ‖∆t‖22 = 〈θ̃t+1 − θt, θ̃t+1 + θt − 2θ∗〉.
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Introducing the shorthand Ŵ (θ) := ∇Q1(θ|θ), we have θ̃t+1 − θt = αtŴ (θ), and hence

‖∆t+1‖22 − ‖∆t‖22 ≤ αt〈Ŵ (θt), αtŴ (θt) + 2(θt − θ∗)〉
= (αt)2‖Ŵ (θt)‖22 + 2αt〈Ŵ (θt), ∆t〉.

Letting Ft denote the σ-field of events up to the random variable θt, note that

E[Ŵ (θt) | Ft] = W (θt) := ∇Q(θt|θt).

Consequently, by iterated expectations, we have

E[‖∆t+1‖22] ≤ E[‖∆t‖22] + (αt)2E‖Ŵ (θt)‖22 + 2αt
E

[
〈W (θt), ∆t〉

]
.(C.8)

Now since θ∗ maximizes the function q and θt belongs to B2(
r
2 ; θ

0), we have

〈W (θ∗), ∆t〉 = 〈∇q(θ∗), ∆t〉 ≤ 0.

Combining with our earlier inequality (C.8) yields

E[‖∆t+1‖22] ≤ E[‖∆t‖22] + (αt)2E‖Ŵ (θt)‖22 + 2αt
E

[
〈W (θt)−W (θ∗), ∆t〉

]
.

Defining Gt(θt) := θt + αtW (θt), we see that

αt〈W (θt)−W (θ∗), ∆t〉 = 〈Gt(θt)−Gt(θ∗)− (θt − θ∗), θt − θ∗〉
= 〈Gt(θt)−Gt(θ∗), θt − θ∗〉 − ‖θt − θ∗‖22
(i)

≤ (κ(αt)− 1)‖θt − θ∗‖22
(ii)
= −αtξ ‖∆t‖22,

where step (i) uses the contractivity of Gt established in Lemma 6 and step (ii) uses the
definition of ξ from equation (C.7). Putting together the pieces yields the claim (C.5).

C.5. Proof of Corollary 10. We need to bound the uniform variance σ2
G = supθ∈B2(r;θ∗) E‖∇Q1(θ|θ)‖22,

where r = ‖θ∗‖2
32 . From the gradient update (A.6a), we have ∇Q1(θ | θ) = (2wθ(x1, y1) −

1)y1x1 − 〈x1, θ〉x1, and hence

E
[
‖∇Q1(θ|θ)‖22

]
≤ 2E[y21‖x1‖22]︸ ︷︷ ︸

T1

+2 |||E[x1xT1 ‖x1‖22]|||op︸ ︷︷ ︸
T2

‖θ‖22.(C.9)

First considering T1, recall that y1 = z1〈x1, θ∗〉+ v1, where v ∼ N (0, σ2) and z1 is a random
sign, independent of (x1, v1). Consequently, we have

T1 ≤ 2E[〈x1, θ∗〉2‖x1‖22] + 2E[v21‖x1‖22] ≤ 2
√

E[〈x1, θ∗〉4]
√
E[‖x1‖42] + 2σ2d,

where we have applied the Cauchy-Schwarz inequality, and observed that E[‖x1‖22] = d and
E[v21] = σ2. Since the random variable 〈x1, θ∗〉 is sub-Gaussian with parameter at most ‖θ∗‖2,
we have E[〈x1, θ∗〉4] ≤ 3‖θ∗‖42. Moreover, since the random vector x1 has i.i.d. components,
we have

E[‖x1‖42] =
d∑

j=1

E[x41j ] + 2
∑

i 6=j

E[x21i]E[x
2
1j ] = 3d+ 2

(
d

2

)
≤ 4d2.
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Putting together the pieces, we conclude that T1 ≤ 8‖θ∗‖22d+ 2σ2d.
Turning to term T2, by definition of the operator norm, there is a unit-norm vector u ∈ R

d

such that

T2 = |||E[x1xT1 ‖x1‖22]|||op = uT
(
E[x1x

T
1 ‖x1‖22]

)
u = E[〈x1, u〉2‖x1‖22]

(i)

≤
√

E[〈x1, u〉4]
√

E[‖x1‖42]
(ii)

≤
√
3
√
4d2 ≤ 4d.

where step (i) applies the Cauchy-Schwarz inequality, and step (ii) uses the fact that 〈x1, u〉
is sub-Gaussian with parameter 1, and our previous bound on E[‖x1‖42].

Putting together the pieces yields σ2
G ≤ c (σ2 + ‖θ∗‖22)d, so that Corollary 10 follows as a

consequence of Theorem 6.

C.6. Proof of Corollary 11. Once again we focus on bounding the uniform variance
σ2
G. From the form of Q given in equation (A.8) (with n = 1), we have

E

[
‖∇Q1(θ|θ)‖22

]
≤ 2

{
E

[
‖Σθ(xobs, y)θ‖22

︸ ︷︷ ︸
T1

+E[y2 ‖µθ(xobs, y)‖22]
]

︸ ︷︷ ︸
T2

}
.(C.10)

We bound each of these terms in turn. To simplify notation, we omit the dependence of µθ

and Σθ on (xobs, y), but it should be implicitly understood.

Bounding T1:. Letting 1 ∈ R
d be the vector of all ones, and z ∈ R

d be an indicator of
observed indices, we have Σθ = Imis + µθµ

T
θ − ((1− z)⊙ µθ)((1− z)⊙ µθ)

T . Consequently,

1

3
E[‖Σθθ‖22] ≤ ‖θ‖22 + E

[
‖µθ‖22 〈µθ, θ〉2

]
+ E

[
‖(1− z)⊙ µθ‖22 〈(1− z)⊙ µθ, θ〉2

]
.

By the Cauchy-Schwarz inequality, we have

E
[
‖µθ‖22 〈µθ, θ〉2

]
≤

√
E[‖µθ‖42]

√
E[〈µθ, θ〉4].

From Lemma 4, the random vector µθ is sub-Gaussian with constant parameter, so that
E[‖µθ‖42] ≤ c d2. Since ‖θ‖2 ≤ c‖θ∗‖2, the random variable 〈µθ, θ〉 is sub-Gaussian with pa-
rameter c‖θ∗‖2, and hence E[〈µθ, θ〉4] ≤ c ‖θ∗‖42. Putting together the pieces, we see that
E
[
‖µθ‖22 〈µθ, θ〉2

]
≤ c d‖θ∗‖22. A similar argument applies to other expectation, so that we

conclude that T1 = E
[
‖Σθθ‖22] ≤ c ‖θ∗‖22d, a bound that holds uniformly for all θ ∈ B2(r; θ

∗).

Bounding T2:. By the Cauchy-Schwarz inequality, we have

T2 = E[y2‖µθ(xobs, y)‖22] ≤
√
E[y4]

√
E[‖µθ(xobs, y)‖42].

Note that y is sub-Gaussian with parameter at most
√

‖θ∗‖22 + σ2, whence

√
E[y4] ≤ c (‖θ∗‖22 + σ2).

Similarly, Lemma 4 implies that
√
E[‖µθ(xobs, y)‖42] ≤ cd, and hence T2 ≤ c′

(
‖θ∗‖22 + σ2

)
d.

Substituting our upper bounds on T1 and T2 into the decomposition (C.10), we find that
σ2
G ≤ c

(
‖θ∗‖22 + σ2

)
d. Thus, Corollary 11 follows from Theorem 6.
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APPENDIX D: TECHNICAL MATERIAL FOR GAUSSIAN MIXTURE MODELS

In this appendix, we provide proofs of technical results related to the mixture of Gaussians
model.

D.1. Some elementary properties. We make frequent use of the following facts:

• For the function f(t) = t2

exp(µt) , we have

sup
t∈[0,∞]

f(t) =
4

(e µ)2
, achieved at t∗ = 2

µ and(D.1a)

sup
t∈[t∗,∞]

f(t) = f(t∗), for t∗ ≥ 2
µ .(D.1b)

• For the function g(t) = 1
(exp(t)+exp(−t))2

, we have

g(t) ≤ 1

4
for all t ∈ R, and(D.2a)

sup
t∈[µ,∞]

g(t) ≤ 1

(exp(µ) + exp(−µ))2
≤ exp(−2µ), valid for any µ ≥ 0.(D.2b)

• Similarly, for the function g2(t) = 1
(exp(t)+exp(−t))4

, we have

g2(t) ≤ 1

16
for all t ∈ R, and(D.3a)

sup
t∈[µ,∞]

g2(t) ≤ 1

(exp(µ) + exp(−µ))4
≤ exp(−4µ), valid for any µ ≥ 0.(D.3b)

D.2. Proof of Lemma 2. With these preliminaries in place, we can now begin the proof.
For each u ∈ [0, 1], define θu = θ∗ + u∆, where ∆ := θ − θ∗. Taylor’s theorem applied to the
function θ 7→ wθ(Y ), followed by expectations, yields

E

[
Y
(
wθ(Y )− wθ∗(Y )

)]
= 2

∫ 1

0
E

[
Y Y T

σ2
(
exp

(
− 〈θu, Y 〉

σ2

)
+ exp

( 〈θu, Y 〉
σ2

))2
︸ ︷︷ ︸

Γu(Y )

]
∆ du.

For each choice of u ∈ [0, 1], the matrix-valued function y 7→ Γu(y) is symmetric—that is,
Γu(y) = Γu(−y). Since the distribution of Y is symmetric around zero, we conclude that
E[Γu(Y )] = E[Γu(Ỹ )], where Ỹ ∼ N (θ∗, σ2I), and hence that

‖E
[(
wθ(Y )− wθ∗(Y )

)
Y
]
‖2 ≤ 2 sup

u∈[0,1]
|||E[Γu(Ỹ )|||op ‖∆‖2.(D.4)

The remainder of the proof is devoted to bounding |||E[Γu(Ỹ )|||op uniformly over u ∈ [0, 1]. For
an arbitrary fixed u ∈ [0, 1] let R be an orthonormal matrix such that Rθu = ‖θu‖2e1, where
e1 ∈ R

d denotes the first canonical basis vector. Define the rotated random vector V = RỸ ,
and note that V ∼ N (Rθ∗, σ2I). Using this transformation, the operator norm of the matrix
E[Γu(Ỹ )] is equal to that of

D = E

[ V V T

σ2
(
exp

( 〈V, ‖θu‖2e1〉
σ2

)
+ exp

(
− 〈V, ‖θu‖2e1〉

σ2

))2
]
.
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In order to bound the operator norm of D, we need to introduce some intermediate quantities.
We define

α1 := E

[
V 2
1

σ2
(
exp

( 〈V, ‖θu‖2e1〉
σ2

)
+ exp

(
− 〈V, ‖θu‖2e1〉

σ2

))2

]
,

α2 := E

[
V1

σ2
(
exp

( 〈V, ‖θu‖2e1〉
σ2

)
+ exp

(
− 〈V, ‖θu‖2e1〉

σ2

))2

]
,

α3 := E

[
1

σ2
(
exp

( 〈V, ‖θu‖2e1〉
σ2

)
+ exp

(
− 〈V, ‖θu‖2e1〉

σ2

))2

]
.

Further denote,

µ := Rθ∗,

ν := [0, µ2, µ3, . . . , µd]
T .

In terms of these quantities observe that we can write,

D = α1e1e
T
1 + α2(νe

T
1 + e1ν

T ) + α3νν
T .

So we have that,

|||D|||op ≤ |||D|||fro ≤ α1 + 2α2‖ν‖2 + α3‖ν‖22 ≤ α1 + 2α2‖θ∗‖2 + α3‖θ∗‖22.(D.5)

In order to bound α1, α2 and α3 observe that,

α1 ≤ E

[ V 2
1 /σ

2

exp
(2‖θu‖2V1

σ2

)
]
.

Defining the event E = {V1 ≤ ‖θ∗‖2
4 }, we condition on it and its complement to obtain

α1 ≤ E

[ V 2
1 /σ

2

exp
(2‖θu‖2V1

σ2

) | E
]
P[E ] + E

[ V 2
1 /σ

2

exp
(2‖θu‖2V1

σ2

) | Ec
]
.

Conditioned on E and Ec, respectively, we then apply the bounds (D.1a) and (D.1b) to obtain

α1 ≤
σ2

e2‖θu‖22
P[E ] + ‖θ∗‖22

16σ2 exp
(‖θu‖2‖θ∗‖2

2σ2

) ,

provided ‖θ∗‖2‖θu‖2 ≥ 4σ2. Noting that

‖θu‖2 = ‖θ∗ + u(θ − θ∗)‖2 ≥ ‖θ∗‖2 −
1

4
‖θ∗‖2 =

3

4
‖θ∗‖2,(D.6)

we obtain the bound α1 ≤ 16σ2

9e2‖θ∗‖22
P(E) + ‖θ∗‖22 exp

(
− 3‖θ∗‖22

8σ2

)
16σ2 , whenever ‖θ∗‖22 ≥ 16σ2/3.

Note that the mean of V1 is lower bounded as

E[V1] = 〈Rθ∗, e1〉 = 〈Rθu, e1〉+ 〈R(θ∗ − θu), e1〉 ≥ ‖θu‖2 − ‖θ∗ − θu‖2
(i)

≥ ‖θ∗‖2
2

,
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where step (i) follows from the lower bound (D.6). Consequently, by standard Gaussian tail
bounds, we have

P[E ] ≤ exp
(−‖θ∗‖22

32σ2

)
.(D.7)

Combining the pieces yields

α1 ≤
16σ2

9e2‖θ∗‖22
e−

‖θ∗‖22
32σ2 +

‖θ∗‖22
16σ2

e−
3‖θ∗‖22
8σ2 whenever ‖θ∗‖22 ≥ 16σ2/3.

In a similar fashion we have that,

α2 = E

[ V1

σ2
(
exp

(
‖θu‖2V1

σ2

)
+ exp

(
− ‖θu‖2V1

σ2

))2

]

≤
√

E

[V 2
1

σ2

]√√√√E

[ 1

σ2
(
exp

(
‖θu‖2V1

σ2

)
+ exp

(
− ‖θu‖2V1

σ2

))4

]
.

Observe that, E
[
V 2
1

σ2

]
≤ ‖θ∗‖22

σ2 , and it remains to bound the second term. We have that,

E

[ 1

σ2
(
exp

(
‖θu‖2V1

σ2

)
+ exp

(
− ‖θu‖2V1

σ2

))4

]
=

1

σ2
E

[
g2
(‖θu‖2V1

σ2

)]
,

where the reader should recall the function g from equation (D.2a).

Conditioning on the event E = {V1 ≤ ‖θ∗‖2
4 } and its complement yields

1

σ2
E

[
g2
(‖θu‖2V1

σ2

)]
≤ 1

σ2

[
E

[
g2
(‖θu‖2V1

σ2

)
| E

]
P[E ] + E

[
g2
(‖θu‖2V1

σ2

)
| Ec

]]

(i)

≤ 1

σ2

[ 1

16
P[E ] + exp

(
− ‖θ∗‖2‖θu‖2

σ2

)]

(ii)

≤ 1

σ2

[ 1

16
P[E ] + exp

(
− 3‖θ∗‖22

4σ2

)]
,

where step (i) follows by applying bound (D.2a) to the first term, and the bound (D.2b) with

µ = ‖θ∗‖2‖θu‖2
4σ2 to the second term; and step (ii) follows from the bound (D.6). Applying the

bound (D.7) on P[E ] yields

1

σ2
E

[
g2
(‖θu‖2V1

σ2

)]
≤ 1

σ2

[ 1

16
exp

(
− ‖θ∗‖22

32σ2

)
+ exp

(
− 3‖θ∗‖22

4σ2

)]
≤ 2

σ2
exp

(
− ‖θ∗‖22

32σ2

)
.

Putting this together we have that,

α2 ≤
2‖θ∗‖2
σ2

exp
(
− ‖θ∗‖22

64σ2

)
.

In order to bound α3, we follow a similar argument. Once again, conditioning on the event
E = {V1 ≤ ‖θ∗‖2

4 } and its complement yields

α3 ≤
1

σ2

[
E

[
g
(‖θu‖2V1

σ2

)
| E

]
P[E ] + E

[
g
(‖θu‖2V1

σ2

)
| Ec

]]

(i)

≤ 1

σ2

[1
4
P[E ] + exp

(
− ‖θ∗‖2‖θu‖2

4σ2

)]

(ii)

≤ 1

σ2

[1
4
P[E ] + exp

(
− 3‖θ∗‖22

16σ2

)]
,
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where step (i) follows by applying bound (D.2a) to the first term, and the bound (D.2b) with

µ = ‖θ∗‖2‖θu‖2
4σ2 to the second term; and step (ii) follows from the bound (D.6). Applying the

bound (D.7) on P[E ] yields

α3 ≤
1

σ2

[1
4
exp

(
− ‖θ∗‖22

32σ2

)
+ exp

(
− 3‖θ∗‖22

16σ2

)]
≤ 2

σ2
exp

(
− ‖θ∗‖22

32σ2

)
.

Returning to equations (D.5) and (D.4), we have shown that

‖2E
[(
wθ(Y )− wθ∗(Y )

)
Y
]
‖2 ≤ c1

(
1 +

1

η2
+ η2

)
e−c2η2‖θ − θ∗‖2,

whenever
‖θ∗‖22
σ2 ≥ η2 ≥ 16/3. On this basis, the bound (6.4) holds as long as the signal-to-noise

ratio is sufficiently large,

APPENDIX E: TECHNICAL RESULTS FOR MIXTURE OF REGRESSIONS

In this appendix, we provide proofs of technical results related to the mixture of regressions
model.

E.1. Proof of Lemma 3. Since the standard deviation σ is known, a simple rescaling
argument allows us to take σ = 1, and replace the weight function in (A.4a) with

wθ(x, y) =
exp

(−(y−〈x, θ〉)2
2

)

exp
(−(y−〈x, θ〉)2

2

)
+ exp

(−(y+〈x, θ〉)2
2

) .(E.1)

Our proof makes use of the following elementary result on Gaussian random vectors:

Lemma 7. Given a Gaussian random vector X ∼ N (0, I) and any fixed vectors u, v ∈ R
d,

we have

E[〈X, u〉2〈X, v〉2] ≤ 3‖u‖22‖v‖22 with equality when u = v, and(E.2a)

E[〈X, u〉4〈X, v〉2] ≤ 15‖u‖42‖v‖22.(E.2b)

Proof. For any fixed orthonormal matrix R ∈ R
d×d, the transformed variable RTX also

has a N (0, I) distribution, and hence E[〈X, u〉2〈X, v〉2] = E[〈X, Ru〉2〈X, Rv〉2]. Let us choose
R such that Ru = ‖u‖2e1. Introducing the shorthand z = Rv, we have

E[〈X, Ru〉2〈X, Rv〉2] = E[‖u‖22X2
1

d∑

i=1

d∑

j=1

XiXjzizj ] = ‖u‖22(3z21 + (‖z‖22 − z21))

≤ 3‖u‖22‖z‖22 = 3‖u‖22‖v‖22.
A similar argument yields the second claim.

With these preliminaries in place, we can now begin the proof of Lemma 3. Recall that
∆ = θ − θ∗ and that ∆̃ is any fixed vector in R

d. Define θu = θ∗ + u∆ for a scalar u ∈ [0, 1].
Recall that by our assumptions guarantee that

‖∆‖2 ≤
‖θ∗‖2
32

, and ‖θ∗‖2 ≥ η.(E.3a)

For future reference, we observe that

‖θu‖2 ≥ ‖θ∗‖2 − ‖∆‖2 ≥
‖θ∗‖2
2

.(E.3b)

Noting that Lemma 3 consists of two separate inequalities (6.6a) and (6.6b), we treat these
cases separately.
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E.2. Proof of inequality (6.6a). We split the proof of this bound into two separate
cases: namely, ‖∆‖2 ≤ 1 and ‖∆‖2 > 1.

Case ‖∆‖2 ≤ 1:. We then have.

d

dθ
wθ(X,Y ) =

2Y X
(
exp

(
Y 〈X, θ〉

)
+ exp

(
− Y 〈X, θ〉

))2 .

Thus, using a Taylor series with integral form remainder on the function θ 7→ wθ(X,Y ) yields

∆w(X,Y ) =

∫ 1

0

2Y 〈X, ∆〉
(exp(Zu) + exp(−Zu))2

du,(E.4)

where Zu := Y 〈X, θ∗ + u∆〉. Substituting for ∆w(X,Y ) in inequality (6.6a), we see that it
suffices to show

∫ 1

0
E
[ 2Y 〈X, θ∗〉
(exp(Zu) + exp(−Zu))2

(2Z − 1)〈X, ∆〉〈X, ∆̃〉
]

︸ ︷︷ ︸
Au

du ≤ γ

2
‖∆‖2‖∆̃‖2.(E.5)

for some γ ∈ [0, 1/4). The following auxiliary result is central to establishing this claim:

Lemma 8. There is a γ ∈ [0, 1/4) such that for each u ∈ [0, 1], we have
√

E
[ Y 2〈X, θu〉2
(exp(Zu) + exp(−Zu))4

]
≤ γ

14
, and(E.6a)

√
E
[ Y 2

(exp(Zu) + exp(−Zu))4
]
≤ γ

32
whenever ‖∆‖2 ≤ 1.(E.6b)

See Section E.4 for the proof of this lemma.

Using Lemma 8, let us bound the quantity Au from equation (E.5). Since θ∗ = θu−u∆, we
have Au = B1 +B2, where

B1 := E
[ 2Y 〈X, θu〉
(exp(Zu) + exp(−Zu))2

(2Z − 1)〈X, ∆〉〈X, ∆̃〉
]
, and

B2 := −E
[ 2Y u〈X, ∆〉
(exp(Zu) + exp(−Zu))2

(2Z − 1)〈X, ∆〉〈X, ∆̃〉
]
.

In order to show that Au ≤ γ
2‖∆‖2 ‖∆̃‖2, it suffices to show that max{B1, B2} ≤ γ

4‖∆‖2‖∆̃‖2.

Bounding B1:. By the Cauchy-Schwarz inequality, we have

B1 ≤
√
E
[ y2〈X, θu〉2
(exp(Zu) + exp(−Zu))4

]√
E
[
4(2Z − 1)2〈X, ∆〉2〈X, ∆̃〉2

]

≤ γ

14

√
E
[
4〈X, ∆〉2〈X, ∆̃〉2

]
,

where the second step follows from the bound (E.6a), and the fact that (2Z − 1)2 = 1. Next
we observe that E

[
4〈X, ∆〉2〈X, ∆̃〉2

]
≤ 12‖∆‖22‖∆̃‖22, where we have used the bound (E.2a)

from Lemma 7. Combined with our earlier bound, we conclude that B1 ≤ γ
4‖∆‖2 ‖∆̃‖2, as

claimed.

55



Bounding B2:. Similarly, another application of the Cauchy-Schwarz inequality yields

B2 ≤
√

E
[ y2

(exp(Zu) + exp(−Zu))4
]√

E
[
4u2(2Z − 1)2〈X, ∆〉4〈X, ∆̃〉2

]

≤ γ

32

√
E
[
4u2〈X, ∆〉4〈X, ∆̃〉2

]
,

where the second step follows from the bound (E.6b), and the fact that (2Z − 1)2 = 1. In this
case, we have

E
[
4u2〈X, ∆〉4〈X, ∆̃〉2

] (i)

≤ 60‖∆‖42‖∆̃‖22
(ii)

≤ 60‖∆‖22‖∆̃‖22,
where step (i) uses the bound (E.2b) from Lemma 7, and step (ii) that ‖∆‖2 ≤ 1. Combining
the pieces, we conclude that B2 ≤ γ

4‖∆‖2‖∆̃‖2, which completes the proof of inequality (6.6a)
in the case ‖∆‖2 ≤ 1.

Case ‖∆‖2 > 1:. We now turn to the second case of the bound (6.6a). Our argument (here
and in later sections) makes use of various probability bounds on different events, which we
state here for future reference. These events involve the scalar τ := Cτ

√
log ‖θ∗‖2 for a constant

Cτ , as well as the vectors

∆ := θ − θ∗, and θu := θ∗ + u∆ for some fixed u ∈ [0, 1].

Lemma 9 (Event bounds).

(i) For the event E1 :=
{
sign(〈X, θ∗〉) = sign(〈X, θu〉)

}
, we have P[Ec

1 ] ≤ ‖∆‖2
‖θ∗‖2 .

(ii) For the event E2 :=
{
|〈X, θ∗〉| > τ

}
∩
{
|〈X, θu〉| > τ

}
∩
{
|v| ≤ τ

2

}
, we have

P[Ec
2 ] ≤

τ

‖θ∗‖2
+

τ

‖θu‖2
+ 2 exp

(
− τ2

2

)
.

(iii) For the event E3 :=
{
|〈X, θ∗〉| ≥ τ

}⋃{
|〈X, θu〉| ≥ τ

}
, we have P

[
Ec
3

]
≤ τ

‖θ∗‖2 + τ
‖θu‖2 .

(iv) For the event E4 :=
{
|v| ≤ τ/2

}
, we have P[Ec

4 ] ≤ 2e−
τ2

2 .
(v) For the event E5 :=

{
|〈X, θu〉| > τ

}
, we have P[Ec

5 ] ≤ τ
‖θu‖2 .

(vi) For the event E6 :=
{
|〈X, θ∗〉| > τ}, we have P[Ec

6 ] ≤ τ
‖θ∗‖2 .

Various stages of our proof involve controlling the second moment matrix E[XXT ] when
conditioned on some of the events given above:

Lemma 10 (Conditional covariance bounds). Conditioned on any event E ∈ {E1 ∩ E2, Ec
1 , Ec

5 , Ec
6},

we have |||E[XXT | E|||op ≤ 2.

See Section E.4.3 for the proof of this result.

With this set-up, our goal is to bound the quantity

T =
∣∣E
[
∆w(X,Y )(2Z − 1)〈X, θ∗〉〈X, ∆̃〉

]∣∣ ≤ E
[∣∣∆w(X,Y )(2Z − 1)〈X, θ∗〉〈X, ∆̃〉

∣∣].

For any measurable event E , we define Ψ(E) := E
[∣∣∆w(X,Y )(2Z−1)〈X, θ∗〉〈X, ∆̃〉

∣∣ | E
]
P[E ],

and note that by successive conditioning, we have

T ≤ Ψ(E1 ∩ E2) + Ψ(Ec
1) + Ψ(Ec

4) + Ψ(Ec
5) + Ψ(Ec

6).(E.7)

We bound each of these five terms in turn.
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Bounding Ψ(E1 ∩ E2): . Applying the Cauchy-Schwarz inequality and using the fact that
(2Z − 1)2 = 1 yields

Ψ(E1 ∩ E2) ≤
√

E
[
∆w(X,Y )2〈X, ∆̃〉2|E1 ∩ E2

]√
E
[
〈X, θ∗〉2|E1 ∩ E2

]
.(E.8)

We now bound ∆w(X,Y ) conditioned on the event E1∩E2. Since sign(〈X, θ∗〉) = sign(〈X, θu〉)
on the event E1, we have

sign(Y 〈X, θ∗〉) = sign(Y 〈X, θu〉).(E.9a)

Conditioned on the event E2, observe that |Y | = |(2Z − 1)〈X, θ∗〉 + v| ≥ |〈X, θ∗〉| − |v| ≥ τ
2 ,

which implies that

min
{
|Y 〈X, θ∗〉|, |Y 〈X, θ〉|

}
≥ τ2

2
.(E.9b)

Recalling the weight function (E.1), we claim that when conditions (E.9a) and (E.9b) hold,
then

|∆w(X,Y )| = |wθu(X,Y )− wθ∗(X,Y )|
(i)

≤ exp(−τ2/2)

exp(−τ2/2) + exp(τ2/2)
≤ exp(−τ2).(E.10)

We need to verify inequality (i): suppose first that sign(Y 〈X, θ∗〉) = 1. In this case, both

wθu(X,Y ) and wθ∗(X,Y ) are at least exp(τ2/2)
exp(−τ2/2)+exp(τ2/2)

. Since each of these terms are upper

bounded by 1, we obtain the claimed bound on ∆w(X,Y ). The case when sign(Y 〈X, θ∗〉) = −1
follows analogously.

Combined with our earlier bound (E.8), we have shown

Ψ(E1 ∩ E2) ≤ exp(−τ2)

√
E
[
〈X, ∆̃〉2|E1 ∩ E2

]√
E
[
〈X, θ∗〉2|E1 ∩ E2

]
.

Applying Lemma 10 with E = E1 ∩ E2 yields Ψ(E1 ∩ E2) ≤ 2‖∆̃‖2‖θ∗‖2e−τ2 .

Bounding Ψ(Ec
1):. Combining the Cauchy-Schwarz inequality with Lemma 9(i), we have

Ψ(Ec
1) ≤

√
E
[
〈X, ∆̃〉2|Ec

1

]√
E
[
〈X, θ∗〉2|Ec

1

] ‖∆‖2
‖θ∗‖2

.(E.11)

We first claim that E
[
〈X, θ∗〉2 | Ec

1

]
≤ E

[
〈X, ∆〉2 | Ec

1

]
. To establish this bound, it suffices

to show that conditioned on E1, we have 〈X, θ∗〉2 ≤ 〈X, ∆〉2. Note that event E1 implies that
〈X, θ∗〉 〈X, θu〉 ≤ 0. Consequently, conditioned on event E1, we have

〈X, θ∗〉2 = 1

4
〈X, (θ∗ − θu) + (θu + θ∗)〉2 ≤ 1

2
〈X, θ∗ − θu〉2 +

1

2
〈X, θu + θ∗〉2

(i)

≤ 〈X, θ∗ − θu〉2
(ii)

≤ 〈X, ∆〉2

where step (i) makes use of the bound 〈X, θ∗〉 〈X, θu〉 ≤ 0; and step (ii) follows since θu = θ∗ + u∆,
and u ∈ [0, 1].

Returning to equation (E.11), we have

Ψ(Ec
1) ≤

√
E
[
〈X, ∆̃〉2|Ec

1

]√
E
[
〈X, ∆〉2|Ec

1

] ‖∆‖2
‖θ∗‖2

(i)

≤ 2‖∆̃‖2‖∆‖22
‖θ∗‖2

where step (i) follows from the conditional covariance bound of Lemma 10.
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Bounding Ψ(Ec
4):. Combining the Cauchy-Schwarz inequality with Lemma 9(iv) yields

Ψ(Ec
4) ≤ 2

√
E
[
〈X, ∆̃〉2|Ec

4

]√
E
[
〈X, θ∗〉2|Ec

4

]
e−

τ2

2 .

Observe that by the independence of v and X, conditioning on Ec
4 has no effect on the second

moment of X. Since E[XXT ] = I, we conclude that Ψ(Ec
4) ≤ 2‖∆̃‖2‖θ∗‖2 e−

τ2

2 .

Bounding Ψ(Ec
5): . Combining the Cauchy-Schwarz inequality with Lemma 9(v) yields Ψ(Ec

5) ≤
τ

‖θu‖2

√
E
[
〈X, ∆̃〉2|Ec

5

]√
E
[
〈X, θ∗〉2|Ec

5

]
. Conditioned on the event Ec

5 , we have

〈X, θ∗〉2 ≤ 2〈X, θu〉2 + 2〈X, ∆〉2 ≤ 2τ2 + 2〈X, ∆〉2.
Together with Lemma 10, we obtain the bound

Ψ(Ec
5) ≤

2τ‖∆̃‖2
√
τ2 + 2‖∆‖22

‖θu‖2
(i)

≤ 2τ‖∆̃‖2‖∆‖2
√
τ2 + 2

‖θu‖2
,

where step (i) uses the fact that ‖∆‖2 ≥ 1.

Bounding Ψ(Ec
6): . Combining the Cauchy-Schwarz inequality with Lemma 9(vi) yields Ψ(Ec

6) ≤
τ

‖θ∗‖2

√
E
[
〈X, ∆̃〉2|Ec

6

]√
E
[
〈X, θ∗〉2|Ec

6

]
. Conditioned on the event Ec

6 , we have 〈X, θ∗〉2 ≤ τ2,

and so applying Lemma 10 with E = Ec
6 yields Ψ(Ec

6) ≤
√
2τ2‖∆̃‖2
‖θ∗‖2 .

We have thus obtained bounds on all five terms in the decomposition (E.7). We combine

these bounds with the with lower bound ‖θu‖2 ≥ ‖θ∗‖2
2 from equation (E.3b), and then perform

some algebra to obtain

T ≤ c ‖∆‖2‖∆̃‖2
{ τ2

‖θ∗‖2
+ ‖θ∗‖2e−τ2/2

}
+ 2‖∆̃‖2

‖∆‖22
‖θ∗‖2

,

where c is a universal constant. In particular, selecting τ = cτ
√
log ‖θ∗‖2 for a sufficient large

constant cτ , selecting the constant η in (E.3a) sufficiently large yields the claim (6.6a).

E.3. Proof of inequality (6.6b). As in Section E.2, we treat the cases ‖∆‖2 ≤ 1 and
‖∆‖2 ≥ 1 separately.

E.3.1. Case ‖∆‖2 ≤ 1:. As before, by a Taylor expansion of the function θ 7→ ∆w(X,Y ),
it suffices to show that

∫ 1

0
E
[ 2Y v

(exp(Zu) + exp(−Zu))2
〈X, ∆〉〈X, ∆̃〉

]
du ≤ γ

2
‖∆‖2‖∆̃‖2.

For any fixed u ∈ [0, 1], the Cauchy-Schwarz inequality implies that

E
[ 2Y v 〈X, ∆〉〈X, ∆̃〉
(exp(Zu) + exp(−Zu))2

]
≤

√
E
[ 4Y 2

(exp(Zu) + exp(−Zu))4
] √

E
[
v2〈X, ∆〉2〈X, ∆̃〉2

]

(i)

≤
√

E
[ 4Y 2

(exp(Zu) + exp(−Zu))4
] √

3 ‖∆‖22 ‖∆̃‖22
(ii)

≤
√
3γ

16
‖∆‖2 ‖∆̃‖2,

where step (i) follows from inequality (E.2a) in Lemma 7, the independence of v and X, and
the fact that E[v2] = 1; and step (ii) follows from the bound (E.6b) in Lemma 8.
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E.3.2. Case ‖∆‖2 > 1:. After applying the Cauchy-Schwarz inequality, it suffices show

that
√

E
[
∆2

w(X,Y )
]
≤ γ

2 . The remainder of this section is devoted to the proof of this claim.

Recall the scalar τ := Cτ

√
log ‖θ∗‖2, as well as the events E1 and E2 from Lemma 9. For

any measurable event E , define the function Ψ(E) = E
[
∆2

w(X,Y ) | E
]
P[E ]. With this notation,

by successive conditioning, we have the upper bound

E
[
∆2

w(X,Y )
]
≤ Ψ(Ec

1) + Ψ(E1 ∩ Ec
2) + Ψ(E1 ∩ E2).(E.12)

We control each of these terms in turn.

Controlling term Ψ(Ec
1):. Noting that supx,y |∆w(x, y)| ≤ 2 and applying Lemma 9(i), we

have Ψ(Ec
1) ≤ 4P[Ec

1 ] ≤ 4 ‖∆‖2
‖θ∗‖2 .

Controlling term Ψ(E1 ∩ Ec
2):. Similarly, Lemma 9(ii) implies that

Ψ(E1 ∩ Ec
2) ≤ 4P[Ec

2 ] ≤ 4
{ τ

‖θ∗‖2
+

τ

‖θu‖2
+ 2e−

τ2

2

}
.

Controlling term Ψ(E1 ∩ E2):. Conditioned on the event E1 ∩ E2, the bound (E.10) implies
that |∆w(X,Y )| ≤ exp(−τ2), and hence Ψ(E1 ∩ E2) ≤ e−2τ2 .

Thus, we have derived bounds on each of the three terms in the decomposition (E.12):
putting them together yields

√
E
[
∆2

w(X,Y )
]
≤

√
4
‖∆‖2
‖θ∗‖2

+ 4
{ τ

‖θ∗‖2
+

τ

‖θu‖2
+ 2e−

τ2

2

}
+ e−2τ2

By choosing Cτ sufficiently large in the definition of τ , selecting the signal-to-noise constant
η in condition (E.3a) sufficiently large, the claim follows.

E.4. Proof of Lemma 8. The lemma statement consists of two inequalities, and we
divide our proof accordingly.

E.4.1. Proof of inequality (E.6a). For any measurable event E , let us introduce the function

Ψ(E) := E

[
Y 2〈X, θu〉2

(exp(Zu)+exp(−Zu))4
| E

]
P[E ]. With this notation, successive conditioning yields the

decomposition

E
[ Y 2〈X, θu〉2
(exp(Zu) + exp(−Zu))4

]
= Ψ(Ec

4) + Ψ(E4 ∩ Ec
3) + Ψ(E2),(E.13)

and we bound each of these terms in turn. The reader should recall the constant τ := Cτ

√
log ‖θ∗‖2,

as well as the events E3 and E4 from Lemma 9.

Bounding Ψ(Ec
4):. Observe that

Y 2〈X, θu〉2
(exp(Zu) + exp(−Zu))4

≤ sup
t≥0

t2

exp(4t)
≤ 1

4e2
,(E.14)

where the final step follows from inequality (D.1a). Combined with Lemma 9(iv), we conclude

that Ψ(Ec
4) ≤ 1

2e2
e−

τ2

2 .
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Bounding Ψ(E4 ∩ Ec
3):. In this case, we have

Ψ(E4 ∩ Ec
3)

(i)

≤ 1

4e2
P[Ec

3 ]
(ii)

≤ 1

4e2

{ τ

‖θ∗‖2
+

τ

‖θu‖2

}
,

where step (i) follows from inequality (E.14), and step (ii) follows from Lemma 9(iii).

Bounding Ψ(E2): . Conditioned on the event E2, we have Y 2〈X, θu〉2 ≥ τ2

2 , where we have
used the lower bound (E.9b). Introducing the shorthand t∗ = τ2/2, this lower bound implies
that

Ψ(E2) ≤ sup
t≥t∗

t2

e4t
≤ (t∗)2

e4t∗
=

τ4

4e2τ2
,

where inequality (i) is valid as long as t∗ = τ2

2 ≥ 1
2 , or equivalently τ2 ≥ 1.

Substituting our upper bounds on three components in the decomposition (E.13) yields

E
[ Y 2〈X, θu〉2
(exp(Zu) + exp(−Zu))4

]
≤ 1

2e2
e−

τ2

2 +
1

4e2

( τ

‖θ∗‖2
+

τ

‖θu‖2

)
+

τ4

4
e−2τ2 .

Setting Cτ sufficiently large in the definition of τ and choosing sufficiently large values of the
signal-to-noise constant η in the condition (E.3a) yields the claim.

Proof of inequality (E.6b):. For any measurable event E , let us introduce the function

Ψ(E) = E
[ Y 2

(exp(Zu) + exp(−Zu))4
| E

]
P[E ].

Recalling the event E5 from Lemma 9, successive conditioning yields the decomposition

E
[ Y 2

(exp(Zu) + exp(−Zu))4
]
= Ψ(Ec

5) + Ψ(E5).(E.15)

We bound each of these terms in turn.

Bounding Ψ(Ec
5): . Simple algebra combined with Lemma 9(v) yields the upper bound Ψ(Ec

5) ≤
τ

16‖θu‖2E[Y
2]. Conditioned on E5, we have the upper bound |〈X, θu〉| ≤ τ , whence

〈X, θ∗〉2 ≤ 2τ2 + 2〈X, ∆〉2.

Combining Lemma 10 with the bound ‖∆‖2 ≤ 1, we find that 〈X, θ∗〉2 ≤ 2τ2 + 4. Since

Y
d
= (2Z − 1)〈X, θ∗〉+ v, we have

E[Y 2 | Ec
5 ] ≤ E[2〈X, θ∗〉2 + 2v2 | Ec

5 ]
(i)

≤ 4τ2 + 10.

Putting together the pieces, we conclude that Ψ(Ec
5) ≤ 4τ3+10τ

16‖θu‖2 .

Bounding Ψ(E5):. Recall that Zu = Y 〈X, θu〉, so we have that

Ψ(E5) ≤ E

[ Y 2

(eY 〈X, θu〉 + e−Y 〈X, θu〉)4
| E5

] (i)

≤ 4

(e τ)2
,
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where step (i) follows from the bound (D.1a) and the observation that |〈X, θu〉| ≥ τ condi-
tioned on the event E5.

Substituting our bounds on the two terms into the decomposition (E.13) yields

E
[ Y 2

(eZu + e−Zu)4
]
≤ 4τ3 + 10τ

16‖θu‖2
+

4

(e τ)2
≤ 8τ3 + 20τ

16‖θ∗‖2
+

4

(e τ)2
.

Once again, sufficiently large choices of the constant cτ and the signal-to-noise constant η in
equation (E.3a) yields the claim.

E.4.2. Proof of Lemma 9. In this section, we prove the probability bounds on events E1
through E6 stated in Lemma 9. In doing so, we make use of the following auxiliary result, due
to Yi et al. [12] (see Lemma 1 in their paper):

Lemma 11. Given vectors v, z ∈ R
d and a Gaussian random vector X ∼ N (0, I), the

matrix Σ = E
[
XXT | 〈X, v〉2 > 〈X, z〉2

]
has singular values

(
1 +

sinα

α
, 1− sinα

α
, 1, . . . , 1

)
, where α = cos−1 〈z−v, z+v〉

‖z+v‖2‖z−v‖2 .(E.16a)

Moreover, whenever ‖v‖2 ≤ ‖z‖2, we have

P
[
〈X, v〉2 > 〈X, z〉2

]
≤ ‖v‖2

‖z‖2
.(E.16b)

Proof of Lemma 9(i). Note that the event Ec
1 holds if and only if 〈X, θ∗〉〈X, θu〉 < 0, or

equivalently, if and only if

4〈X, θ∗〉〈X, θu〉 = 〈X, θ∗ + θu〉2 − 〈X, θ∗ − θu〉2 < 0.

Now observe that

‖θ∗ − θu‖2 ≤ u‖∆‖2 ≤ ‖∆‖2, and ‖θ∗ + θu‖2 ≥ 2‖θ∗‖2 − ‖∆‖2 ≥ ‖θ∗‖2 ≥ ‖∆‖2.

Consequently, we may apply the bound (E.16b) from Lemma 11 with v = θ∗+θu and z = θ∗−θu
to obtain P[Ec

1 ] ≤ ‖θ∗−θu‖2
‖θ∗+θu‖2 ≤ ‖∆‖2

‖θ∗‖2 , as claimed.

Proof of Lemma 9(iv):. For X ∼ N (0, σ2), we have P
[
|X| ≤ τ

]
≤ 2 exp e−

τ2

2σ2 for any τ ≥ 0,
from which the claim follows.

Proof of Lemma 9(v):. For X ∼ N (0, σ2), we have

P
[
|X| ≤ τ

]
≤

√
2

π

τ

σ
for any τ ≥ 0(E.17)

from which the claim follows.

Proof of Lemma 9(vi):. Similarly, this inequality follows from the tail bound (E.17).

Proof of Lemma 9(iii):. This claim follows from parts (v) and (vi) of Lemma 9, combined
with the union bound.

Proof of Lemma 9(ii):. This bound follows from parts (iii) and (iv) of Lemma 9, combined
with the union bound.
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E.4.3. Proof of Lemma 10. For an event E , define the matrix Γ(E) = E[XXT | E ]. The
lemma concerns the operator norm of this matrix for different choices of the event E .

Conditioned on E1 ∩ E2: . In this case, we write

E
[
XXT ] = Γ(E1 ∩ E2)P[E1 ∩ E2] + Γ

(
(E1 ∩ E2)c

)
P[(E1 ∩ E2)c] � Γ(E1 ∩ E2) P[E1 ∩ E2].

Since E[XXT ] = I, we conclude that |||Γ(E1∩E2)|||op ≤ 1
P[E1∩E2] , and hence it suffices show that

P[E1 ∩ E2] ≥ 1
2 . Parts (i) and (ii) of Lemma 9 imply that

P[E1 ∩ E2] ≥ 1− ‖∆‖2
‖θ∗‖2

− τ

‖θ∗‖2
− τ

‖θu‖2
− 2e−

τ2

2 .

For appropriate choices of cτ and the constant η in the signal-to-noise condition (E.3a), the
claim follows.

Conditioned on Ec
1: . As before, note that the event Ec

1 holds if and only if the inequality
|〈X, θ∗ + θu〉| < |〈X, θ∗ − θu〉| holds. Consequently, Lemma 11 implies that |||Γ(Ec

1)|||op ≤ 2.

Conditioned on Ec
5: . We make note of an elementary fact about Gaussians: for any scalar

α > 0 and unit norm vector ‖v‖2 = 1, for X ∼ N (0, Id), we have

|||E
[
XXT | |〈X, v〉| ≤ α

]
|||op ≤ max

(
1, α2

)
.(E.18)

In particular, when α ≤ 1, then the operator norm is at most 1. This claim follows easily from
the rotation invariance of the Gaussian, which allows us to assume that v = e1 without loss
of generality. It is thus equivalent to bound the largest eigenvalue of the matrix

D := E
[
XXT | |X1| ≤ α

]
,

which is a diagonal matrix by independence of the entries of X. Noting that D11 ≤ α2 and
Djj = 1 for j 6= 1 completes the proof of the bound (E.18).

Applying the bound (E.18), we find that |||Γ(Ec
5)|||op ≤ max

(
1, τ2

‖θu‖22

)
. Consequently, the

claim follows by making sufficiently large choices of cτ and the constant η in the signal-to-noise
condition (E.3a).

Conditioned on Ec
6: . The bound (E.18) implies that |||E

[
XXT | Ec

6 ]|||op ≤ max
{
1, τ2

‖θ∗‖22

}
. As

in the previous case, choosing cτ and η appropriately ensures that τ2

‖θ∗‖22
≤ 1.
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