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HYPOTHESIS TESTING FOR DENSITIES AND
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SHARP LOCAL MINIMAX RATES1
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We consider the goodness-of-fit testing problem of distinguishing
whether the data are drawn from a specified distribution, versus a composite
alternative separated from the null in the total variation metric. In the discrete
case, we consider goodness-of-fit testing when the null distribution has a pos-
sibly growing or unbounded number of categories. In the continuous case, we
consider testing a Hölder density with exponent 0 < s ≤ 1, with possibly un-
bounded support, in the low-smoothness regime where the Hölder parameter
is not assumed to be constant. In contrast to existing results, we show that the
minimax rate and critical testing radius in these settings depend strongly, and
in a precise way, on the null distribution being tested and this motivates the
study of the (local) minimax rate as a function of the null distribution. For
multinomials, the local minimax rate has been established in recent work. We
revisit and extend these results and develop two modifications to the χ2-test
whose performance we characterize. For testing Hölder densities, we show
that the usual binning tests are inadequate in the low-smoothness regime and
we design a spatially adaptive partitioning scheme that forms the basis for
our locally minimax optimal tests. Furthermore, we provide the first local
minimax lower bounds for this problem which yield a sharp characterization
of the dependence of the critical radius on the null hypothesis being tested.
In the low-smoothness regime, we also provide adaptive tests that adapt to
the unknown smoothness parameter. We illustrate our results with a variety
of simulations that demonstrate the practical utility of our proposed tests.

1. Introduction. Hypothesis testing is one of the pillars of modern mathemat-
ical statistics with a vast array of scientific applications. There is a well-developed
theory of hypothesis testing starting with the work of Neyman and Pearson [29],
and their framework plays a central role in the theory and practice of statistics. In
this paper we revisit the classical goodness-of-fit testing problem of distinguishing
the hypotheses:

H0 : Z1, . . . ,Zn ∼ P0 versus H1 : Z1, . . . ,Zn ∼ P ∈ A(1.1)

for some set of distributions A. This fundamental problem has been widely studied
(see, for instance, [26] and references therein).
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A natural choice of the composite alternative, one that has a clear probabilistic
interpretation, excludes a total variation neighborhood around the null, that is, we
take A = {P : TV(P,P0) ≥ ε/2}. This is equivalent to A = {P : ‖P − P0‖1 ≥ ε},
and we use this latter representation in the rest of this paper. However, there exist
no consistent tests that can distinguish an arbitrary distribution P0 from alternatives
separated in �1; see [6, 24]. Hence, we impose structural restrictions on P0 and A.
We focus on two cases:

1. Multinomial testing: When the null and alternate distributions are multino-
mials.

2. Hölder testing: When the null and alternate distributions have Hölder densi-
ties with Hölder exponent 0 < s ≤ 1.

The problem of goodness-of-fit testing for multinomials has a rich history in statis-
tics and popular approaches are based on the χ2-test [32] or the likelihood ratio
test [11, 29, 39]; see, for instance, [15, 17, 28, 31, 33] and references therein.
Motivated by connections to property testing [34], there is also a recent literature
developing in computer science; see [7, 16, 19, 37]. Testing Hölder densities is
one of the basic non-parametric hypothesis testing problems and tests are often
based on the Kolmogorov–Smirnov or Cramér–von Mises statistics [13, 35, 38].
This problem was originally studied from the minimax perspective in the work of
Ingster and coauthors [20, 22]. See [3, 18, 22] for further references.

In the goodness-of-fit testing problem in (1.1), previous results use the (global)
critical radius as a benchmark. Roughly, this global critical radius is a measure
of the minimal separation between the null and alternate hypotheses that ensures
distinguishability, as the null hypothesis is varied over a large class of distributions
(for instance over the class of distributions with Hölder densities or over the class
of all multinomials on d categories). Remarkably, as shown in the work of Valiant
and Valiant [37] for the case of multinomials and as we show in this paper for the
case of Hölder densities, there is considerable heterogeneity in the critical radius
as a function of the null distribution P0. In other words, even within the class of
Hölder densities, testing certain null hypotheses can be much easier than testing
others. Consequently, the local minimax rate which describes the critical radius
for each individual null distribution provides a much more nuanced picture. In this
paper we provide (near) matching upper and lower bounds on the critical radii for
Hölder testing as a function of the null distribution, that is, we precisely upper
and lower bound the critical radius for each individual Hölder null hypothesis.
Our upper bounds are based on χ2-type tests, performed on a carefully chosen
spatially adaptive binning, and highlight the fact that the standard prescriptions of
choosing bins with a fixed width or with a fixed probability content [36] can yield
suboptimal tests.

The distinction between local and global perspectives is reminiscent of similar
effects that arise in some estimation problems, for instance in shape-constrained
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inference [9], in constrained least-squares problems [12] and in classical Fisher
information-Cramér–Rao bounds [25].

The remainder of this paper is organized as follows. In Section 2, we provide
some background on the minimax perspective on hypothesis testing, and formally
describe the local and global minimax rates. We provide a detailed discussion of
the problem of study and finally provide an overview of our main results. In Sec-
tion 3, we review the results of Valiant and Valiant [37] and present a new globally-
minimax test for testing multinomials, as well as a (nearly) locally-minimax test.
In Section 4, we consider the problem of testing a Hölder density against a total
variation neighborhood. We present the body of our main technical result in Sec-
tion 4.3 and defer technical aspects of this proof to the Supplementary Material
[4]. In each of Sections 3 and 4, we present simulation results that demonstrate the
superiority of the tests we propose and their potential practical applicability. In the
Supplementary Material [4], we also present several other results including a brief
study of limiting distributions of the test statistics under the null, as well as tests
that are adaptive to various parameters.

2. Background and problem setup. We begin with some basic background
on hypothesis testing, the testing risk and minimax rates, before providing a de-
tailed treatment of some related work.

2.1. Hypothesis testing and minimax rates. Our focus in this paper is on the
one sample goodness-of-fit testing problem. We observe samples Z1, . . . ,Zn ∈X ,
where X ⊂ R

d , which are independent and identically distributed with distribu-
tion P . For a fixed distribution P0, we want to test the hypotheses:

H0 : P = P0 versus H1 : ‖P − P0‖1 ≥ εn.(2.1)

Throughout this paper, we use P0 to denote the null distribution and P to denote an
arbitrary alternate distribution. We use the total variation distance (or equivalently
the �1 distance) between two distributions P and Q, defined by

(2.2) TV(P,Q) = sup
A

∣∣P(A) − Q(A)
∣∣,

where the supremum is over all measurable sets. If P and Q have densities p and
q with respect to a common dominating measure ν, then

(2.3) TV(P,Q) = 1

2

∫
|p − q|dν = 1

2
‖p − q‖1 ≡ 1

2
‖P − Q‖1.

We consider the total variation distance because it has a clear probabilistic meaning
and because it is invariant under one-to-one transformations [14]. The �2 metric is
often easier to work with but in the context of distribution testing its interpretation
is less intuitive. Of course, other metrics (for instance Hellinger, χ2 or Kullback–
Leibler) can be used as well but we focus on TV (or �1) throughout this paper. It
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is well understood [6, 24] that without further restrictions there are no uniformly
consistent tests for distinguishing these hypotheses. Consequently, we focus on
two restricted variants of this problem:

1. Multinomial testing: In the multinomial testing problem, the domain of the
distributions is X = {1, . . . , d} and the distributions P0 and P are equivalently
characterized by vectors p0,p ∈ R

d . Formally, we define

M =
{
p : p ∈ R

d,

d∑
i=1

pi = 1,pi ≥ 0 ∀ i ∈ {1, . . . , d}
}
,

and consider the multinomial testing problem of distinguishing:

H0 : P = P0,P0 ∈ M versus H1 : ‖P − P0‖1 ≥ εn, P ∈ M.(2.4)

In contrast to classical “fixed-cells” asymptotic theory [33], we focus on high-
dimensional multinomials where d can grow with, and potentially exceed the sam-
ple size n.

2. Hölder testing: In the Hölder density testing problem the set X ⊂ R
d , and

we restrict our attention to distributions with Hölder densities, that is, for a fixed
Hölder exponent 0 < s ≤ 1, letting p0 and p denote the densities of P0 and P with
respect to the Lebesgue measure, we consider the set of densities:

Ls(Ln) =
{
p :
∫
X

p(x)dx = 1,p(x) ≥ 0 ∀x,

∣∣p(x) − p(y)
∣∣≤ Ln‖x − y‖s

2 ∀x, y ∈ R
d

}
,

and consider the Hölder testing problem of distinguishing:

H0 : P = P0,P0 ∈ Ls(Ln) versus

H1 : ‖P − P0‖1 ≥ εn, P ∈ Ls(Ln).
(2.5)

Throughout the paper, we refer to the fixed quantity s as the Hölder exponent, the
parameter Ln as the Hölder parameter and to the testing problem described above
as the Hölder testing problem (deferring a discussion of the case when s > 1 to
Section 5). We emphasize that unlike prior work [3, 20] we do not require p0 to be
uniform. We also do not restrict the domain of the densities and we consider the
low-smoothness regime where the Hölder parameter Ln is allowed to grow with
the sample size.

Hypothesis testing and risk. Returning to the setting described in (2.1), we de-
fine a test φ as a Borel measurable map, φ :X n 
→ {0,1}. For a fixed null distribu-
tion P0, we define the set of level α tests:

(2.6) �n,α = {φ : P n
0 (φ = 1) ≤ α

}
.
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The worst-case risk (type II error) of a test φ over a restricted class C which con-
tains P0 is

Rn(φ;P0, εn,C) = sup
{
EP [1 − φ] : ‖P − P0‖1 ≥ εn,P ∈ C

}
.

The local minimax risk is:2

Rn(P0, εn,C) = inf
φ∈�n,α

Rn(φ;P0, εn,C).(2.7)

It is common to study the minimax risk via a coarse lens by studying instead the
critical radius or the minimax separation. The critical radius is the smallest value
εn for which a hypothesis test has nontrivial power to distinguish P0 from the set
of alternatives. Formally, we define the local critical radius as

εn(P0,C) = inf
{
εn : Rn(P0, εn,C) ≤ 1/2

}
.(2.8)

The constant 1/2 is arbitrary; we could use any number in (0,1 − α).
The local minimax risk and critical radius depend on the null distribution P0.

A more common quantity of interest is the global minimax risk

(2.9) Rn(εn,C) = sup
P0∈C

Rn(P0, εn,C).

The corresponding global critical radius is

(2.10) εn(C) = inf
{
εn : Rn(εn,C) ≤ 1/2

}
.

In typical nonparametric problems, the local minimax risk and the global mini-
max risk match up to constants and this has led researchers in past work to focus
on the global minimax risk. We show that for the distribution testing problems
we consider, the local critical radius in (2.8) can vary considerably as a function
of the null distribution P0. As a result, the global critical radius, provides only a
partial understanding of the intrinsic difficulty of this family of hypothesis testing
problems. In this paper we focus on producing tight bounds on the local minimax
separation. These bounds yield as a simple corollary, sharp bounds on the global
minimax separation, but are in general considerably more refined.

Notation: For two sequences {an}∞n=1 and {bn}∞n=1, we write an  bn if 0 <

lim infn→∞ |an|/|bn| ≤ lim supn→∞ |an|/|bn| < ∞.
Poissonization: In constructing upper bounds on the minimax risk—we work

under a simplifying assumption that the sample size is random: n0 ∼ Poisson(n).
This assumption is standard in the literature, and simplifies several calculations.
When the sample size is chosen to be distributed as Poisson(n), it is straightfor-
ward to verify that for any fixed set A, B ⊂ X with A ∩ B = ∅, under P the num-
ber of samples falling in A and B are distributed independently as Poisson(nP (A))

and Poisson(nP (B)), respectively.

2Although our proofs are explicit in their dependence on α, we suppress this dependence in our
notation and in our main results, treating α as a fixed strictly positive universal constant.
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In the Poissonized setting, we consider the averaged minimax risk, where we
additionally average the risk in (2.7) over the random sample size. The Poisson
distribution is tightly concentrated around its mean and this additional averaging
only affects constant factors in the minimax risk and we ignore this averaging in
the rest of the paper.

2.2. Overview of our results. With the basic framework in place, we now pro-
vide a high-level overview of the main results of this paper. In the context of test-
ing multinomials, the results of Valiant and Valiant [37] characterize the local and
global minimax rates. We provide the following additional results:

• In Theorem 3.2, we characterize a simple and practical globally minimax test. In
Theorem 3.4 building on the results of Diakonikolas and Kane [16] we provide
a simple (near) locally minimax test.

In the context of testing Hölder densities, we make advances over classical
results [18, 22] by eliminating several unnecessary assumptions (uniform null,
bounded support, fixed Hölder parameter). We provide the first characterization
of the local minimax rate for this problem. In studying the Hölder testing problem
in its full generality, we find that the critical testing radius can exhibit a wide range
of possible behaviours, based roughly on the tail behaviour of the null hypothesis.

• In Theorem 4.1, we provide a characterization of the local minimax rate for
Hölder density testing. In Section 4.1, we consider a variety of concrete exam-
ples that demonstrate the rich scaling behaviour exhibited by the critical radius
in this problem.

• Our upper and lower bounds are based on a novel spatially adaptive partitioning
scheme. We describe this scheme and derive some of its useful properties in
Section 4.2.

In the Supplementary Material, we provide the technical details of the proofs.
We briefly consider the limiting behaviour of our test statistics under the null in the
Supplementary Material [4] (Appendix A). Our results show that the critical radius
is determined by a certain functional of the null hypothesis. In the Supplementary
Material [4] (Appendix D), we study certain important properties of this functional
pertaining to its stability. Finally, in the Supplementary Material we also study tests
which are adaptive to various parameters (Appendix F).

3. Testing high-dimensional multinomials. Given a sample Z1, . . . ,Zn ∼
P define the counts X = (X1, . . . ,Xd) where Xj =∑n

i=1 I (Zi = j). The local
minimax critical radii for the multinomial problem have been found in Valiant and
Valiant [37]. We begin by summarizing these results.

Without loss of generality, we assume that the entries of the null multinomial
p0 are sorted so that p0(1) ≥ p0(2) ≥ · · · ≥ p0(d). For any 0 ≤ σ ≤ 1, we denote
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σ -tail of the multinomial by

Qσ (p0) =
{
i :

d∑
j=i

p0(j) ≤ σ

}
.(3.1)

The σ -bulk is defined to be

Bσ (p0) = {i > 1 : i /∈ Qσ (p0)
}
.(3.2)

Note that i = 1 is excluded from the σ -bulk. The minimax rate depends on the
functional

Vσ (p0) =
( ∑

i∈Bσ (p0)

p0(i)
2/3
)3/2

.(3.3)

For a given multinomial p0, our goal is to upper and lower bound the local crit-
ical radius εn(p0,M) in (2.8). We define, �n and un to be the solutions to the
equations3

�n(p0) = max
{

1

n
,

√
V�n(p0)(p0)

n

}
,

un(p0) = max
{

1

n
,

√
Vun(p0)/16(p0)

n

}
.

(3.4)

With these definitions in place, we are now ready to state the result of Valiant and
Valiant [37]. We use c1, c2,C1,C2 > 0 to denote positive universal constants.

THEOREM 3.1 (Valiant and Valiant [37]). The local critical radius εn(p0,M)

for multinomial testing is upper and lower bounded as

c1�n(p0) ≤ εn(p0,M) ≤ C1un(p0).(3.5)

Furthermore, the global critical radius εn(M) is bounded as

c2d
1/4

√
n

≤ εn(M) ≤ C2d
1/4

√
n

.

REMARKS.

• The local critical radius is roughly determined by the (truncated) 2/3rd norm of
the multinomial p0. This norm is maximized when p0 is uniform and is small
when p0 is sparse, and at a high-level captures the “effective sparsity” of p0.

3These equations always have a unique solution since the right-hand side monotonically decreases
to 0 as the left-hand side monotonically increases from 0 to 1.



1900 S. BALAKRISHNAN AND L. WASSERMAN

• The global critical radius can shrink to zero even when d � n. When d  n2

almost all categories of the multinomial are unobserved but it is still possible
to reliably distinguish any p0 from an �1-neighborhood. This phenomenon is
noted for instance in the work of [31]. We also note the work of [6] that shows
that when d = ω(n), no test can have power that approaches 1 at an exponential
rate.

• The local critical radius can be much smaller than the global minimax radius.
If the multinomial p0 is nearly (or exactly) s-sparse, then the critical radius is
upper and lower bounded up to constants by s1/4/

√
n. Furthermore, these results

also show that it is possible to design consistent tests for sufficiently structured
null hypotheses: in cases when

√
d � n, and even in cases when d is infinite.

• Except for certain pathological multinomials, the upper and lower critical radii
match up to constants. We revisit this issue in the Supplementary Material [4]
(Appendix D), in the context of Hölder densities, where we present examples
where the solutions to critical equations similar to (3.4) are stable and examples
where they are unstable.

In the remainder of this section, we consider a variety of tests, including the
test presented in [37] and several alternatives. The test of Valiant and Valiant [37]
is a composite test that requires knowledge of εn and the analysis of their test is
quite intricate. We present an alternative, simple test that is globally minimax, and
then present an alternative composite test that is locally minimax but simpler to
analyze. Finally, we present a few illustrative simulations.

3.1. The truncated χ2 test. We begin with a simple globally minimax test.
From a practical standpoint, the most popular test for multinomials is Pearson’s χ2

test. However, in the high-dimensional regime where the dimension of the multi-
nomial d is not treated as fixed the χ2 test can have bad power due to the fact that
the variance of the χ2 statistic is dominated by small entries of the multinomial
(see [27, 37]).

A natural thought then is to truncate the normalization factors of the χ2 statistic
in order to limit the contribution to the variance from each cell of the multino-
mial. Recalling that (X1, . . . ,Xd) denote the observed counts, we propose the test
statistic:

Ttrunc =
d∑

i=1

(Xi − np0(i))
2 − Xi

max{1/d,p0(i)} :=
d∑

i=1

(Xi − np0(i))
2 − Xi

θi

(3.6)

and the corresponding test,

φtrunc = I

(
Ttrunc > n

√√√√ 2

α

d∑
i=1

p0(i)2

θ2
i

)
.(3.7)
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This test statistic truncates the usual normalization factor for the χ2 test for any
entry which falls below 1/d , and thus ensures that very small entries in p0 do not
have a large effect on the variance of the statistic. We emphasize the simplicity and
practicality of this test. We have the following result which bounds the power and
size of the truncated χ2 test. We use C > 0 to denote a positive universal constant.

THEOREM 3.2. Consider the testing problem in (2.4). The truncated χ2 test
has size at most α, i.e. P0(φtrunc = 1) ≤ α. Furthermore, there is a universal con-
stant C > 0 such that if for any 0 < ζ ≤ 1 we have that

ε2
n ≥ C

√
d

n

[
1√
α

+ 1

ζ

]
,(3.8)

then the Type II error of the test is bounded by ζ , that is, P(φtrunc = 0) ≤ ζ .

REMARKS.

• A straightforward consequence of this result together with the result in Theo-
rem 3.1 is that the truncated χ2 test is globally minimax optimal.

• The classical χ2 and likelihood ratio tests are not generally consistent (and thus
not globally minimax optimal) in the high-dimensional regime (see also, Fig-
ure 2).

• At a high-level the proof follows by verifying that when the alternate hypothesis
is true, under the condition on the critical radius in (3.8), the test statistic is larger
than the threshold in (3.7). To verify this, we lower bound the mean and upper
bound the variance of the test statistic under the alternate and then use standard
concentration results. We defer the details to the Supplementary Material [4]
(Appendix B).

3.2. The 2/3rd + tail test. The truncated χ2 test described in the previous
section, although globally minimax, is not locally adaptive. The test from [37],
achieves the local minimax upper bound in Theorem 3.1. We refer to this as the
2/3rd + tail test. We use a slightly modified version of their test when testing
Hölder goodness-of-fit in Section 4, and provide a description here.

The test is a composite two-stage test, and has a tuning parameter σ . Recalling
the definitions of Bσ (p0) and Qσ (p0) [see (3.1)], we define two test statistics T1,
T2 and corresponding test thresholds t1, t2:

T1(σ ) = ∑
j∈Qσ (p0)

(
Xj − np0(j)

)
, t1(α,σ ) =

√
nP0(Qσ (p0))

α
,

T2(σ ) = ∑
j∈Bσ (p0)

(Xj − np0(j))2 − Xj

p0(j)2/3 , t2(α,σ ) =
√∑

j∈Bσ
2n2p0(j)2/3

α
.

We define two tests:
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1. The tail test: φtail(σ,α) = I(T1(σ ) > t1(α,σ )).
2. The 2/3-test: φ2/3(σ,α) = I(T2(σ ) > t2(α,σ )).

The composite test φV (σ,α) is then given as

φV (σ,α) = max
{
φtail(σ,α/2), φ2/3(σ,α/2)

}
.(3.9)

With these definitions in place, the following result is essentially from the work of
Valiant and Valiant [37]. We use C > 0 to denote a positive universal constant.

THEOREM 3.3. Consider the testing problem in (2.4). The composite test
φV (σ,α) has size at most α, that is, P0(φV = 1) ≤ α. Furthermore, if we choose
σ = εn(p0,M)/8, and un(p0) as in (3.4), then for any 0 < ζ ≤ 1, if

εn(p0,M) ≥ Cun(p0)max{1/α,1/ζ },(3.10)

then the Type II error of the test is bounded by ζ , that is, P(φV = 0) ≤ ζ .

REMARKS.

• The test φV is also motivated by deficiencies of the χ2 test. In particular, the
test includes two main modifications to the χ2 test which limit the contribution
of the small entries of p0: some of the small entries of p0 are dealt with via a
separate tail test and further the normalization of the χ2 test is changed from
p0(i) to p0(i)

2/3.
• This result provides the upper bound of Theorem 3.1. It requires that the tun-

ing parameter σ is chosen as εn(p0,M)/8. In the Supplementary Material [4]
(Appendix F), we discuss adaptive choices for σ .

• The proof essentially follows from the paper of Valiant and Valiant [37], but we
maintain an explicit bound on the power and size of the test, which we use in
later sections. We provide the details in the Supplementary Material [4] (Ap-
pendix B).

While the 2/3rd norm test is locally minimax optimal its analysis is quite chal-
lenging. In the next section, we build on results from a recent paper of Diakoniko-
las and Kane [16] to provide an alternative (nearly) locally minimax test with a
simpler analysis.

3.3. The max test. An important insight, one that is seen for instance in Fig-
ure 1, is that many simple tests are optimal when p0 is uniform and that care-
ful modifications to the χ2 test are required only when p0 is far from uniform.
This suggests the following strategy: partition the multinomial into nearly uniform
groups, apply a simple test within each group and combine the tests with an ap-
propriate Bonferroni correction. We refer to this as the max test. Such a strategy
was used by Diakonikolas and Kane [16], but their test is quite complicated and
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involves many constants. Furthermore, it is not clear how to ensure that their test
controls the Type I error at level α. Motivated by their approach, we present a sim-
ple test that controls the type I error as required and is (nearly) locally minimax.

As with the test in the previous section, the test has to be combined with the tail
test. The test is defined to be

φmax(σ,α) = max
{
φtail(σ,α/2), φM(σ,α/2)

}
,

where φM is defined as follows. We partition Bσ (p0) into sets Sj for j ≥ 1, where

Sj =
{
t : p0(2)

2j
< p0(t) ≤ p0(2)

2j−1

}
.

We can bound the total number of sets Sj by noting that for any i ∈ Bσ (p0), we
have that p0(i) ≥ σ/d , so that the number of sets k is bounded by �log2(d/σ)�.
Within each set, we use a modified �2 statistic. Let

(3.11) Tj = ∑
t∈Sj

[(
Xt − np0(t)

)2 − Xt

]
for j ≥ 1. Unlike the traditional �2 statistic, each term in this statistic is centered
around Xt . As observed in [37], this results in the statistic having smaller variance
in the n � d regime. Let

(3.12) φM(σ,α) =∨
j

I(Tj > tj ),

where

tj =
√

2kn2[∑t∈Sj
p0(t)2]

α
.(3.13)

THEOREM 3.4. Consider the testing problem in (2.4). Suppose we choose
σ = εn(p0,M)/8, then the composite test φmax(σ,α) has size at most α, that is,
P0(φmax = 1) ≤ α. Furthermore, there is a universal constant C > 0, such that for
un(p0) as in (3.4), if for any 0 < ζ ≤ 1 we have that

εn(p0,M) ≥ Ck2un(p0)max
{√

k

α
,

1

ζ

}
,(3.14)

then the Type II error of the test is bounded by ζ , that is, P(φmax = 0) ≤ ζ .

REMARKS.

• Comparing the critical radii in equations (3.14) and (3.5), and noting that k ≤
�log2(8d/εn)�, we conclude that the max test is locally minimax optimal, up to
a logarithmic factor.
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• In contrast to the analysis of the 2/3rd + tail test in [37], the analysis of the
max test involves mostly elementary calculations. We provide the details in the
Supplementary Material [4] (Appendix B). As emphasized in the work of Di-
akonikolas and Kane [16], the reduction of testing problems to simpler testing
problems (in this case, testing uniformity) is a more broadly useful idea. Our
upper bound for the Hölder testing problem (in Section 4) proceeds by reducing
it to a multinomial testing problem through a spatially adaptive binning scheme.

3.4. Simulations. In this section, we report some simulation results that
demonstrate the practicality of the proposed tests. We focus on two simulation
scenarios and compare the globally-minimax truncated χ2 test, and the 2/3rd +
tail test [37] with the classical χ2-test, the likelihood ratio test, the �1 test and the
�2 test. The test statistics are

Tχ2 =
d∑

i=1

(Xi − np0(i))
2 − np0(i)

np0(i)
, TLRT = 2

d∑
i=1

Xi log
(

Xi

np0(i)

)
,

T�1 =
d∑

i=1

∣∣Xi − np0(i)
∣∣, T�2 =

d∑
i=1

(
Xi − np0(i)

)2
.

In the Supplementary Material [4] (Appendix G), we consider a few additional
simulations.

In each setting described below, we set the α level threshold via simulation (by
sampling from the null 1000 times) and we calculate the power under particular
alternatives by averaging over a 1000 trials.

1. Figure 1 considers a high-dimensional setting where n = 300, d = 2000, the
null distribution is uniform, and the alternate is either dense (perturbing each co-
ordinate by a scaled Rademacher) or sparse (perturbing only two coordinates).

In each case, we observe that all the tests perform comparably indicating that a
variety of tests are optimal around the uniform distribution, a fact that we exploit
in designing the max test. The test from [37] performs slightly worse than others
due to the Bonferroni correction from applying a two-stage test.

2. Figure 2 considers a power-law null where p0(i) ∝ 1/i. Again we take n =
300, d = 2000 and compare against a dense and sparse alternative. In this setting,
we choose the sparse alternative to only perturb the first two coordinates of the
distribution.

We observe two notable effects. First, we see that when the alternate is dense,
the truncated χ2 test, although consistent in the high-dimensional regime, is out-
performed by the other tests highlighting the need to study the local-minimax prop-
erties of tests. Perhaps more surprising is that in the setting where the alternate is
sparse, the classical χ2 and likelihood ratio tests can fail dramatically.
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FIG. 1. A comparison between the truncated χ2 test, the 2/3rd + tail test [37], the χ2-test and the
likelihood ratio test. The null is chosen to be uniform, and the alternate is either a dense or sparse
perturbation of the null. The power of the tests are plotted against the �1 distance between the null
and alternate. Each point in the graph is an average over 1000 trials. Despite the high-dimensionality
(i.e., n = 300, d = 2000) the tests have high-power, and perform comparably.

The locally minimax test is remarkably robust across simulation settings. How-
ever, it requires that we specify εn, a drawback shared by the max test. In the
Supplementary Material [4] (Appendix F), we provide adaptive alternatives that
adapt to unknown εn.

4. Testing Hölder densities. In this section, we focus our attention on the
Hölder testing problem (2.5). As is standard in nonparametric problems, through-

FIG. 2. A comparison between the truncated χ2 test, the 2/3rd + tail test [37], the χ2-test and
the likelihood ratio test. The null is chosen to be a power law, and the alternate is either a dense or
sparse perturbation of the null. The power of the tests are plotted against the �1 distance between
the null and alternate. Each point in the graph is an average over 1000 trials. The truncated χ2 test
despite being globally minimax optimal, can perform poorly for any particular fixed null. The χ2

and likelihood ratio tests can fail to be consistent even when εn is quite large, and n � √
d .
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out this section, we treat the dimension d as a fixed (universal) constant. Our em-
phasis is on understanding the local critical radius while making minimal assump-
tions. In contrast to past work, we do not assume that the null is uniform or even
that its support is compact. We would like to be able to detect more subtle devia-
tions from the null as the sample size gets large, and hence we do not assume that
the Hölder parameter Ln is fixed as n grows.

The classical method, due to [20, 21] to constructing lower and upper bounds
on the critical radius, is based on binning the domain of the density. In particular,
upper bounds were obtained by considering χ2 tests applied to the multinomial
that results from binning the null distribution. Ingster focused on the case when
the null distribution P0 was taken to be uniform on [0,1], noting that the testing
problem for a general null distribution could be “reduced” to testing uniformity by
modifying the observations via the quantile transformation corresponding to the
null distribution P0 (see also [18]). We emphasize that such a reduction alters the
smoothness class tailoring it to the null distribution P0. The quantile transforma-
tion forces the deviations from the null distribution to be more smooth in regions
where P0 is small and less smooth where P0 is large, that is, we need to reinter-
pret smoothness of the alternative density p as an assumption about the function
p(F−1

0 (t)), where F−1
0 is the quantile function of the null distribution P0. We find

this assumption to be unnatural and instead aim to directly test the hypotheses
in (2.5). We note that some upper bounds for directly testing nonuniform densi-
ties against �2-alternatives without appealing to a quantile transform appear, for
instance, in [18].

We begin with some high-level intuition for our upper and lower bounds.

• Upper bounding the critical radius: The strategy of binning domain of p0, and
then testing the resulting multinomial against an appropriate �1 neighborhood
using a locally minimax test is natural even when p0 is not uniform. However,
there is considerable flexibility in how precisely to bin the domain of p0. Essen-
tially, the only constraint in the choice of bin-widths is that the approximation
error (of approximating the density by its piecewise constant, histogram approx-
imation) is sufficiently well controlled. When the null is not uniform the choice
of fixed bin-widths is arbitrary and as we will see, suboptimal. A bulk of the
technical effort in constructing our optimal tests is then in determining the opti-
mal inhomogeneous, spatially adaptive partition of the domain in order to apply
a multinomial test.

• Lower bounding the critical radius: At a high-level the construction of Ingster is
similar to standard lower bounds in nonparametric problems. Roughly, we create
a collection of possible alternate densities, by evenly partitioning the domain of
p0, and then perturbing each cell of the partition by adding or subtracting a small
(sufficiently smooth) bump. We then analyze the optimal likelihood ratio test for
the (simple versus simple) testing problem of distinguishing p0 from a uniform
mixture of the set of possible alternate densities. We observe that when p0 is
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not uniform once again creating a fixed bin-width partition is not optimal. The
optimal choice of bin-widths is to choose larger bin-widths when p0 is large
and smaller bin-widths when p0 is small. Intuitively, this choice allows us to
perturb the null distribution p0 more when the density is large, without violating
the constraint that the alternate distributions remain sufficiently smooth. Once
again, we create an inhomogeneous, spatially adaptive partition of the domain,
and then use this partition to construct the optimal perturbation of the null.

Define,

γ := 2s

3s + d
,(4.1)

and for any 0 ≤ σ ≤ 1 denote the collection of sets of probability mass at least
1 − σ as Bσ , that is, Bσ := {B : P0(B) ≥ 1 − σ }. Define the functional,

Tσ (p0) := inf
B∈Bσ

(∫
B

p
γ
0 (x) dx

)1/γ

.(4.2)

We refer to this as the truncated T -functional.4 The functional Tσ (p0) is the analog
of the functional Vσ (p0) in (3.3), and roughly characterizes the local critical radius.
We return to study this functional in light of several examples, in Section 4.1 and
the Supplementary Material [4], Appendix D.

In constructing lower bounds, we will assume that the null density lies in the
interior of the Hölder ball, that is, we assume that for some constant 0 ≤ cint < 1,
we have that, p0 ∈ Ls(cintLn). This assumption avoids certain technical issues that
arise in creating perturbations of the null density when it lies on the boundary of
the Hölder ball.

Finally, we define for two universal constants C ≥ c > 0 (that are explicit in our
proofs) the upper and lower critical radii:

vn(p0) =
(

L
d/(2s)
n TCvn(p0)(p0)

n

) 2s
4s+d

,

wn(p0) =
(

L
d/(2s)
n Tcwn(p0)(p0)

n

) 2s
4s+d

.

(4.3)

With these preliminaries in place, we now state our main result on testing Hölder
densities. We let c,C > 0 denote two positive universal constants (different from
the ones above).

THEOREM 4.1. The local critical radius εn(p0,Ls(Ln)) for testing Hölder
densities is upper bounded as

εn

(
p0,Ls(Ln)

)≤ Cwn(p0).(4.4)

4Although the set B that achieves the minimum in the definition of Tσ (p0) need not be unique,
the functional itself is well defined.
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Furthermore, if for some constant 0 ≤ cint < 1 we have that, p0 ∈ Ls(cintLn), then
the critical radius is lower bounded as

cvn(p0) ≤ εn

(
p0,Ls(Ln)

)
.(4.5)

REMARKS.

• A natural question of interest is to understand the worst-case rate for the critical
radius, or equivalently to understand the largest that the T -functional can be.
Since the T -functional can be infinite if the support is unrestricted, we restrict
our attention to Hölder densities with a bounded support S. In this case, letting
μ(S) denote the Lebesgue measure of S and using Hölder’s inequality (see the
Supplementary Material [4], Appendix D) we have that for any σ > 0,

Tσ (p0) ≤ (1 − σ)μ(S)
1−γ
γ .(4.6)

Up to constants involving γ , σ this is attained when p0 is uniform on the set S.
In other words, the critical radius is maximal for testing the uniform density
against a Hölder, �1 neighborhood. In this case, we simply recover a generaliza-
tion of the result of [20] for testing when p0 is uniform on [0,1].

• The main discrepancy between the upper and lower bounds is in the truncation
level, that is, the upper and lower bounds depend on the functional Tσ (p0) for
different values of the parameter σ . This is identical to the situation in Theo-
rem 3.1 for testing multinomials. In most nonpathological examples this func-
tional is stable with respect to constant factor discrepancies in the truncation
level and consequently our upper and lower bounds are typically tight (see the
examples in Section 4.1). In the Supplementary Material (see Appendix D), we
formally study the stability of the T -functional. We provide general bounds and
relate the stability of the T -functional to the stability of the level-sets of p0.

The remainder of this section is organized as follows: we first consider vari-
ous examples, calculate the T -functional and develop the consequences of Theo-
rem 4.1 for these examples. We then turn our attention to our adaptive binning,
describing both a recursive partitioning algorithm for constructing it as well as de-
veloping some of its useful properties. Finally, we provide the body of our proof
of Theorem 4.1 and defer more technical aspects to the Supplementary Material.
We conclude with a few illustrative simulations.

4.1. Examples. The result in Theorem 4.1 provides a general characterization
of the critical radius for testing any density p0, against a Hölder, �1 neighborhood.
In this section, we consider several concrete examples. Although our theorem is
more generally applicable, for ease of exposition we focus on the setting where
d = 1 and s = 1 (i.e., the Lipschitz case) highlighting the variability of the T -
functional and consequently of the critical radius as the null density is changed.
Our examples have straightforward d-dimensional extensions.
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When d = 1, s = 1, we have that γ = 1/2 so the T -functional is simply

Tσ (p0) = inf
B∈Bσ

(∫
B

√
p0(x) dx

)2
,

where Bσ is as before. Our interest in general is in the setting where σ → 0 (which
happens as n → ∞), so in some examples we will simply calculate T0(p0). In other
examples, however, the truncation at level σ will play a crucial role and in those
cases we will compute Tσ (p0).

EXAMPLE 4.1 (Uniform null). Suppose that the null distribution p0 is
Uniform[a, b] then

T0(p0) = |b − a|.

EXAMPLE 4.2 (Gaussian null). Suppose that the null distribution p0 is a
Gaussian, that is, for some ν > 0,μ ∈ R,

p0(x) = 1√
2πν

exp
(−(x − μ)2/

(
2ν2)).

In this case, a simple calculation (see the Supplementary Material [4], Appendix C)
shows that

T0(p0) = (8π)1/2ν.

EXAMPLE 4.3 (Beta null). Suppose that the null density is a Beta distribution:

p0(x) = �(α + β)

�(α)�(β)
xα−1xβ−1 = 1

B(α,β)
xα−1xβ−1,

where � and B denote the gamma and beta functions, respectively. It is easy to
verify that

T0(p0) =
(∫ 1

0

√
p0(x) dx

)2

= B2((α + 1)/2, (β + 1)/2)

B(α,β)
.

To get some sense of the behaviour of this functional, we consider the case when
α = β = t → ∞. In this case, we show (see the Supplementary Material [4], Ap-
pendix C) that for t ≥ 1,

π2

4e4 t−1/2 ≤ T0(p0) ≤ e4

4
t−1/2.

In particular, we have that T0(p0)  t−1/2.
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REMARK.

• These examples illustrate that in the simplest settings when the density p0 is
close to uniform, the T -functional is roughly the effective support of p0. In
each of these cases, it is straightforward to verify that the truncation of the T -
functional simply affects constants so that the critical radius scales as

εn 
(√

LnT0(p0)

n

)2/5
,

where T0(p0) in each case scales as roughly the size of the (1 − εn)-support of
the density p0, that is, as the Lebesgue measure of the smallest set that contains
(1 − εn) probability mass. This motivates understanding the Lipschitz density
with smallest effective support, and we consider this next.

EXAMPLE 4.4 (Spiky null). Suppose that the null hypothesis is

p0(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Lnx, 0 ≤ x ≤ 1√

Ln

,

2
√

Ln − Lnx,
1√
Ln

≤ x ≤ 2√
Ln

,

0, otherwise,

then we have that T0(p0)  1√
Ln

.

REMARK.

• For the spiky null distribution we obtain an extremely fast rate, that is, we have
that the critical radius εn  n−2/5, and is independent of the Lipschitz parameter
Ln (although, we note that the null p0 is more spiky as Ln increases). This is
the fastest rate we obtain for Lipschitz testing. In settings where the tail decay
is slow, the truncation of the T -functional can be crucial and the rates can be
much slower. We consider these examples next.

EXAMPLE 4.5 (Cauchy distribution). The mean zero, Cauchy distribution
with parameter α has pdf:

p0(x) = 1

πα

α2

x2 + α2 .

As we show (see the Supplementary Material [4] [Appendix C]), the T -functional
without truncation is infinite, that is, T0(p0) = ∞. However, the truncated T -
functional is finite. In the Supplementary Material, we show that for any 0 ≤ σ ≤
0.5 (recall that our interest is in cases where σ → 0),

4α

π

[
ln2
(

1

σ

)]
≤ Tσ (p0) ≤ 4α

π

[
ln2
(

2e

πσ

)]
,

that is, we have that Tσ (p0)  ln2(1/σ).
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REMARK.

• When the null distribution is Cauchy as above, we note that the rate for the
critical radius is no longer the typical εn  n−2/5, even when the other problem
specific parameters (Ln and the Cauchy parameter α) are held fixed. We instead
obtain a slower εn  (n/ log2 n)−2/5 rate. Our final example shows that we can
obtain an entire spectrum of slower rates.

EXAMPLE 4.6 (Pareto null). For a fixed x0 > 0 and for 0 < α < 1, suppose
that the null distribution is

p0(x) =
⎧⎨⎩

αxα
0

xα+1 for x ≥ x0,

0 for x < x0.

This distribution for 0 < α < 1 has thicker tails than the Cauchy distribution. The
T -functional without truncation is infinite, that is, T0(p0) = ∞, and we can further
show that (see the Supplementary Material [4], Appendix C):

4αx0

(1 − α)2

(
σ− 1−α

2α − 1
)2 = Tσ (p0) ≤ 4αx0

(1 − α)2 σ− 1−α
α .

In the regime of interest when σ → 0, we have that Tσ (p0)  σ− 1−α
α .

REMARK.

• We observe that once again, the critical radius no longer follows the typical
rate: εn  n−2/5. Instead we obtain the rate, εn  n−2α/(2+3α), and indeed have
much slower rates as α → 0, indicating the difficulty of testing heavy-tailed
distributions against a Lipschitz, �1 neighborhood.

We conclude this section by emphasizing the value of the local minimax per-
spective and of studying the goodness-of-fit problem beyond the uniform null. We
are able to provide a sharp characterization of the critical radius for a broad class
of interesting examples, and we obtain faster (than at uniform) rates when the null
is spiky and nonstandard rates in cases when the null is heavy-tailed.

4.2. A recursive partitioning scheme. For the remainder of this section, we
encourage the reader to focus on the case when s = 1 (i.e., the Lipschitz setting) in
their first reading. At the heart of our upper and lower bounds are spatially adaptive
partitions of the domain of p0. The partitions used in our upper and lower bounds
are similar but not identical. In this section, we describe an algorithm for producing
the desired partitions and then briefly describe some of the main properties of the
partition that we leverage in our upper and lower bounds.

We begin by describing the desiderata for the partition from the perspective of
the upper bound. Our goal is to construct a test for the hypotheses in (2.5), and
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we do so by constructing a partition (consisting of N + 1 cells) {A1, . . . ,AN,A∞}
of Rd . Each cell Ai for i ∈ {1, . . . ,N} will be a cube, while the cell A∞ will be
arbitrary but will have small total probability content. We let

K :=
N⋃

i=1

Ai.(4.7)

We form the multinomial corresponding to the partition {P0(A1), . . . ,P0(AN),

P0(A∞)}, where P0(Ai) = ∫
Ai

p0(x) dx. We then test this multinomial using the
counts of the number of samples falling in each cell of the partition.

REQUIREMENT 1. A basic requirement of the partition is that it must ensure
that a density p that is at least εn far away in �1 distance from p0 should remain
roughly εn away from p0 when converted to a multinomial. Formally, for any p

such that ‖p − p0‖1 ≥ εn,p ∈ Ls(Ln) we require that for some small constant
c > 0,

N∑
i=1

∣∣P0(Ai) − P(Ai)
∣∣+ ∣∣P0(A∞) − P(A∞)

∣∣≥ cεn.(4.8)

Of course, there are several ways to ensure this condition is met. In particular,
supposing that we restrict attention to densities supported on [0,1] then it suffices
for instance to choose roughly (Ln/εn)

1/s even-width bins. This is precisely the
partition considered in prior work [3, 20, 21]. When we do not restrict attention
to compactly supported, uniform densities an even-width partition is no longer
optimal and a careful optimization of the upper and lower bounds with respect to
the partition yields the optimal choice. The optimal partition has bin-widths that
are roughly taken proportional to p

γ/s
0 (x), where the constant of proportionality is

chosen to ensure that the condition in (4.8) is satisfied. Precisely determining the
constant of proportionality turns out to be quite subtle so we defer a discussion of
this to the end of this section.

REQUIREMENT 2. A second requirement that arises in both our upper and
lower bounds is that the cells of our partition (except A∞) are not chosen too wide.
In particular, we must choose the cells small enough to ensure that the density
is roughly constant on each cell, that is, on each cell we need that for any i ∈
{1, . . . ,N},

supx∈Ai
p0(x)

infx∈Ai
p0(x)

≤ 2.(4.9)

Using the Hölder property of p0, this condition is satisfied if any point x is in a
cell of diameter at most (p0(xj )/(3Ln))

1/s , where xj denotes the centroid of the
cell containing x.
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Taken together the first two requirements suggest that we need to create a par-
tition such that: for every point x ∈ K , the diameter of the cell A containing the
point x, should be roughly[

diam(A)
]s ≈ min

{
θ1p0(x), θ2p

γ
0 (x)

}
,

where θ1 is to be chosen to be smaller than 1/(3Ln), and θ2 is chosen to ensure
that Requirement 1 is satisfied.

Algorithm 1 constructively establishes the existence of a partition satisfying
these requirements. The upper and lower bounds use this algorithm with slightly
different parameters. The key idea is to recursively partition cells that are too large
by halving each side. This is illustrated in Figure 3. The proof of correctness of
the algorithm uses the smoothness of p0 in an essential fashion. Indeed, were the
density p0 not sufficiently smooth then such a partition would likely not exist.

In order to ensure that the algorithm has a finite termination, we choose two
parameters a, b � εn (these are chosen sufficiently small to not affect subsequent
results):

• We restrict our attention to the a-effective support of p0, that is, we define Sa to
be the smallest cube centered at the mean of p0 such that, P0(Sa) ≥ 1 − a. We
begin with A∞ = Sc

a .
• If the density in any cell is sufficiently small, we do not split the cell further, that

is, for a parameter b, if supx∈A p0(x) ≤ b/vol(Sa) then we do not split it, rather
we add it to A∞. By construction, such cells have total probability content at
most b.

For each cube Ai for i ∈ {1, . . . , Ñ}, we let xi denote its centroid, and we let Ñ

denote the number of cubes created by Algorithm 1.

REQUIREMENT 3. The final major requirement is two-fold: (1) we require
that the γ -norm of the density over the support of the partition should be upper
bounded by the truncated T -functional, and (2) that the density over the cells of
the partition be sufficiently large. This necessitates a further pruning of the parti-
tion, where we order cells by their probability content and successively eliminate
(adding them to A∞) cells of low probability until we have eliminated mass that
is close to the desired truncation level. This is accomplished by Algorithm 2.

It remains to specify a precise choice for the parameter θ2. We do so indi-
rectly by defining a function μ : R 
→ R that is closely related to the truncated
T -functional. For x ∈ R, we define μ(x) as the smallest positive number that sat-
isfies the equation

(4.12) εn =
∫
Rd

min
{
p0(y)

x
,
εnp0(y)γ

μ(x)

}
dy.

If x < 1/εn, then we obtain a finite value for μ(x), otherwise we take μ(x) = ∞.
The following result, relates μ to the truncated T -functional.
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Algorithm 1 Adaptive Partition
1. Input: Parameters θ1, θ2, a, b.
2. Set A∞ = ∅ and A1 = Sa .
3. For each cube Ai do:

• If

(4.10) sup
x∈Ai

p0(x) ≤ b

vol(Sa)
,

then remove Ai from the partition and let A∞ = A∞ ∪ Ai .
• If

(4.11)
[
diam(Ai)

]s ≤ min
{
θ1p0(xi), θ2p

γ
0 (xi)

}
,

then do nothing to Ai .
• If Ai fails to satisfy (4.10) or (4.11), then replace Ai by a set of �21/s�d cubes

that are obtained dividing the original Ai into �21/s� equal length pieces
along each of its axes.

4. If no cubes are split or removed, STOP. Else go to step 3.
5. Output: Partition P = {A1, . . . ,AÑ ,A∞}.

LEMMA 4.1. For any 0 ≤ x < 1/εn,

(4.13) T γ
xεn

(p0) ≤ μ(x) ≤ 2T
γ
xεn/2(p0).

FIG. 3. (a) A density p0 on [0,1]2 evaluated on a 1000 × 1000 grid. (b) The corresponding spa-
tially adaptive partition P produced by Algorithm 1. Cells of the partition are larger in regions where
the density p0 is higher.
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Algorithm 2 Prune Partition
1. Input: Unpruned partition P = {A1, . . . ,AÑ ,A∞} and a target pruning level c.

Without loss of generality, we assume P0(A1) ≥ P0(A2) ≥ · · · ≥ P0(AÑ ).

2. For any j ∈ {1, . . . , Ñ}, let Q(j) =∑Ñ
i=j P0(Ai). Let j∗ denote the smallest

positive integer such that, Q(j∗) ≤ c.
3. If Q(j∗) ≥ c/5:

• Set N = j∗ − 1, and A∞ = A∞ ∪ Aj∗ ∪ · · · ∪ AÑ .

4. If Q(j∗) ≤ c/5:

• Set N = j∗, α = min{c/(5P0(AN)),1/5}, and A∞ = A∞ ∪ Aj∗ ∪ · · · ∪ AÑ .
• AN is a cube, that is, for some δ > 0, AN = [a1, a1 + δ] × · · · × [ad, ad + δ].

Let D1 = [a1, (1 −α)(a1 + δ)]× · · ·× [ad, (1 −α)(ad + δ)] and D2 = AN −
D1. Set: AN = D1 and A∞ = A∞ ∪ D2.

5. Output: P† = {A1, . . . ,AN,A∞}.

With the definition of μ in place, we now state our main result regarding the
partitions produced by Algorithms 1 and 2. We let P denote the unpruned parti-
tion obtained from Algorithm 1 and P† denote the pruned partition obtained from
Algorithm 2. For each cell Ai , we denote its centroid by xi . We have the following
result summarizing some of the important properties of P and P†.

LEMMA 4.2. Suppose we choose, θ1 = 1/(3Ln), θ2 = εn/(8Lnμ(3/8)), a =
b = εn/1024, c = εn/512, then the partition P† satisfies the following properties:

1. [Diameter control.] The partition has the property that

1

5
min

{
θ1p0(xi), θ2p

γ
0 (xi)

}≤ [diam(Ai)
]s ≤ min

{
θ1p0(xi), θ2p

γ
0 (xi)

}
.

(4.14)

2. [Multiplicative control.] The density is multiplicatively controlled on each
cell, that is, for i ∈ {1, . . . ,N} we have that

supx∈Ai
p0(x)

infx∈Ai
p0(x)

≤ 2.(4.15)

3. [Properties of A∞.] The cell A∞ has probability content roughly εn, that is,

εn

2560
≤ P0(A∞) ≤ εn

256
.(4.16)
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4. [�1 distance.] The partition preserves the �1 distance, that is, for any p such
that ‖p − p0‖1 ≥ εn,p ∈ Ls(Ln),

N∑
i=1

∣∣P0(Ai) − P(Ai)
∣∣+ ∣∣P0(A∞) − P(A∞)

∣∣≥ εn

8
.(4.17)

5. [Truncated T -functional.] Recalling the definition of K in (4.7), we have that∫
K

p
γ
0 (x) dx ≤ T

γ
εn/5120(p0).(4.18)

6. [Density Lower Bound.] The density over K is lower bounded as

inf
x∈K

p0(x) ≥
(

εn

5120μ(1/5120)

)1/(1−γ )

.(4.19)

Furthermore, for any choice of the parameter θ2 the unpruned partition P of Al-
gorithm 1 satisfies (4.14) with the constant 5 sharpened to 4, (4.15) and the upper
bound in (4.16).

The proof of this result is technical and we defer it to the Supplementary Mate-
rial [4] (Appendix E).

While we focused our discussions on the properties of the partition from the
perspective of establishing the upper bound in Theorem 4.1 it turns out that several
of these properties are crucial in proving the lower bound as well. The optimal
adaptive partition creates larger cells in regions where the density p0 is higher,
and smaller cells where p0 is lower. This might seem counter-intuitive from the
perspective of the upper bound since we create many low-probability cells which
are likely to be empty in a small finite-sample, and indeed this construction is in
some sense opposite to the quantile transformation suggested by previous work
[18, 20]. However, from the perspective of the lower bound this is completely
natural. It is intuitive that our perturbation be large in regions where the density is
large since the likelihood ratio is relatively stable in these regions, and hence these
changes are more difficult to detect. The requirement of smoothness constrains the
amount by which we can perturb the density on any given cell, that is, for a large
perturbation the corresponding cell should have a large diameter leading to the
conclusion that we must use larger cells in regions where p0 is higher.

In this section, we have focused on providing intuition for our adaptive partition-
ing scheme. In the next section, we provide the body of the proof of Theorem 4.1,
and defer the remaining technical aspects to the Supplementary Material [4].

4.3. Proof of Theorem 4.1. We consider the lower and upper bounds in turn.
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4.3.1. Proof of lower bound. We note that the lower bound in (4.5) is trivial
when εn ≥ 1/C so throughout the proof we focus on the case when εn is smaller
than a universal constant, that is, when εn ≤ 1

C
.

Preliminaries: We begin by briefly introducing the lower bound technique due
to Ingster (see for instance [22]). Let P be a set of distributions and let �n be the
set of level α tests based on n observations where 0 < α < 1 is fixed. We want to
bound the minimax type II error

ζn(P) = inf
φ∈�n

sup
P∈P

P n(φ = 0).

Define Q as Q(A) = ∫ P n(A)dπ(P ), where π is a prior distribution whose sup-
port is contained in P . In particular, if π is uniform on a finite set P1, . . . ,PN

then

Q(A) = 1

N

∑
j

P n
j (A).

Given n observations, we define the likelihood ratio

Wn(Z1, . . . ,Zn) = dQ

dP n
0

=
∫

p(Z1, . . . ,Zn)

p0(Z1, . . . ,Zn)
dπ(p) =

∫ ∏
j

p(Zj )

p0(Zj )
dπ(p).

LEMMA 4.3. Let 0 < ζ < 1 − α. If

(4.20) E0
[
W 2

n (Z1, . . . ,Zn)
]≤ 1 + 4(1 − α − ζ )2

then ζn(P) ≥ ζ .

Roughly, this result asserts that in order to produce a minimax lower bound on
the Type II error, it suffices to appropriately upper bound the second moment under
the null of the likelihood ratio. The proof is standard but presented in the Supple-
mentary Material [4] (Appendix E) for completeness. A natural way to construct
the prior π on the set of alternatives, is to partition the domain of p0 and then to
locally perturb p0 by adding or subtracting sufficiently smooth “bumps”. In the
setting where the partition has fixed-width cells, this construction is standard [3,
20] and we provide a generalization to allow for variable width partitions and to
allow for non-uniform p0. Formally, let ψ be a smooth bounded function on the
hypercube I = [−1/2,1/2]d such that∫

I
ψ(x)dx = 0 and

∫
I
ψ2(x) dx = 1.

Let P = {A1, . . . ,AN,A∞} be the partition obtained from Algorithm 1 that sat-
isfies the condition in (4.15), and further let {x1, . . . , xN } denote the centroids of
the cells {A1, . . . ,AN }. Each cell Aj for j ∈ {1, . . . ,N} is a cube with side-length
cjhj for some constants 1/4 ≤ cj ≤ 1, and

(
√

dhj )
s = min

{
θ1p0(xj ), θ2p

γ
0 (xj )

}
,
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where θ1 = 1/(3Ln) and we let θ2 > 0 be arbitrary. Let η = (η1, η2, . . . , ηN) be a
Rademacher sequence and define

(4.21) pη = p0 +
N∑

j=1

ρjηjψj ,

where each ρj ≥ 0 and

ψj(t) = 1

c
d/2
j h

d/2
j

ψ

(
t − xj

cjhj

)

for t ∈ Aj . Hence,
∫
Aj

ψj (t) = 0 and
∫
Aj

ψ2
j (t) = 1. Finally, let us denote:

ω1 := max
{

4‖ψ‖∞
(1 − cint)

,
8‖ψ ′‖∞
(1 − cint)

}
and ω2 := ‖ψ‖1.

With these definitions in place, we state a result that gives a lower bound for a
sequence of perturbations {ρj }Nj=1 that satisfy certain conditions.

LEMMA 4.4. Let α, ζ and εn be nonnegative numbers with 1−α − ζ > 0. Let
C0 = 1 + 4(1 − α − ζ )2. Assume that for each j ∈ {1, . . . ,N}, ρj and hj satisfy:

ρj ≤ c
d/2
j

ω1
Lnh

s+ d
2

j ,(4.22)

N∑
j=1

ρjc
d/2
j h

d/2
j ≥ εn

ω2
,(4.23)

N∑
j=1

ρ4
j

p2
0(xj )

≤ logC0

4n2 ,(4.24)

then the Type II error of any test is at least ζ .

Effectively, this lemma generalizes the result of [20] to allow for nonuniform
p0 and further allows for variable width bins. The proof proceeds by verifying that
under the conditions of the lemma, pη is sufficiently smooth, and separated from
p0 by at least εn in the �1 metric. We let the prior be uniform on the the set of
possible distributions pη and directly analyze the second moment of the likelihood
ratio, and obtain the result by applying Lemma 4.3. See the Supplementary Mate-
rial [4] (Appendix E) for the proof of this lemma. It is worth noting the condition
in (4.22), which ensures smoothness of pη, allows for larger perturbations ρj for
bins where hj is large, which is one of the key benefits of using variable bin-widths
in the lower bound.
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With this result in place, to produce the desired minimax lower bound it only
remains to specify the partition, select a sequence of perturbations {ρj }Nj=1 and
verify that the conditions of Lemma 4.4 are satisfied.

Final Steps: We begin by specifying the partition. We define

ν = min
{

ω2

ω14d+1d1/(2s)
,1
}
.

For the lower bound, we do not need to prune the partition, rather we simply
apply Algorithm 1 with θ1 = 1/(3Ln), and θ2 = εn/(Lnνμ(2/ν)). We choose
a = b = εn/1024, and denote the resulting partition P = {A1, . . . ,AN,A∞}. Us-
ing Lemma 4.2, we have that the partition satisfies (4.14) with the constant 5 re-
placed by 4, (4.15) and the upper bound in (4.16). We now choose a sequence
{ρ1, . . . , ρN }, and proceed to verify that the conditions of Lemma 4.4 are satisfied.
We choose

ρj = c
d/2
j

ω1
Lnh

s+ d
2

j ,

thus ensuring the condition in (4.22) is satisfied.
Verifying the condition in (4.23): Recall the definition of μ in (4.12),

εn

ν
=
∫
Rd

min
{
p0(y)

2
,
εnp0(y)γ

νμ(2/ν)

}
dy,

provided that εn < ν/2 which is true by our assumption on the critical radius.
Recalling the definition of K in (4.7), we have that∫

K
min

{
p0(y)

2
,
εnp0(y)γ

νμ(2/ν)

}
dy ≥ εn

ν
− P0(A∞)

2
.

We define the function

hs(y) := 1

d1/(2s)
min

{
p0(y)

3Ln

,
εnp0(y)γ

Lnνμ(2/ν)

}
,

and as a consequence of the property (4.15) we obtain that for any y ∈ Aj for
j ∈ {1, . . . ,N},

hs
j ≥ hs(y)

2
.

This in turn yields that

Ln

N∑
j=1

hd+s
j ≥ 1

2(
√

d)s

∫
K

min
{
p0(y)

2
,
εnp0(y)γ

νμ(2/ν)

}
dy

≥ 1

2(
√

d)s

(
εn

ν
− P0(A∞)

2

)
≥ εn

4(
√

d)sν
,
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where the final step uses the upper bound in (4.16). We then have that

N∑
j=1

ρjc
d/2
j h

d/2
j =

N∑
j=1

Lnc
d
j hd+s

j

ω1
≥

N∑
j=1

Lnh
d+s
j

4dω1
≥ εn

ω2
,

which establishes the condition in (4.23).
Verifying the condition in (4.24): We note the inequality (which can be verified

by simple case analysis) that for a, b,u, v ≥ 0,

min{a, b} ≤ min
{
a

u
u+v b

v
u+v , b

}
,

in particular for u = s, v = 3s + d we obtain

min{a, b} ≤ min
{(

asb3s+d) 1
4s+d , b

}
.(4.25)

Returning to the condition in (4.24), we have that

N∑
j=1

ρ4
j

p0(xj )2 ≤ L4
n

ω4
1

N∑
j=1

c2d
j h4s+2d

j

p0(xj )2

≤ L4
n

ω4
1

N∑
j=1

hd
j h4s+d

j

p0(xj )2 ,

using the fact that cj ≤ 1. Using the chosen values for hj we obtain that

N∑
j=1

ρ4
j

p0(xj )2

≤ L4
n

ω4
1d

(4s+d)/(2s)

N∑
j=1

hd
j

p0(xj )2

× min
{[

p0(xj )

2Ln

] 4s+d
s

,

[
εnp

γ
0 (xj )

Lnνμ(2/ν)

] 4s+d
s
}

(i)≤ L4
n

ω4
1d

(4s+d)/(2s)

N∑
j=1

hd
j

p0(xj )2

× min
{

p0(xj )
3ε

3s+d
s

n

3Ln(Lnνμ(2/ν))
3s+d

s

,

[
εnp

γ
0 (xj )

Lnνμ(2/ν)

] 4s+d
s
}

= ε
3s+d

s
n

L
d/s
n μ(2/ν)3+d/sν4+d/sω4

1d
(4s+d)/(2s)

N∑
j=1

hd
j
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× min
{
p0(xj )

2/ν
,
εnp

γ
0 (xj )

μ(2/ν)

}

≤ 2ε
3s+d

s
n

L
d/s
n μ(2/ν)3+d/sν4+d/sω4

1d
(4s+d)/(2s)

×
∫
K

min
{
p0(x)

2/ν
,
εnp0(x)γ

μ(2/ν)

}
dx

≤ 2ε
3s+d

s
n

L
d/s
n μ(2/ν)3+d/sν4+d/sω4

1d
(4s+d)/(2s)

×
∫
Rd

min
{
p0(x)

2/ν
,
εnp0(x)γ

μ(2/ν)

}
dx

(ii)≤ 2ε
4s+d

s
n

L
d/s
n μ(2/ν)3+d/sν4+d/sω4

1d
(4s+d)/(2s)

,

where (i) follows from the inequality in (4.25), and (ii) uses (4.12). Using
Lemma 4.1, we obtain

μ(2/ν) ≥ T
γ
2εn/ν(p0),

provided that εn < ν/2. This yields that

N∑
j=1

ρ4
j

p0(xj )2 ≤ 2ε
4s+d

s
n

L
d/s
n T 2

2εn/ν(p0)ν4+d/sω4
1d

(4s+d)/(2s)
,

and we require that this quantity is upper bounded by logC0
4n2 . For constants c1, c2

that depend only on the dimension d , it suffices to choose εn as the solution to the
equation

εn =
(

L
d/(2s)
n Tc2εn(p0)

√
logC0

c1n

)2s/(4s+d)

and an application of Lemma 4.4 yields the lower bound of Theorem 4.1.

4.3.2. Proof of upper bound. In order to establish the upper bound, we con-
struct an adaptive partition using Algorithms 1 and 2, and utilize the test analyzed
in Theorem 3.3 from [37] to test the resulting multinomial. For the upper bound,
we use the partition P† studied in Lemma 4.2, that is, we take θ1 = 1/(3Ln), θ2 =
εn/(8Lnμ(3/8)), a = b = εn/1024 and c = εn/512. Using the property in (4.17),
it suffices to upper bound the V -functional in (3.3), for σ = εn/128.

The following technical lemma shows that the truncated V -functional is upper
bounded by the V -functional over the partition excluding A∞. For the partition
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P†, we have the associated multinomial q := {P0(A1), . . . ,P0(A∞)}. With these
definitions in place, we have the following result.

LEMMA 4.5. For the multinomial q defined above, the truncated V -functional
is upper bounded as

V
2/3
εn/128(q) ≤

N∑
i=1

P0(Ai)
2/3 := κ.

We prove this result in the Supplementary Material [4] (Appendix E). Roughly,
this lemma asserts that our pruning is less aggressive than the tail truncation of
the multinomial test from the perspective of controlling the 2/3rd norm. With this
claim in place, it only remains to upper bound κ . Using the property in (4.15), we
have that

κ ≤
N∑

i=1

(
2p0(xi)vol(Ai)

)2/3

≤ 22/3
N∑

i=1

p0(xi)
2/3

h
d/3
i

hd
i .

Using the condition in (4.19), verify that for all x ∈ K we have that

θ1p0(x) ≥ εnp
γ
0 (x)

10,240Lnμ(1/5120)
,

and this yields that for a constant c > 0 for each i ∈ {1, . . . ,N},

hs
i ≥ cεnp

γ
0 (xi)

Lnμ(1/5120)
.

Using the property in (4.15), we then obtain that for a constant C > 0,

κ ≤ C

(
Lnμ(1/5120)

εn

)d/(3s) ∫
K

p
γ
0 (x) dx,

and using the property (4.18) and Lemma 4.1, we obtain that for constants c,C > 0
that

κ ≤ C

(
Ln

εn

)d/(3s)

T 2/3
cεn

(p0).

With Lemma 4.5, we obtain that for the multinomial q ,

Vεn/128(q) ≤ C3/2
(

Ln

εn

)d/(2s)

Tcεn(p0),

which together with the upper bound of Theorem 3.1 yields the desired upper
bound for Theorem 4.1. We note that a direct application of Theorem 3.1 yields
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a bound on the critical radius that is the maximum of two terms, one scaling as
1/n and the other being the desired term in Theorem 4.1. In Hölder testing, the
1/n term is always dominated by the term involving the truncated functional. This
follows from lower bounds on the truncated functional [see, for instance, (F.4) for
such a lower bound].

4.4. Simulations. In this section, we report some simulation results on Lips-
chitz testing. We focus on the case when d = 1 and s = 1. In Figure 4, we compare
the following tests:

1. 2/3rd + Tail Test: This is the locally minimax test studied in Theorem 4.1,
where we use our binning algorithm followed by the locally minimax multinomial
test from [37].

2. Chi-sq. Test: Here, we use our binning algorithm followed by the standard
χ2 test.

3. Kolmogorov–Smirnov (KS) Test: Since we focus on the case when d = 1,
we also compare to the standard KS test based on comparing the CDF of p0 to the
empirical CDF.

4. Naive Binning: Finally, we compare to the approach of using fixed-width
bins, together with the χ2 test. Following the prescription of Ingster [20] (for the
case when p0 is uniform), we choose the number of bins so that the �1-distance
between the null and alternate is approximately preserved, that is, denoting the
effective support to be S we choose the bin-width as εn/(Lnμ(S)).

We focus on two simulation scenarios: when the null distribution is a standard
Gaussian, and when the null distribution has a heavier tail, that is, a Pareto distri-
bution with parameter α = 0.5. We create the alternate density by smoothly per-
turbing the null after binning, and choose the perturbation weights as in our lower
bound construction in order to construct a near worst-case alternative.

We set the α-level threshold via simulation (by sampling from the null 1000
times) and we calculate the power under particular alternatives by averaging over
a 1000 trials. We observe several notable effects. First, we see that the locally
minimax test can significantly out perform the KS test as well the test based on
fixed bin-widths. The failure of the fixed bin-width test is more apparent in the
setting where the null is Pareto as the distribution has a large effective support and
the naive binning is far less parsimonious than the adaptive binning. On the other
hand, we also observe that at least in these simulations the χ2 test and the locally
minimax test from [37] perform comparably when based on our adaptive binning
indicating the crucial role played by the binning procedure.

5. Discussion. In this paper we studied the goodness-of-fit testing problem in
the context of testing multinomials and Hölder densities. For testing multinomials,
we built on prior works [16, 37] to provide new globally and locally minimax tests.



1924 S. BALAKRISHNAN AND L. WASSERMAN

FIG. 4. A comparison between the KS test, multinomial tests on an adaptive binning and multino-
mial tests on a fixed bin-width binning. In the figure on the left, we choose the null to be standard
Gaussian and on the right we choose the null to be Pareto. The alternate is chosen to be a dense
near worst-case, smooth perturbation of the null. The power of the tests are plotted against the �1
distance between the null and alternate. Each point in the graph is an average over 1000 trials.

For testing Hölder densities, we provide the first results that give a characterization
of the critical radius under mild conditions.

Our work highlights the heterogeneity of the critical radius in the goodness-of-
fit testing problem and the importance of understanding the local critical radius.
In the multinomial testing problem, it is particularly noteworthy that classical tests
can perform quite poorly in the high-dimensional setting, and that simple mod-
ifications of these tests can lead to more robust inference. In the density testing
problem, carefully constructed spatially adaptive partitions play a crucial role.

Our work motivates several open questions, and we conclude by highlighting a
few of them. First, in the context of density testing we focused on the case when
the density is Hölder with 0 < s ≤ 1. An important extension would be to consider
higher-order smoothness. Surprisingly, [21] shows that bin-based tests continue
to be optimal for higher-order smoothness classes when the null is uniform on
[0,1]. We conjecture that bin-based tests are no longer optimal when the null is
not uniform, and further that the local critical radius continues to be determined
by (4.3) even when s > 1. Second, it is possible to invert our locally minimax tests
in order to construct confidence intervals. We believe that these intervals might
also have some local adaptive properties that are worthy of further study. In the
Supplementary Material [4], we provide some basic results on the limiting distri-
butions of the multinomial test statistics under the null when the null is uniform,
and it would be interesting to consider the extension to settings where the null is
arbitrary. Finally, it would also be interesting to further explore the extent to which
the local-minimax perspective can lead to a better understanding of composite-null
inference problems [1, 2, 5, 8, 10, 23, 30].
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SUPPLEMENTARY MATERIAL

Supplement to “Hypothesis testing for densities and high-dimensional
multinomials: Sharp local minimax rates.” (DOI: 10.1214/18-AOS1729SUPP;
.pdf). The Supplementary Material contains detailed technical proofs. It also in-
cludes a brief study of limiting distributions of the test statistics we study. Finally,
the Supplementary Material includes the design and analysis of tests that are adap-
tive to various parameters.
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SUPPLEMENT TO: HYPOTHESIS TESTING FOR
DENSITIES AND HIGH-DIMENSIONAL MULTINOMIALS:

SHARP LOCAL MINIMAX RATES

By Sivaraman Balakrishnan† and Larry Wasserman†

Carnegie Mellon University†

APPENDIX A: LIMITING BEHAVIOUR OF TEST STATISTICS
UNDER THE NULL

In this section, we consider the problem of finding the asymptotic distri-
bution of the multinomial test statistics under the null. Broadly, there is a
dichotomy between classical asymptotics where the null distribution is kept
fixed and a high-dimensional asymptotic where the number of cells is growing
and the null distribution can vary with the number of cells. We present a
few simple results on the limiting behaviour of our test statistics when the
null is uniform and highlight some open problems. Although our techniques
generalize in a straightforward way to non-uniform null distributions, they
do not necessarily yield tight results.

We focus on the family of test statistics that we use in our paper, that
are weighted �2-type statistics:

T (w) =
dX

i=1

(Xi � np0(i))2 �Xi

wi
,(A.1)

where each wi is a positive weight that is a fixed function of p0(i). This
family includes the 2/3-rd statistic from [4], the truncated �2 statistic that
we propose, and the usual �2 and `2 statistics. When the null is uniform,
this family of test statistics reduces to simple re-scalings of the `2 statistic
in (3.11):

T`2 =
dX

i=1

⇥
(Xi � np0(i))

2 �Xi
⇤
.

Our results are summarized in the following lemma.

Lemma A.1. 1. Classical Asymptotics: For any fixed p0, the statistic
T (w) under the null converges in distribution to a weighted sum of �2
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distributions, i.e. for Z1, . . . , Zd ⇠ �
2
1,

T (w)
d!

dX

i=1

pi

wi
(Zi � 1) .(A.2)

2. High-dimensional Asymptotics: Suppose p0 is uniform and d ! 1,
then we have that,

• If n/
p
d ! 1, then

T`2p
Var0(T`2)

d! N(0, 1).

• If n/
p
d ! 0, then

T`2p
Var0(T`2)

d! �0.

Remarks:

• The behaviour of the �2-type statistics under classical asymptotics is
well understood and we do not prove the claim in (A.2).

• Focusing on the high-dimensional setting, the asymptotic distribution
of the test statistic is Gaussian in the regime where the risk of the
optimal test tends to 0 as n ! 1, and is degenerate in the regime
where there are no consistent tests. In the most interesting regime
when, n/

p
d ! c, the optimal test can have non-trivial risk, and the

limiting distribution is neither Gaussian nor degenerate.
• More broadly, an important open question is to characterize the limiting

distribution of the test statistic, under both the null and the alternate
in the high-dimensional asymptotic.

Proof. The first part follows, by checking the Lyapunov conditions. We
denote

⇣i = (Xi � np0(i))
2 �Xi.

and can calculate the sum of the variances as:

s
2
d =

dX

i=1

var(⇣i) =
2n2

d
.



LOCALLY MINIMAX TESTING: SUPPLEMENT 41

The Lyapunov condition then requires that,

lim
d!1

1

s
4
d

dX

i=1

E⇣4i = 0.

A straightforward computation gives that,

E⇣4i = 8
n
2

d2
+ 144

n
3

d3
+ 60

n
4

d4
,

so that the Lyapunov condition is satisfied provided that,

lim
d!1

d
3

n6
! 0,

which is indeed the case.
In order to verify the degenerate limit it su�ces to show that when

n/
p
d ! 0, then the number of categories that have strictly larger than one

occurrence converges to 0. When each observed category is observed only
once we have that the test statistic is deterministic, i.e.,

T`2 =
dX

i=1

⇣i = (d� n)
n
2

d2
+ n

✓
n
2

d2
� 2n

d

◆
.

When rescaled by the standard deviation we obtain that,

T`2p
var0(T`2)

=

r
d

2n2


(d� n)

n
2

d2
+ n

✓
n
2

d2
� 2n

d

◆�
! 0.

Finally, we can bound the probability that any category is observed more
than once as:

P (9 i,Xi � 2) 
dX

i=1

P (Xi � 2)


dX

i=1

exp(��)
1X

k=2

⇣
n

d

⌘k

 Cn
2

d
! 0.

Taken together these facts give the desired degenerate limit.
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APPENDIX B: ANALYSIS OF MULTINOMIAL TESTS

B.1. Proof of Theorem 3.2. In this section we analyze the truncated
�
2 test. For convenience, throughout this proof we work with a scaled version

of the statistic in (3.6), i.e. we let T := Ttrunc/d and abusing notation slightly
we redefine ✓i appropriately, i.e. we take ✓i = max{1, dp0(i)}.

We begin by controlling the size of the truncated �2 test. Fix any multi-
nomial p on {1, . . . , d}, and suppose we denote �i = p0(i) � p(i), then a
straightforward computation shows that,

Ep[T ] = n
2

dX

i=1

�2
i

✓i
,(B.1)

Varp[T ] =
dX

i=1

1

✓
2
i

⇥
2n2

p0(i)
2 + 2n2�2

i � 4n2�ip0(i) + 4n3�2
i p0(i)� 4n3�3

i

⇤
.

(B.2)

This yields that the null variance of T is given by:

Var0[T ] =
dX

i=1

2n2
p0(i)2

✓
2
i

,(B.3)

which together with Chebyshev’s inequality yields the desired bound on the
size. Turning our attention to the power of the test we fix a multinomial
p 2 P1. Denote the ↵ level threshold of the test by

t↵ = n

vuut 2

↵

dX

i=1

p0(i)2

✓
2
i

.

We observe that, if we can verify the following two conditions:

t↵  Ep[T ]

2
(B.4)

Ep[T ] � 2

s
Varp[T ]

⇣
,(B.5)
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then we obtain that P (�trunc = 0)  ⇣. To see this, observe that

P (�trunc = 0)  P (T < t↵)

 P

⇣
T <

1

2
Ep[T ]

⌘

 P

⇣
T < Ep[T ]�

s
Varp[T ]

⇣

⌘

 ⇣,(B.6)

by Chebyshev’s inequality.
Condition in Equation (B.4): This condition reduces to verifying the
following,

2t↵  n
2

dX

i=1

�2
i

✓i
,

and as a result we focus on lower bounding the mean under the alternate.
By Cauchy-Schwarz we obtain that,

dX

i=1

�2
i

✓i
� k�k21Pd

i=1 ✓i

� ✏
2
nPd

i=1{1 + dp0(i)}
� ✏

2
n

2d
.(B.7)

We can further upper bound t↵ as

t↵ = n

vuut 2

↵

dX

i=1

p0(i)2

✓
2
i

 n

r
2

d↵
,

using the fact that p0(i)/✓i  1
d . This yields that Equation (B.4) is satisfied

if:

✏
2
n

2d
� 2

p
2p

d↵n
,

which is indeed the case.
Condition in Equation (B.5): We can upper bound the variance under
the alternate as:

Varp[T ] 
dX

t=1

1

✓
2
t

⇥
4n2

p0(t)
2 + 4n2�2

t + 4n3�2
t p0(t)� 4n3�3

t

⇤

=
dX

t=1

4n2
p0(t)2

✓
2
t

| {z }
U1

+
dX

t=1

4n2�2
t

✓
2
t

| {z }
U2

+
dX

t=1

4n3�2
t p0(t)

✓
2
t

| {z }
U3

+
dX

t=1

�4n3�3
t

✓
2
t

| {z }
U4

.
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Consequently, it su�ces to verify that,

4X

i=1

2
p
Ui/⇣

Ep[T ]
 1,

for i = {1, 2, 3, 4} and we do this by bounding each of these terms in turn.
For the first term we follow a similar argument to the one dealing with the
first condition,

2
p
U1/⇣

Ep[T ]


8d
qPd

t=1
p0(t)2

✓2tp
⇣n✏2n

 8
p
dp

⇣n✏2n

 1

4
.

For the second term,

2
p
U2/⇣

Ep[T ]


4

r
1
⇣

Pd
t=1

n2�2
t

✓2t

Ep[T ]


4
q

1
⇣

Pd
t=1

n2�2
t

✓t

Ep[T ]
=

4p
⇣Ep[T ]

.

Using Equation (B.7) we obtain that,

Ep[T ] �
n
2
✏
2
n

2d
,

which in turn yields that,

2
p
U2/⇣

Ep[T ]
 8

p
d

n✏n
p
⇣
 1

4
.

Turning our attention to the third term we obtain that,

2
p
U3/⇣

Ep[T ]
=

4

r
1
⇣

Pd
t=1

n3�2
t p0(t)
✓2t

Ep[T ]


4
q

n
d⇣

Pd
t=1

n2�2
t

✓t

Ep[T ]
=

4
q

n
d⇣

p
Ep[T ]

.

Using the lower bound on the mean we obtain that,

2
p
U3/⇣

Ep[T ]
 8

n✏n
p
⇣
 1

4
.

For the final term,

2
p
U4/⇣

Ep[T ]


4

r
1
⇣

Pd
t=1

n3|�3
t |

✓2t

Ep[T ]


4

r
n3

⇣

Pd
t=1

|�3
t |

✓2t

Ep[T ]


4

s
1
⇣

✓Pd
i=1

n2�2
i

✓
4/3
i

◆3/2

Ep[T ]
,
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where the last step uses the monotonicity of the `p norms. Observing that
✓i � 1, we have

2
p
U4/⇣

Ep[T ]


4

r
1
⇣

⇣Pd
i=1

n2�2
i

✓i

⌘3/2

Ep[T ]
=

4
q

1
⇣

Ep[T ]1/4
 8d1/4

p
⇣✏

1/2
n

p
n

 1

4
.

This completes the proof.

B.2. Proof of Theorem 3.3. Recall the definition of B� in (3.2). We
define:

�B� =
X

i2B�

|p0(i)� p(i)|,(B.8)

and

pmin,� = min
i2B�

p0(i).(B.9)

Our main results concern the combined test �V in (3.9). It is easy to verify
that the size of this test is at most ↵ so it only remains to control its power.
We first provide a general result that allows for a range of possible values for
the parameter �.

Lemma B.1. For any �  ✏n
8 , if

n � 2max

⇢
2

↵
,
1

⇣

�
max

⇢
1

�
,
4096V�/2(p0)

✏2n

�
,

then the Type II error P (�V = 0)  ⇣.

Taking this lemma as given, it is straightforward to verify the result of
Theorem 3.3. In particular, if we take � = ✏n/8, then we recover the result
of the theorem.
Proof of Lemma B.1: As a preliminary, we state two technical results
from [4]. The following result is Lemma 6 in [4].

Lemma B.2. For any c � 1, suppose that n � cmax

⇢
V�(p0)1/3

p
1/3
min,��B�

,
V�(p0)
�2

B�

�
,

then we have that

Varp(T2(�)) 
16

c
[Ep(T2(�))]

2
.
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The following result appears in the proof of Proposition 1 of [4].

Lemma B.3. For any c � 1, suppose that,

n � 2c
V�/2(p0)

�2
B�

,

then we have that,

n � cmax

(
V�(p0)1/3

p
1/3
min,��B�

,
V�(p0)

�2
B�

)
.

With these two results in place, we can now complete the proof. We divide
the space of alternatives into two sets:

S1 =

8
<

:p : kp� p0k1 � ✏n,
X

i2Q�(p0)

|p0(i)� p(i)| � 3�

9
=

;

S2 =

8
<

:p : kp� p0k1 � ✏n,
X

i2Q�(p0)

|p0(i)� p(i)| < 3�

9
=

; .

In order to show desired result it then su�ces to show that when p 2 S1,
P (�tail = 0)  ⇣, and that when p 2 S2, P (�2/3 = 0)  ⇣. We verify each of
these claims in turn.
When p 2 S1: In this case, we have that P (Q�(p0)) � 2�. Under the
alternate we have that T1(�) ⇠ Poi(nP (Q�(p0)))�nP0(Q�(p0)). This yields,

P (�tail = 0)  P (Poi(nP (Q�(p0))) < ⇢nP (Q�(p0))) ,(B.10)

where

⇢ =
P0(Q�(p0))

P (Q�(p0))
+

1

P (Q�(p0))

r
P0(Q�(p0))

n↵
.

Provided ⇢  1 we obtain via Chebyshev’s inequality that,

P (�tail = 0)  1

n(1� ⇢)2P (Q�(p0))
.

We further have that,

⇢  1

2


1 +

1p
n↵�

�
.
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Under the conditions that,

n � 4

↵�
,

we obtain that ⇢  1/2, which yields that,

P (�tail = 0)  2

n�
 ⇣,

where the final inequality uses the condition on n.
When p 2 S2: In this case, we first observe that the bulk deviation must be
su�ciently large. Concretely, at most ✏n/2 deviation can occur in the largest
element and at most 3� occurs in the tail, i.e.

�B� � ✏n

2
� 3� � ✏n

8
.

Our next goal will be to upper bound the test threshold, t2(↵/2,�). In
particular, we claim that,

t2(↵/2,�) 
r

2Var(T2(�))

↵
(B.11)

Taking this claim as given for now and supposing that our sample size can

be written as n = cmax

⇢
T�(p0)1/3

p
1/3
min,��B�

,
T�(p0)
�2

B�

�
, for some c � 1, we can use

Lemma B.2 and Chebyshev’s inequality to obtain that,

P (�2/3 = 0)  1

(
p

c
16 �

q
2
↵)

2
,

provided that
p

c
16 �

q
2
↵ . Thus, it su�ces to ensure that,

n � 64max

⇢
2

↵
,
1

⇣

�
max

(
V�(p0)1/3

p
1/3
min,��B�

,
V�(p0)

�2
B�

)
,

to obtain that P (�2/3 = 0)  ⇣ as desired. Using Lemma B.3, we have that
this holds under the condition on n. It remains to verify the claim in (B.11).
In order to do so we just note that the variance of the statistic is minimized
at the null, i.e.

Var(T2(�))
(i)
�

X

i2B�

2n2
p0(i)

2/3 = ↵t
2
2(↵/2,�),

as desired. The inequality (i) follows similar reasoning to the Equation (B.3).
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B.3. Proof of Theorem 3.4. Fix any multinomial p on {1, . . . , d}, and
suppose we denote �i = p0(i) � p(i), then a straightforward computation
shows that,

Ep[Tj ] = n
2
X

t2Sj

�2
t ,(B.12)

Varp[Tj ] =
X

t2Sj

⇥
2n2

p0(t)
2 + 2n2�2

t � 4n2�tp0(t) + 4n3�2
t p0(t)� 4n3�3

t

⇤
.

(B.13)

This in turn yields that the null variance of Tj is simply Var0[Tj ] = 2n2P
t2Sj

p0(t)2.
By Chebyshev’s inequality we then obtain that:

P0(Tj > tj)  ↵/k,

which together with the union bound yields,

P0(�max = 1)  ↵.

As in the proof of Theorem 3.3 we consider two cases: when p 2 S1 and
when p 2 S2. Since the composite test includes the tail test, the analysis of
the case when p 2 S1 is identical to before. Now, we consider the case when
p 2 S2.

We have further partitioned the bulk of the distribution into at most k
sets, so that at least one of the sets Sj must witness a discrepancy of at least
✏n/(8k), i.e. when p 2 S2 we have that,

sup
j

X

i2Sj

|p0(i)� p(i)| � ✏n

8k
.

Let j⇤ denote the set that witnesses this discrepancy. We focus the rest of the
proof on this fixed set Sj⇤ and show that under the alternate Tj⇤ > tj⇤ with
su�ciently high probability. Suppose that for j⇤ we can verify the following
two conditions:

tj⇤  Ep[Tj⇤ ]

2
(B.14)

Ep[Tj⇤ ] � 2

s
Varp[Tj⇤ ]

⇣
,(B.15)
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then we obtain that P (�max = 0)  ⇣ (see (B.6)). Consequently, we focus
the rest of the proof on showing the above two conditions. We let dj⇤ denote
the size of Sj⇤ .
Condition in Equation (B.14): Observe that,

X

i2Sj⇤

�2
i �

⇣P
i2Sj⇤

|�i|
⌘2

dj⇤
� ✏

2
n

64k2dj⇤
.(B.16)

Using Equations (3.13) and (B.12), it su�ces to check that,

n

s
2k

P
i2Sj⇤

p0(i)2

↵
 n

2
X

i2Sj⇤

�2
i ,

and applying the lower bound in Equation (B.16) it su�ces if,

✏
2
n

64k2dj⇤
� 1

n

s
2k

P
i2Sj⇤

p0(i)2

↵
.

Denote the maximum and minimum entry of the multinomial on Sj⇤ as bj⇤
and aj⇤ , respectively. Noting that on each bin the multinomial is roughly
uniform one can further observe that,

dj⇤

sX

i2Sj⇤

p0(i)2  d
3/2
j⇤ bj⇤  2d3/2j⇤ aj⇤  2V✏n/8(p0).

This yields that the first condition is satisfied if,

✏
2
n � 256k5/2

n

V✏n/8(p0)p
↵

,

which is indeed the case.
Condition in Equation (B.15): We proceed by upper bounding the
variance under the alternate. Using Equation (B.13) we have,

Varp[Tj⇤ ] =
X

t2Sj⇤

⇥
2n2

p0(t)
2 + 2n2�2

t � 4n2�tp0(t) + 4n3�2
t p0(t)� 4n3�3

t

⇤


X

t2Sj⇤

⇥
4n2

p0(t)
2 + 4n2�2

t + 4n3�2
t p0(t)� 4n3�3

t

⇤

 4n2
b
2
j⇤dj⇤| {z }

U1

+4n2
X

t2Sj⇤

�2
t

| {z }
U2

+4n3
bj⇤

X

t2Sj⇤

�2
t

| {z }
U3

�4n3
X

t2Sj⇤

�3
t

| {z }
U4

.
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In order to check the desired condition, it su�ces to verify that

Ep[Tj⇤ ] � 8

s
Ui

⇣
,

for each i 2 {1, 2, 3, 4}. We consider these tasks in sequence. For the first
term we obtain that it su�ces if,

X

i2Sj⇤

�2
i �

 
16bj⇤d

1/2
j⇤

n
p
⇣

!
,

and applying the lower bound in Equation (B.16), and from some straight-
forward algebra it is su�cient to ensure that,

✏
2
n �

2048k2V✏n/8(p0)

n
p
⇣

,

which is indeed the case. For the second term, some simple algebra yields
that it su�ces to have that,

X

i2Sj⇤

�2
i �

✓
144

n2⇣

◆
.(B.17)

In order to establish this, we need to appropriately lower bound n. Let
pmin denote the smallest entry in B✏n/8(p0). For a su�ciently large universal
constant C > 0, let us denote:

✓k,↵ := Ck
2

"r
k

↵
+

1

⇣

#
.

Then using the lower bound on ✏n we obtain,

n �
✓k,↵V✏n/16(p0)

✏2n
=
✓k,↵V✏n/16(p0)

1/3
hP

i2B✏n/16(p0)
p0(i)2/3

i

✏2n
.

Now denote B = B✏n/16(p0)\B✏n/8(p0), then we have that,

pmin +
X

i2B
p0(i) � ✏n/16,

so that,

X

i2B✏n/16(p0)

p0(i)
2/3 �

X

i2B
p0(i)

2/3 + p
2/3
min =

1

p
1/3
min

"
X

i2B
p0(i)

2/3
p
1/3
min + pmin

#
� ✏n

16p1/3min

,
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where the final inequality uses the fact that for i 2 B, p0(i)  pmin. This
gives the lower bound,

n �
✓k,↵V✏n/16(p0)

1/3

16✏np
1/3
min

�
✓k,↵

⇣P
t2Sj⇤

p0(t)2/3
⌘1/2

16✏np
1/3
min

�
✓k,↵

p
dj⇤

16✏n
.

Returning to the bound in Equation (B.17), and using the lower bound in
Equation (B.16) we obtain that it su�ces to ensure that

✏n

8k
p
dj⇤

�
 

192✏n
✓k,↵

p
dj⇤

p
⇣

!
,

which is indeed the case. Turning our attention to the term involving U3 we
have, that by some simple algebra it su�ces to verify that,

X

i2Sj⇤

�2
i �

✓
144bj⇤

n⇣

◆
.

Using the lower bound in Equation (B.16) we obtain that it is su�cient to
ensure,

✏
2
n

64k2dj⇤
�
✓
144bj⇤

n⇣

◆
,

and with the observation that dj⇤bj⇤  2d3/2j⇤ aj⇤  2V✏n/8(p0) we obtain,

✏
2
n �

 
18432k2V✏n/8(p0)

n⇣

!
,

which is indeed the case. Finally, we turn our attention to the term involving
U4. In this case we have that it su�ces to show that,

n
1/2

X

i2Sj⇤

�2
i � 16

sP
i2Sj⇤

�3
i

⇣
,

by the monotonicity of the `p norm it su�ces then to show that,

n
1/2

X

i2Sj⇤

�2
i � 16

vuut
hP

i2Sj⇤
�2

i

i3/2

⇣
,
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and after some simple algebra this yields that it su�ces to have,

X

i2Sj⇤

�2
i �

(16)4

⇣2n2
,

and this follows from an essentially identical argument to the one handling
the term involving U2. This completes the proof.

APPENDIX C: PROOFS FOR EXAMPLES OF HÖLDER TESTING

In this Section we provide proofs of the claims in Section 4.1. For conve-
nience, we restate all the claims in the following lemma.

Lemma C.1. • Suppose that p0 is a standard one-dimensional Gaus-
sian, with mean µ, and variance ⌫2, then we have that:

T0(p0) = (8⇡)1/2⌫.(C.1)

• Suppose that p0 is a Beta distribution with parameters ↵,�. Then we
have,

T0(p0) =

✓Z 1

0

p
p0(x)dx

◆2

=
B

2((↵+ 1)/2, (� + 1)/2)

B(↵,�)
,(C.2)

where B : R2 7! R is the Beta function. Furthermore, if we take
↵ = � = t � 1, then we have that,

⇡
2

4e4
t
�1/2  T0(p0) 

e
4

4
t
�1/2

.(C.3)

• Suppose that p0 is Cauchy with parameter ↵, then we have that,

T0(p0) = 1.(C.4)

Furthermore, if 0  �  0.5 then,

4↵

⇡


ln2

✓
1

�

◆�
 T�(p0) 

4↵

⇡


ln2

✓
2e

⇡�

◆�
.(C.5)

• Suppose that p0 has a Pareto distribution with parameter ↵ then we
have that,

T0(p0) = 1,(C.6)

while the truncated T -functional satisfies:

4↵x0
(1� ↵)2

⇣
�
� 1�↵

2↵ � 1
⌘2

= T�(p0) 
4↵x0

(1� ↵)2
�
� 1�↵

↵ .(C.7)
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Proof. Notice that Claims (C.4) and (C.6) follow by taking � ! 0 in
Claims (C.5) and (C.7), respectively. We prove the remaining claims in turn.
Proof of Claim (C.1): Observe that,

T0(p0) =
1p
2⇡⌫

✓Z 1

�1
exp(�(x� µ)2/(4⌫2))dx

◆2

=
1p
2⇡⌫

4⇡⌫2

=
p
8⇡⌫.

Proof of Claim (C.2): The Beta density can be written as:

p0(x) =
�(↵+ �)

�(↵)�(�)
x
↵�1

x
��1 =

1

B(↵,�)
x
↵�1

x
��1

,

where � : R 7! R denotes the Gamma function. Some simple algebra yields
that the T -functional is simply:

T0(p0) =

Z 1

0

p
p0(x)dx =

B((↵+ 1)/2, (� + 1)/2)p
B(↵,�)

.(C.8)

Proof of Claim (C.3): We now take ↵ = � = t � 1 in the above expression.
To prove the claim we use standard approximations to the Beta function
derived using Stirling’s formula. Recall, that by Stirling’s formula we have
that:

p
2⇡n

⇣
n

e

⌘n
 n!  e

p
n

⇣
n

e

⌘n
.

We begin by upper bounding the Beta function for integers ↵,� � 0:

B(↵,�) =
�(↵)�(�)

�(↵+ �)
=

(↵� 1)!(� � 1)!

(↵+ � � 1)!
=

↵!�!

(↵+ �)!

↵+ �

↵�

 e
2

p
2⇡

↵+ �

↵�

p
↵�↵

↵
�
� exp(↵+ �)p

↵+ �(↵+ �)↵+� exp(↵+ �)

=
e
2

p
2⇡

s
↵+ �

↵�

↵
↵
�
�

(↵+ �)↵+�
.

Now, setting ↵ = � = t � 1, we obtain:

B(t, t)  e
2

p
⇡

2�2t

p
t
.
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We can similarly lower bound the Beta function as:

B(t, t) � 2
p
2⇡

e

2�2t

p
t
.

We also need to bound the Beta function at certain non-integer values. In
particular, we observe that,

B(t+ 1, t+ 1)  B(t+ 1/2, t+ 1/2)  B(t, t),

so that we can similarly sandwich the Beta function at these non-integer
values as:

2⇡

4e

2�2t

p
t
.  B(t+ 1/2, t+ 1/2)  e

2

p
⇡

2�2t

p
t
.

With these bounds in place we can now upper and lower bound the T -
functional in (C.8). We can upper bound this expression by considering the
cases when t is odd and t is even separately, and taking the worse of these
two bounds to obtain:

T (p0) 
e
2

2
t
�1/4

.

Similarly, using the above results we can lower bound the T -functional as:

T (p0) �
⇡

2e2
t
�1/4

,

and this yields the claim.
Proof of Claim (C.5): We are interested in the truncated T -functional.
The set B� of probability content 1� �, takes the form [�↵,↵], where

↵ = � tan
⇣
⇡

2
(1� �)

⌘
= � cot

⇣
⇡�

2

⌘
.

Using the inequality that cot(x)  1
x , we can upper bound ↵ as:

↵  2�

⇡�
.

Similarly, we can (numerically) lower bound ↵ by noting that for 0  �  0.5
we have that,

↵ � �

4�
.
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With these bounds in place, we can now proceed to upper and lower bound
the truncated T functional. Concretely,

T�(p0) 
�

p
⇡�

Z 2�
⇡�

� 2�
⇡�

1p
x2 + �2

dx  2�
p
⇡�

"Z �

0

1

�
dx+

Z 2�
⇡�

�

1

x
dx

#

 2�
p
⇡�


1 + ln

✓
2

⇡�

◆�

= 2

r
�

⇡


ln

✓
2e

⇡�

◆�
.

In a similar fashion, we can lower bound the functional as:

T�(p0) � 2

r
�

⇡


ln

✓
1

�

◆�
.

Taken together these bounds give the desired claim.
Proof of Claim (C.7): We treat x0 as a fixed constant. The CDF for the
Pareto family of distributions takes the simple form:

F (x) = 1�
⇣
x0

x

⌘↵
, for x � x0,

we obtain that the set B� takes the form [x0, x0��1/↵]. So that the truncated
functional is simply:

T�(p0) =

Z x0��1/↵

x0

p
p0(x;x0,↵)dx

=
2
p
↵x0

1� ↵

⇣
�
� 1�↵

2↵ � 1
⌘
,

which yields the desired claim.

APPENDIX D: PROPERTIES OF THE T -FUNCTIONAL

The rate for Hölder testing is largely dependent on the truncated T -
functional of the null hypothesis. In this section we establish several properties
of the T -functional, and its stability with respect to perturbations. There
are two notions of stability of the truncated T -functional that are of interest:
its stability with respect to perturbation of the truncation parameter, and
its stability with respect to perturbations of the density p0. In particular,
the truncation stability determines the discrepancy between the upper and
lower bounds in Theorem 4.1.
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Our interest is in the di↵erence between T�1(p0) and T�2(p0) (where
without loss of generality we take �1  �2). We show that if the support of
the density is stable with respect to the truncation parameter then so is the
T -functional. Intuitively, the discrepancy can be large only if the density has
a long �1-tail but a relatively small �2-tail. Returning to the definition of the
T -functional in (4.2), we let B�1 and B�2 denote the sets that achieve the
infimum for T�1 and T�2 , respectively. These are not typically well-defined
for two reasons: the set may not be unique and the infimum might not be
attained. The second problem can be easily dealt with by introducing a small
amount of slack. To deal with the non-uniqueness we simply choose the sets
that have maximal overlap in Lebesgue measure, i.e. we define B�1 and B�2

to be two sets that have maximal Lebesgue overlap such that,

⇣Z

B�1

p
p0(x)dx

⌘2
� T�1(p0)� ⇠,

⇣Z

B�2

p
p0(x)dx

⌘2
� T�2(p0)� ⇠,

for an arbitrary small ⇠ > 0. The quantity ⇠ may be taken as small as we like
and has no e↵ect when chosen small enough so we ignore it in what follows.
We define, S = B�1\B�2 which measures the stability of the support with
respect to changes in the truncation parameter, i.e. if the Lebesgue measure
µ(S) is small then the support is stable. With these definitions in place we
have the following lemma:

Lemma D.1. For any two truncation levels �1  �2, we have that,

T
�
�1
(p0)� T

�
�2
(p0)  (�1 � �2)

�
µ(S)1��

.

Remarks:

• Since � < 1, this result asserts that if the support of the density is
stable with respect to the truncation parameter then so is the truncated
T -functional. This is the case in all the examples we considered in
Section 4.1.

• If we restrict attention to compactly supported densities then we can
upper bound µ(S) by the Lebesgue measure of the support indicating
that in these cases the truncated T -functional is somewhat stable.

• On the other hand this result also gives insight into when the truncated
functional is not stable. In particular, it is straightforward to construct
examples of densities p0 which have a very long �1-tail but a light
�2-tail, in which case this discrepancy can be arbitrarily large. Noting
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however that in our bounds the regime of interest is when the truncation
parameter is not fixed, i.e. when � ! 0, in which case this discrepancy
can be large only for carefully constructed pathological densities.

Proof. The result follows using Hölder’s inequality:

T
�
�1
(p0)� T

�
�2
(p0) =

Z

S
p
�
0(x)dx

= µ(S)

Z

S

p
�
0(x)

µ(S)
dx

 µ(S)

✓Z

S

p0(x)

µ(S)
dx

◆�

= µ(S)1��(�1 � �2)
�
.

In order to understand the stability of the T -functional with respect
to perturbations of p0 it is natural to consider a form of the modulus of
continuity. We restrict our attention to densities p0 which have support
contained in a fixed set S, and denote these densities by L(Ln, S), and only
consider the case when d = 1 and hence � = 1/2.

Focussing on the case when the truncation parameter is fixed (say to 0)
we define:

s(p0, ⌧, S) = sup
p,p02L(Ln,S),kp�p0k1⌧

|T �
0 (p)� T

�
0 (p0)|.

With these definitions in place, we have the following result:

Lemma D.2. For any p0, the modulus of continuity of the T -functional
is upper bounded as:

s(p0, ⌧, S) 
p
⌧µ(S).

Remark:

• This result guarantees that for densities that are close in `1, their cor-
responding T -functionals are close, provided that we restrict attention
to compactly supported densities.

• On the other hand, an inspection of the proof below reveals that if we
eliminate the restriction of compact support, then for any density p0,
we can construct a density p that is close in `1 but has an arbitrarily
large discrepancy in the T -functional, i.e. the T -functional can be highly
unstable to perturbations of p0 if we allow densities with arbitrary
support.
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Proof. Notice that,

T
�
0 (p)� T

�
0 (p0) =

Z

S
(
p
p(x)�

p
p0(x))dx

= µ(S)

Z

S
(
p
p(x)�

p
p0(x))

1

µ(S)
dx

 µ(S)

sZ

S
(
p
p(x)�

p
p0(x))2

1

µ(S)
dx

(i)

p
µ(S)kp� p0k1 

p
⌧µ(S),

where (i) uses the fact that the Hellinger distance is upper bounded by the
`1 distance.

D.1. Proof of Claim (4.6). This claim is a straightforward consequence
of Hölder’s inequality. We have that,

T�(p0) = inf
B2B�

✓Z

B
p
�
0(x)dx

◆1/�

.

We restrict our attention to densities with support contained in a fixed set S.
We let B� denote an arbitrary set in B� that minimizes the above integral
(dealing with non-uniqueness as before). Then,

T
�
� (p0) = µ(B�)

Z

B�

p
�
0(x)

µ(B�)
dx

(i)
 µ(B�)

✓Z

B�

p0(x)

µ(B�)
dx

◆�

= µ(B�)
1��(1� �)�  µ(S)1��(1� �)�

where (i) uses Hölder’s inequality. This yields the claim. For the uniform
distribution u on the set S we have that for any set B� of mass 1� �,

T
�
� (u) =

Z

B�

1

µ�(S)
dx

= µ(S)1��(1� �),

which matches the result of (4.6) up to constant factors involving � and �.
In particular, our interest is in the regime when � ! 0, and � is a constant,
in which case the two quantities are equal.



LOCALLY MINIMAX TESTING: SUPPLEMENT 59

APPENDIX E: TECHNICAL RESULTS FOR HÖLDER TESTING

In this section we provide the remaining technical proofs related the
Theorem 4.1. We begin with the preliminary Lemmas 4.3 and 4.4.

E.1. Preliminaries.

E.1.1. Proof of Lemma 4.1. We first prove the upper bound. Note that,

✏n =

Z
min

⇢
p0(x)

x
,
✏np0(x)�

µ(x)

�
dx 

Z

B✏n/�

✏np0(x)�

µ(x)
+

Z

Bc
✏n/�

p0(x)

x

Z

B✏n/�

✏np0(x)�

µ(x)
+
✏n

�x
.

which yields that,

µ(x) 
✓
1� 1

�x

◆�1

T✏n/�.

Choosing � = 2/x we obtain the upper bound. In order to prove the lower
bound, we first define:

G =

⇢
x :

✏np0(x)�

µ(x)
<

p0(x)

x

�
.

Note that,

✏n �
Z

Gc

p0(x)

x
,

so we obtain that P(G) � 1� x✏n. Also, we have that,

✏n �
Z

G

✏np0(x)�

µ(x)
dx,

which in turn yields that,

µ(x) �
Z

G
p0(x)

�
dx � T

�
x✏n ,

where the final inequality uses the fact that Tx✏n is defined to be the infimizer
of the integral of p0(x)� over all sets of measure at least 1� x✏n while G is
one such set.



60 S. BALAKRISHNAN AND L. WASSERMAN

E.1.2. Proof of Lemma 4.3. Let A be all sets A such that P
n
0 (A)  ↵.

Now

⇣n(P) � inf
�

Q(� = 0) � 1� ↵� sup
A2A

|Q(A)� P
n
0 (A)|

� 1� ↵� sup
A

|Q(A)� P
n
0 (A)|

= 1� ↵� 1

2
kQ� P

n
0 k1.

Note that

kQ� P
n
0 k1 = E0|Wn(Z1, . . . , Zn)� 1| 

p
E0[W 2

n(Z1, . . . , Zn)]� 1.

The result then follows from (4.20).

E.1.3. Proof of Lemma 4.4. We divide the proof into several claims.
Claim 1: Each p⌘ is a density function. Note that

Z
p⌘(x)dx = 1.

Now we show it is non-negative. Let x 2 Aj . Then

p⌘(x) = p0(x) + ⇢j⌘j j(x) � p0(x)� ⇢j j(x)

� p0(x)�
⇢j

c
d/2
j h

d/2
j

k k1.

Now, we observe that for each piece of our partition we have that,

p0(x) �
p0(xj)

2
� (

p
dhj)s

2✓1
= Ln(

p
dhj)

s
,

where we use the fact that ✓1 = 1/(3Ln). We then obtain that it su�ces to
choose,

⇢j 
Lnc

d/2
j

k k1
h
d/2+s
j ,

which is ensured by the condition in (4.22).

Claim 2: Each p⌘ 2 L(Ln). Let x, y be two points, and that x 2 Aj , y 2 Ak.
We consider two cases: when neither of j, k are 1, and when at least one of
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them is. Noting that we do not perturb A1 the second case follows from a
similar argument to that of the first case. In the first case, we have that:

|p⌘(y)� p⌘(x)|  |p0(x)� p0(y)|+

�����
⇢k⌘k

c
d/2
k h
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k
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ckhk

�
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 cintLnkx� yks2 +
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d/2+s
k h

d/2+s
k

+
⇢j max{2k k1, k 0k1}kx� yks2

c
d/2+s
j h

d/2+s
j

,

so that it su�ces to ensure that for i 2 {1, . . . , N},

⇢i 
(1� cint)Lnc

d/2+s
i h

d/2+s
i

2max{2k k1, k 0k1} ,

which, noting that 1 � cj � 1/4, is ensured by the condition in (4.22).
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Claim 3.
R
|p0 � p⌘| � ✏n. We have

Z
|p0 � p⌘| =

X

j

Z

Aj

|p0 � p⌘| =
X

j

Z

Aj

|⇢j⌘j j |

=
X

j

⇢j

Z

Aj

| j | =
X

j

⇢j

Z

Aj

1

c
d/2
j h

d/2
j

���� 
✓
x� xj

cjhj

◆����

=
X

j

⇢jc
d/2
j h

d/2
j

Z

[�1/2,1/2]d
| | = !2

X

j

⇢jc
d/2
j h

d/2
j � ✏n,

where we use the condition in (4.23). Taken together claims 1, 2 and 3 show
that p⌘ 2 L(Ln) and that kp⌘ � p0k1 � ✏n.

Claim 4: Likelihood ratio bound. For observations {Z1, . . . , Zn} the
likelihood ratio is given as

Wn(Z1, . . . , Zn) =
1

2N

X

⌘2{�1,1}N

Y

i

p⌘(Zi)

p0(Zi)

and

W
2
n(Z1, . . . , Zn) =

1

22N

X

⌘2{�1,1}N

X

⌫2{�1,1}N

Y

i

p⌘(Zi)p⌫(Zi)

p0(Zi)p0(Zi)

=
1

22N

X

⌘2{�1,1}N

X

⌫2{�1,1}N

Y

i

 
1 +

PN
j=1 ⇢j⌘j j(Zi)

p0(Zi)

! 
1 +

PN
j=1 ⇢j⌫j j(Zi)

p0(Zi)

!
.

Taking the expected value over Z1, . . . , Zn, and using the fact that the  js
have disjoint support we obtain

E0[W
2
n(Z1, . . . , Zn)] =

1

22N

X

⌘2{�1,1}N

X

⌫2{�1,1}N

0

@1 +
NX

j=1

⇢
2
j⌘j⌫jaj

1

A
n

 1

22N

X

⌘2{�1,1}N

X

⌫2{�1,1}N
exp

0

@n

X
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⇢
2
j⌘j⌫jaj

1

A

where

aj =

Z

Aj

 
2
j (z)

p0(z)
dz =

1

p0(zj)

Z

Aj

 
2
j (z)

p0(zj)

p0(z)
dz

 2

p0(zj)
.
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Thus E0[W 2
n(Z1, . . . , Zn)]  E⌘,⌫e

nh⌘,⌫i where we use the weighted inner
product defined as:

h⌘, ⌫i :=
X

j

⇢
2
j⌘j⌫jaj .

Hence,

E0[W
2
n(Z1, . . . , Zn)]  E⌘,⌫e

nh⌘,⌫i =
Y

j

Ee
n⌘j⌫j

=
Y

j

cosh(n⇢2jaj) 
Y
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4
ja

2
j ) 

Y

j

exp(n2
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4
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8
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:
X
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2
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4
ja

2
j

9
=

;  exp

8
<

:4n2
X

j

⇢
4
j

p
2
0(xj)

9
=

;  C0,

where the final inequality uses the condition in (4.24). From Lemma 4.3, it
follows that the Type II error of any test is at least �.

E.2. Further technical preliminaries. Our analysis of the pruning
in Algorithm 2 uses various results that we provide in this section.

Lemma E.1. Let P be a distribution with density p and let � 2 [0, 1). Let

A = {x : p(x) � t}

for some t. Define ✓ = P (A). Finally, let B = {B : P (B) � ✓}. Then, for
every B 2 B, Z

A
p
�(x)dx 

Z

B
p
�(x)dx.

Proof. Let
S1 = A

\
B

c
, S2 = A

c
\

B.

Then Z

A
p
�(x)dx�

Z

B
p
�(x)dx =

Z

S1

p
�(x)dx�

Z

S2

p
�(x)dx.

So it su�ces to show that
R
S1

p
�(x)dx 

R
S2

p
�(x)dx. Note that:

1. S1 and S2 are disjoint,
2. infy2S1 p(y) � supy2S2

p(y) and
3.

R
S1

p(x)dx 
R
S2

p(x)dx.
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where the last fact follows since
R
A p(x)dx 

R
B p(x)dx. Thus, letting g(x) =

1/p1��(x), we have that
g(x)  g(y)

for all x 2 S1 and y 2 S2. So
Z

S1

p
�(x)dx =

Z

S1

p(x)g(x)dx  sup
x2S1

g(x)

Z

x2S1

p(x)dx

 sup
x2S1

g(x)

Z

x2S2

p(x)dx  inf
x2S2

g(x)

Z

x2S2

p(x)dx


Z

S2

p(x)g(x)dx =

Z

S2

p
�(x)dx.

The following lemma concerns the optimal truncation of a piecewise constant
function. Suppose we have a piecewise constant positive function f , which is
constant on the partition {A1, . . . , AN}. Without loss of generality suppose
that A1, . . . , AN are arranged in decreasing order of the value of f on the
cell Ai. The lemma follows from lemma E.1.

Lemma E.2. With the notation introduced above suppose that we con-
struct a set A =

St
i=1Ai and let ✓ =

R
A f(x) then we have that for any

�  1
Z

A
f
�(x)dx  inf

B,
∫
B f(x)�✓

Z

B
f
�(x)dx.

The following result is the discrete analogue of the one above. Suppose that we
have a sequence {p1, . . . , pd} of positive numbers sorted as p1 � p2 � . . . pd.
By replacing Lebesgue measure in Lemma E.1 by the counting measure we
get:

Lemma E.3. Suppose we construct a set of indices A = {1, . . . , t} and
let ✓ =

Pt
i=1 pi, then we have that,

tX

i=1

p
2/3
i  min

J

X

j2J ,
∑

k2J pk�✓

p
2/3
j .

E.3. Proof of Lemma 4.2. We divide the proof into two steps: the
first step analyzes the output of Algorithm 1, and the second step analyzes
the pruning of Algorithm 2.
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E.3.1. Analysis of Algorithm 1. We analyze Algorithm 1, with the pa-
rameters: ✓1 = 1/(3Ln) and a, b = ✏n/1024. We allow ✓2 > 0 to be arbitrary.

Before turning our attention to the main properties, we verify that the
partition created by Algorithm 1 is indeed finite. It is immediate to check that
the partition P† = {A1, . . . , AÑ , A1} has the property that P0(A1)  a+ b,

which yields the upper bound of property (4.16). We claim that no cell Ai has
very small diameter. Recall that Algorithm 1 is run on Sa a set of probability
content 1� a (centered around the mean of p0). Define,

pmin =
b

vol(Sa)
,

Suppose that,

(E.1) [diam(Ai)]
s
<

1

4
min

�
✓1pmin, ✓2p

�
min

 
,

then let us denote the parent cell of Ai by Ui and its centroid by yi. The
parent cell Ui, satisfies the condition that:

[diam(Ui)]
s
<

1

2
min

�
✓1pmin, ✓2p

�
min

 
.

Since this cell was split, we must have that neither stopping rule (4.10)
nor (4.11) was satisfied. We claim that if the second stopping rule was not
satisfied it must be the case that,

p0(yi) 
pmin

2
.

Indeed, if the second rule is not satisfied we obtain that:

min {✓1p0(yi), ✓2p�0(yi)}  1

2
min

�
✓1pmin, ✓2p

�
min

 
,

which via some simple case analysis of the min’s, together with the fact that
� < 1 yields the desired claim. Now using the Hölder property and the fact
that ✓1 = 1/(3Ln), we have that:

sup
x2Ui

p0(x)  p0(yi) + Ln [diam(Ui)]
s
<

pmin

2
+

pmin

4
< pmin.

This means that the first stopping rule was in fact satisfied and we could not
have split Ui. This in turn means that every cell in our partition (excluding
A1) has diameter at least:

[diam(Ai)]
s
>

1

4
min

�
✓1pmin, ✓2p

�
min

 
.
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This yields that our produced partition is finite and in turn that algorithm
terminates in a finite number of steps.
Proof of Claim (4.14): We now show that the partition satisfies the
condition that,

1

4
min {✓1p0(xi), ✓2p�0(xi)}  [diam(Ai)]

s  min {✓1p0(xi), ✓2p�0(xi)} .

The upper bound is straightforward since it is enforced by our stopping rule.
To observe that the lower bound is always satisfied we note that if

[diam(Ai)]
s
<

1

4
min {✓1p0(xi), ✓2p�0(xi)} ,

then denoting the parent cell of Ai to be Ui (with centroid yi) we obtain
that,

[diam(Ui)]
s
<

1

2
min {✓1p0(xi), ✓2p�0(xi)} .

Using this we obtain that,

p0(yi) � p0(xi)� Ln [diam(Ui)]
s � 3

4
p0(xi).

This yields that,

[diam(Ui)]
s
<

1

2(3/4)�
min {✓1p0(yi), ✓2p�0(yi)} < min {✓1p0(yi), ✓2p�0(yi)} ,

where in our final step we use the fact that � < 1. This results in a contra-
diction since this means that Ui satisfies our stopping rule and would not
have been split.
Proof of Claim (4.15): This is a straightforward consequence of the
previous property. In particular, we have that [diam(Ai)]

s  ✓1p0(xi), with
✓1 = 1/(3Ln) so that,

sup
x2Ai

p0(x)  p0(xi) + Ln
✓1p0(xi)

2
 5

4
p0(xi).

Similarly,

inf
x2Ai

p0(x)  p0(xi)� Ln
✓1p0(xi)

2
 3

4
p0(xi),

which yields the desired claim.
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E.3.2. Analysis of Algorithm 2. We now turn our attention to studying
the properties of the pruned partition P = {A1, . . . , AN , A1}. For this
algorithm, we choose ✓2 = ✏n/(8Lnµ(1)) and take c = ✏n/512.
Proof of Claim (4.14): The pruning algorithm completely eliminates some
cells, adding them to A1. In the case when Q(j⇤)  c/5 we change the
diameter of the final cell AN , shrinking it by a 1� ↵ factor. By definition
↵  1/5, and this yields Claim (4.14).
Proof of Claim (4.15): Since the pruning step either eliminates cells,
adding them to A1, or reduces their diameter this claim follows directly
from the fact that this property holds for P†.
Proof of Claim (4.16): The pruning eliminates cells of total additional
mass at most c so we obtain that, P0(A1)  a+ b+ c  ✏n/256 verifying
the upper bound in (4.16). To verify the lower bound, we claim that the
di↵erence in the probability mass of the unpruned partition, {A1, . . . , AÑ}
and the pruned partition {A1, . . . , AN} is at least c/5, i.e.

P0

⇣ Ñ[

j=1

Aj

⌘
� P0

⇣ N[

j=1

Aj

⌘
� c/5.

In the case when Q(j⇤) � c/5 the claim is direct. When this is not the case
then the cell AN was too large, so that Q(j⇤) + P0(AN ) � c, which implies
that, P0(AN ) � 4c/5. Let xN be the center of AN . Using property (4.15)
and the fact that (1� ↵)d  (1� ↵) verify that,

P0(D1)  4(1� ↵)P0(AN ).

Using the definition of ↵ we obtain that P0(D2) � c/5 as desired.
Proof of Claim (4.17): We claim that the partition satisfies the property
that,

Ln

NX

i=1

[diam(Ai)]
s vol(Ai) 

✏n

4
.(E.2)

Taking this claim as given we verify the property (4.17). We divide the proof
into two cases:

1. P (A1) � ✏n/4: In this case we obtain that,

NX

i=1

|P0(Ai)� P (Ai)|+ |P0(A1)� P (A1)| � |P0(A1)� P (A1)| � ✏n/8,

using the upper bound in property (4.16).
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2. P (A1)  ✏n/4: In this case we observe that,
Z

A1

|p0(x)� p(x)|dx 
Z

A1

p0(x)dx+

Z

A1

p(x)dx  3✏n
8

,

and this yields that,
Z

Rd\A1

|p0(x)� p(x)|dx � ✏n(1� 3/8).

Now denoting by p̄ the approximation of p by a density equal to the
average of p on each cell of the partition we have that,
Z

Rd\A1

|p0(x)� p(x)|dx 
Z

Rd\A1

|p0(x)� p̄0(x)|dx+

Z

Rd\A1

|p(x)� p̄(x)|dx

+
NX

i=1

|p0(Ai)� p(Ai)|dx.

For any Ln-Hölder density we have that,

Z

Rd\A1

|p(x)� p̄(x)|dx  Ln

NX

i=1

[diam(Ai)]
s vol(Ai) 

✏n

4
,

using claim (E.2). This yields that,

NX

i=1

|p0(Ai)� p(Ai)|+ |p0(A1)� p(A1)| �
NX

i=1

|p0(Ai)� p(Ai)| � ✏n(1� 7/8) = ✏n/8,

as desired.

It remains to prove claim (E.2). Notice that,

Ln

NX

i=1

[diam(Ai)]
s vol(Ai)  Ln

NX

i=1

min {✓1p0(xi), ✓2p�0(xi)} vol(Ai)
(i)
 2Ln

Z

Rd
min {✓1p0(x), ✓2p�0(x)} dx

= 2Ln

Z

Rd
min

⇢
p0(x)

3Ln
,
✏np

�
0(x)

8Lnµ(3/8)

�
dx

(ii)
=
✏n

4
,

where step (i) uses property (4.15) and (ii) uses the definition of µ in (4.12).
Proof of Claim (4.18): Recall that we have chosen c = ✏n/512. In order
to prove this claim we need to use properties of the pruning step. Let us
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define ep0(x) as the piecewise constant function formed by replacing p0(x) by
its maximum value over the cell containing x, and 0 outside the support of
{A1, . . . , AÑ}. We note that,

Z

K
p
�
0(x)dx 

Z

K
ep�0(x)dx.(E.3)

Now, abusing notation slightly and ignoring the set A1 we denote the original
partition as {A1, . . . , AÑ}, which we take as sorted by the values p0(Ai), and
the pruned partition as {A1, . . . , AN}, noting that we might potentially have

split the last cell AN into two cells. We let A =
SÑ

i=1Ai. Let us denote,

B =

⇢
B : B ⇢ A,

Z

Bc
ep0(x)dx 

Z

Kc
ep0(x)dx

�
.

Using Lemma E.2 we obtain that,
Z

K
ep�0(x)dx  inf

B2B

Z

B
ep�0(x)dx.(E.4)

Noting, that
Z

Kc
ep0(x)dx �

Z

Kc
p0(x)dx � c

5
,

and defining,

C =

⇢
C : C ⇢ A,

Z

Cc
ep0(x)dx  c

5

�
.

we obtain that,

inf
B2B

Z

B
ep�0(x)dx  inf

C2C

Z

C
ep�0(x)dx.(E.5)

Defining,

D =

⇢
D : D ⇢ A,

Z

Dc
p0(x)dx  c

10

�
,

we see that
D ⇢ C ⇢ B

so that

inf
C2C

Z

C
ep�0(x)dx  2� inf

D2D

Z

D
p
�
0(x)dx  2�T �

c/10.(E.6)
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Putting together Equations (E.3), (E.4), (E.5) and (E.6) we obtain the
desired result.
Proof of Claim (4.19): In order to lower bound the density over the pruned
partition we will show that our pruning step is approximately a level set
truncation. We have that for any point x that is removed and any point y
that is retained it must be the case that,

p0(x)  2p0(y).

where we used property (4.15). Let K denote the set of points retained by
the pruning. The above observation yields that, there exists some t � 0 such
that,

{p0 � t} ✓ K ✓ {p0 � t/2}.

We know that
R
K p0(x)dx  1� c/10. Consider, the set

G(u) = {x : p0(x) � u} .

Suppose that for some u we can show that,

P(K)  P(G(u)),

then we can conclude that t � u, and further that the density on K is at
least u/2. It thus only remains to find a value u such that P(G(u)) � 1�c/10.

Suppose we choose u =
⇣

c
10µ(c/(10✏n))

⌘1/(1��)
, and recall that,

✏n =

Z
min

⇢
p0(x)

c/(10✏n)
,

✏np
�
0(x)

µ(c/(10✏n))

�
dx.

Over the set Gc the minimizer is always the first term above which yields,

✏n �
Z

Gc

p0(x)

c/(10✏n)
dx,

i.e. that P(Gc)  c/10, as desired. This in turn yields the claim.

E.4. Proof of Lemma 4.5. To show this, it su�ces to show that more
mass is truncated from q than is truncated from p, i.e. letting {t+1, . . . , N+1}
denote the ✏n/128 tail of q we need to show that,

(E.7)
N+1X

t+1

qi � P0(A1),
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and then we apply Lemma E.3. To show (E.7) we proceed as follows. Note
that P0(A1) = qa for some a. If t  a then

PN+1
t+1 qi � P0(A1) follows

immediately. Now suppose that t > a. From the definition of t we know
that qt +

PN+1
t+1 qi � ✏n/128 so that

PN+1
t+1 qi � ✏n/128 � qt. Since t >

a, qt  P0(A1)  ✏n/256 and so
PN+1

t+1 qi � ✏n/256 � P0(A1) so thatPN+1
t+1 qi � P0(A1) as required. Thus (E.7) holds.

APPENDIX F: ADAPTING TO UNKNOWN PARAMETERS

In this section, we consider ways to choose the parameter � for the max
test, and for the test in [4], and then consider tests that are adaptive to the
typically unknown smoothness parameter Ln.

F.1. Choice of σ. The max test and the test from [4] require choosing
the truncation parameter � = ✏n/8. In typical settings, we do not assume
that ✏n is known. We consider the case of the test from [4] though our ideas
generalize to the max test in a straightforward way.

Perhaps the most natural way to choose the parameter � is to solve the
critical equation and choose � accordingly, i.e. we find e� that satisfies:

e� = max

(
1

n
,

r
V�̃/16(p0)

n

)
,(F.1)

and then we choose the tuning parameter � := Cmax{1/↵, 1/⇣}e�, for a
su�ciently large constant C � 1.

When the unknown ✏n � 8Cmax{1/↵, 1/⇣}e�, then it is clear that our
choice guarantees that the tuning parameter � is chosen su�ciently small,
i.e. �  ✏n/8 as desired. It is also clear that the test has size at most ↵. It
remains to understand the Type II error. Inverting the above relationship
we see that,

n = max

⇢
1

e� ,
V�̃/16(p0)

e�2

�
.

Noting that �/2 � e�/16, and that Cmax{1/↵, 1/⇣} � 1 we obtain that,

n � Cmax{1/↵, 1/⇣}max

⇢
1

�
,
V�/2(p0)

�2

�
� Cmax{1/↵, 1/⇣}max

⇢
1

�
,
V�/2(p0)

✏2n

�
.

An application of Lemma B.1 shows that the Type II error of the test is at
most ⇣ as desired. Thus, we see that this test provides the same result as
the test in Theorem 3.3 without knowledge of ✏n.
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Although adequate from a theoretical perspective, the previous choice
of the parameter depends on an unknown (albeit universal) constant. An
alternative is to consider a range of possible values for the parameter � and
appropriately adjust the threshold ↵ via a Bonferroni correction. One natural
range is to consider scalings of the parameter e� in (F.1). More generally, if
we considered ⌃ = {�1, . . . ,�K}, a natural goal would be to compare the
risk of the Bonferroni corrected test to the oracle test which minimizes the
risk over the set ⌃ of possible tuning parameters. We leave a more detailed
analysis of this test to future work.

F.2. Adapting to unknown Ln. Our tests for Hölder testing, in addi-
tion to assuming knowledge of ✏n use knowledge of the Hölder constant Ln in
constructing the binning. Constructing tests which are adaptive to unknown
smoothness parameters is a problem which has received much attention in
classical works. The techniques from the previous section can be used to
construct tests without knowledge of ✏n. We focus in this section on adapting
to Ln but note that similar ideas are useful in constructing tests which are
adaptive to the parameter s. We take s = 1 to simplify notation. We focus
only on establishing upper bounds. Some lower bounds follow from standard
arguments and we highlight important open questions in the sequel.

In order to define precisely the notion of an adaptive test, we follow the
prescription of Spokoiny [3] (see also [1, 2]). As in (4.3) define a sequence of
critical radii wn(p0, L) as the solutions to the critical equations:

wn(p0, L) =

 
L
d/2

Tcwn(p0,L)(p0)

n

!2/(4+d)

for a su�ciently small constant c > 0. We now define the adaptive upper
critical radii as the solutions to the critical equations:

w
a
n(p0, L) =

 
L
d/2 log log(n)Tcwa

n(p0,L)(p0)

n

!2/(4+d)

.(F.2)

We can upper bound the ratio:

w
a
n(p0, L)

wn(p0, L)
 (log log(n))2/(4+d)

.

This ratio upper bounds the price for adaptivity. It will be necessary to
distinguish the (known) smoothness parameter of the null from the possibly
unknown parameter Ln in (2.5). We will denote the smoothness parameter
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of p0 by L0. We note that in the setting where Ln was known, we assumed
that both p0, p 2 L(Ln) and this in turn requires that Ln � L0.

We take ↵, ⇣ > 0 to be fixed constants. For a su�ciently large constant
C > 0 (which depends on both ↵, ⇣ > 0) we define the class of densities:

L(Ln, w
a
n) = {p : p 2 L(Ln), kp� p0k1 � Cw

a
n(p0, Ln)}.

For some p0 2 L(L0), consider the hypothesis testing problem of distinguish-
ing:

H0 : p = p0, p0 2 L(L0) versus H1 : p 2
[

Ln�L0

L(Ln, w
a
n).(F.3)

In order to precisely define our testing procedure we first show that there are
natural upper bounds on Ln. In particular, we claim that when Ln � n

2/d
L0

then the critical radius remains lower bounded by a constant.
We have the following lemma. We let C`, c > 0 denote universal constants.

Lemma F.1. If Ln � C`n
2/d

L0, then

✏n(p0, Ln) � c.

Thus we restrict our attention to the regime where Ln 2 [L0, Cn
2/d

L0],
for a su�ciently large constant C > 0. A natural strategy is then to consider
a discretization of the set of possible values for Ln,

L = {L0, 2L0, . . . , 2
log2(Cn2/d)

L0}.

The multinomial tests we build on (in Theorem 3.3) have critical radii that
scale with max{1/↵, 1/⇣} in order to control the Type I and Type II error
at ↵ and ⇣, respectively. It is possible to improve the dependence on these
parameters via a simple sample-splitting scheme. In more detail, to control
the Type I and Type II errors at ↵ and ⇣ we split the sample into roughly
t = logmax{1/↵, 1/⇣} groups of equal size, and run the multinomial test
with parameters e↵ and e⇣, each equal to 1/4 say, on each of the groups. Now,
the overall test rejects the null hypothesis if more than 1/2 of the t group
tests reject the null hypothesis. Using a standard Hoe↵ding bound it is
straightforward to verify that this overall test, controls the Type I error at ↵
and Type II error at ⇣ as desired.

Our adaptive test then simply performs the sample-split version binning
test described in Theorem 4.1 for each choice of Ln 2 L, with the threshold ↵
reduced by a factor of dlog2(Cn

2/d)+1e. We refer to this test as the adaptive
Hölder test. We have the following result:
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Theorem F.1. Consider the testing problem in (F.3). The adaptive
Hölder test has Type I error at most ↵, and has Type II error at most ⇣.

Remarks:

• Comparing the non-adaptive critical radii in (4.3) and the adaptive
critical radii in (F.2) we see that we lose a factor of (log log(n))2/(4+d)

.

A natural question is whether such a loss is necessary.
• Classical results [2] consider adapting to an unknown Hölder exponent
s and show that for testing uniformity (with deviations in the `2 metric)
a loss of a factor (

p
log log(n))2s/(4s+d) is necessary and su�cient. In

our setting, the loss is of a log log factor instead of a
p
log log factor

and this is a consequence of using sample-splitting to reduce the Type
I and Type II errors of our test. We hope to develop a more precise
understanding of this situation in future work.

Proof. The proof follows almost directly from our previous analysis of
Theorem 4.1 so we only provide a brief sketch. It is straightforward to check
that the Bonferroni correction controls the size of the adaptive Hölder test
at ↵. Let j⇤ denote the smallest integer such that, 2j

⇤
L0 � Ln. In order to

bound the Type II error, it is su�cient to show that under the alternate, the
test corresponding to the index j

⇤ rejects the null hypothesis with probability
at least 1� ⇣. Noting that the ratio 2j

⇤
L0/Ln  2 this follows directly from

the proof of Theorem 4.1.

F.2.1. Proof of Lemma F.1. In order to establish this claim, it su�ces
to show that the lower bound on the critical radius in (4.3) is at least a
constant. By the monotonicity of the critical equation, it su�ces to show
that for some small constant c > 0 we have that,

c 
 
L
d/2
n TCc(p0)

n

!2/(4+d)

,

where C > 0 is the universal constant in (4.3). We choose c < 1/(2C) so we
obtain that it su�ces to show,

c 
 
L
d/2
n T1/2(p0)

n

!2/(4+d)

.
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We claim that for any p0 2 L(L0) there is a universal constant C1 > 0 such
that,

T1/2(p0) �
C1

L
d/2
0

.(F.4)

Taking this claim as given for now we see that,

 
L
d/2
n T1/2(p0)

n

!2/(4+d)

�
 
C1L

d/2
n

L
d/2
0 n

!2/(4+d)

�
 

C1

C
d/2
`

!2/(4+d)

� c,

as desired.
Proof of Claim (F.4): As a preliminary we first produce an upper bound on
any Hölder density. We claim that, there exists a constant C > 0 depending
only on the dimension such that any L0-Hölder density p0 is upper bounded

as kp0k1  CL
d/(d+1)
0 .

Without loss of generality let us suppose the density p0 is maximized at
x = 0. The density p0 is then lower bounded by the function,

g0(x) = (kp0k1 � L0kxk2) I(kp0k1 � L0kxk2 � 0).

The integral of this function is straightforward to compute, and since p0

must integrate to 1 we obtain that,

1 =

Z

x
p0(x)dx �

Z

x
g0(x)dx =

vd

d+ 1

kpkd+1
1

L
d
0

,

where vd denotes the volume of the d-dimensional unit ball. This in turn
yields the upper bound,

kpk1 
✓
d+ 1

vd

◆1/(d+1)

L
d/(d+1)
0 ,

as desired. With this result in place we can lower bound the truncated
T -functional. In particular, letting B� denote a set of probability content
1� � that (nearly) minimizes the truncated T -functional we have that,

T
�
� (p0) =

Z

B�

p
�
0(x)dx �

Z

B�

p0(x)

kpk1��
1

dx �
✓

vd

d+ 1

◆1/(3+d) 1� �

L
d/(3+d)
0

,

which gives the bound,

T�(p0) �
✓

vd

d+ 1

◆1/2 (1� �)(3+d)/2

L
d/2
0

,

as desired. Taking � = 1/2 yields the desired claim.
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Fig 5: A comparison between the truncated �2 test, the 2/3-rd + tail test
[4], the �2-test, the likelihood ratio test, the `1 test and the `2 test. The
null is chosen to be uniform, and the alternate is either a dense or sparse
perturbation of the null. The power of the tests are plotted against the `1
distance between the null and alternate. Each point in the graph is an average
over 1000 trials. Despite the high-dimensionality (i.e. n = 300, d = 2000) the
tests have high-power, and perform comparably.

APPENDIX G: ADDITIONAL SIMULATIONS

In this section we re-visit the simulations for multinomials. In addition to the
alternatives that are created by dense and sparse perturbations of the null we
also consider two other perturbations: one where we perturb each coordinate
of the null by an amount proportional to the entry p0(i), and one where we
perturb each coordinate by p0(i)2/3, in magnitude with a Rademacher sign.
The latter perturbation is close to the worst-case perturbation considered by
[4] in their proof of local minimax lower bounds. We take n = 300, d = 2000
and each point in the graph is an average over 1000 trials.

Once again we observe that the truncated �2 test we propose, and the
2/3-rd + tail test from [4] are remarkably robust. All tests are comparable
when the null is uniform, while distinctions are clearer for the power law null.
The `2 test appears to have high-power against sparse alternatives suggesting
potential avenues for future investigation.
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Fig 6: A comparison between the truncated �2 test, the 2/3-rd + tail test
[4], the �2-test, the likelihood ratio test, the `1 test and the `2 test. The null
is chosen to be a power law with p0(i) / 1/i. The alternatives are uniform,
sparse (only perturbing the first two coordinates), perturbing each co-ordinate
proportional to p0(i)2/3 and perturbing each coordinate proportional to p0(i).
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