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Recap: Unsupervised Learning

I In supervised learning we have (X, Y ) pairs, and our goal was
to predict/guess Y from X.

I In unsupervised learning we just observe {X1, . . . , Xn} where
Xi œ Rd.

I We could imagine several possible tasks:
1. Dimension Reduction/Visualization: Reduce the

dimension of the data from d to something smaller (in a way
that makes sense) so we can explore/visualize the data.

2. Clustering: Group the n points into k groups (in a way that
makes sense).

3. Density Estimation: Estimate the underlying distribution of
the data (in a way that makes sense).

Notice the goals and the metrics are much more varied.
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Recap: Linear Algebra Basics

I Vectors:

v =

S

WWWWU

v1
v2
...

vd

T

XXXXV
.

I The length of a vector:

ÎvÎ2 =
Ò

v2
1 + . . . + v2

d.

I The projection of a vector b onto a unit vector a:

proja(b) = (aT b)a.
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Recap: Orthonormal Matrices
I Matrices Q œ Rd◊d:

Q =

S

WU
ø ø · · · ø
q1 q2 · · · qd

¿ ¿ · · · ¿

T

XV ,

which satisfy:

qT
i qj =

I
1 if i = j

0 otherwise.

I Orthonormal matrices satisfy:

QT Q = I,

QQT = I,

Q≠1 = QT .
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Recap: Matrix Decompositions
I Every real, symmetric matrix M can be diagonalized, i.e. we

can write:

M = U ◊ D ◊ UT ,

for a diagonal matrix D, and an orthnormal matrix U .
I The columns of U are called eigenvectors, and each column of

U has an associated diagonal entry in the matrix D are that is
its associated eigenvalue.

I We will usually arrange things so that |D11| Ø |D22| Ø . . ..
Positive semi-definite matrices are ones for which every
eigenvalue is Ø 0.

I The eigendecomposition has many uses. Given the
eigendecomposition you can easily invert the matrix, raise it
to some power, compute the matrix exponential and so on.

I We will also see that it will give us crucial insight into
important matrices.
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Recap: Matrix Decompositions

I Every real matrix (not necessarily symmetric or even square)
M can be written in terms of its Singular Value
Decomposition:

M = U ◊ � ◊ V T ,

for a diagonal matrix � with all positive entries, and two
orthnormal matrices U, V .

I In particular, we can see that:

MMT = U ◊ �2 ◊ UT

MT M = V ◊ �2 ◊ V T .

So U and V are just the eigenvectors of MMT and MT M
(which are both symmetric matrices).
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The Covariance Matrix
I We have talked about matrices abstractly so far. Let us now

think about a particular important matrix. Remember, all we
have is a data matrix X œ Rn◊d.

I We will assume throughout the rest of the lecture that we
have centered the matrix X so it has columns with mean 0
(so the mean of the data is the 0 vector).

I One thing that we can compute is the covariance matrix:

‚� = .

The covariance matrix can also be written as:

‚� =

where xi œ Rd is the i-th data sample (the i-th row of X
represented as a column vector).
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The Covariance Matrix

I The covariance matrix is symmetric (and real) and so has an
eigendecomposition.

I It is also a positive semi-definite matrix.
I Finally, observe that for any vector v we can compute:

vT ‚�v = vT

C
1
n

nÿ

i=1
xix

T
i

D

v

= 1
n

nÿ

i=1
(vT xi)2.

This is just the variance of the data projected onto the
direction v.
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Back to Unsupervised Learning:
What is Dimension Reduction?

Dimension reduction: the task of transforming our data set to one
with fewer features. We want this transformation to preserve the
main structure that is present in the feature space

A new feature can be one of the old features, or it can be a some
linear or nonlinear combination of old features.

It is often the first step in an analysis, to be followed by, e.g.,
visualization, clustering, regression, classification
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Linear dimension reduction

We’re going to start with linear dimension reduction.

This means: looking for linear subspaces around which our data
seem to concentrate.

Specifically, we’ll be looking for subspaces which contain a large
amount of the variance in the data. This is PCA.

I We hope that dimensions which contain lots of the variance
are also interesting. . .
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PCA Examples

I Just to convince you that PCA is actually an interesting
method here are a couple of examples: Suppose we took the
MNIST digits dataset (a dataset of handwritten digits). Here
is a small sample:

We want to understand/visualize the data but it is
800-dimensional and there are 50,000 points.
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PCA on MNIST
Suppose we found two “interesting directions” and projected the
data onto those two and plotted them.
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Genes Mirror Geography
I This is data from about 3000 Europeans – for each of them

we measure 0.5 million DNA sites. So our data matrix has
3000 points each in 0.5 million dimensions.

What are these interesting directions? 13
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Example: Projections onto Orthonormal Vectors

Example: X œ R2000◊3, and v1, v2, v3 œ R3 are the unit vectors
parallel to the coordinate axes
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Not all linear projections are equal! What makes a good one?
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Principal component analysis

The first principal component direction of X is the unit vector
v1 œ Rp that maximizes the sample variance of Xv1 œ Rn when
compared to all other unit vectors.

As we saw earlier the variance in direction v is just given by vT ‚�v.
Hence the first principal component direction v1 œ Rp is

v1 = argmax
ÎvÎ2=1

vT ‚�v.

We will call the variance in the direction v1 as the amount of
variance explained by v1:

d2
1 = vT

1
‚�v1.

The vector Xv1 œ Rn is called the first principal component score
of X.

15
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How do we think about this in terms of Eigenvectors and
Eigenvalues?

I The top principal component is just the top eigenvector (i.e.
with largest eigenvalue) of ‚�.

I The proportion of variance explained is just the associated top
eigenvalue.
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Further principal component directions and scores

Given the k ≠ 1 principal component directions v1, . . . vk≠1 œ Rp

(note that these are orthonormal), we define the kth principal
component direction vk œ Rp to be

vk = argmax
ÎvÎ2=1

vT vj=0, j=1,...k≠1

vT ‚�v.

The vector Xvk œ Rn is called the kth principal component score
of X.
The amount of variance explained by the k-th PC is:

d2
k = vT

k
‚�vk.

How do we think about the PC scores?
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Principal Component Scores
Suppose we computed the SVD of X:

X = U ◊ ÂD ◊ V T ,

where V is the collection of eigenvectors of the covariance matrix,
and U are the eigenvectors of XXT . So

Xv1 = u1 Âd11,

...
Xvk = uk

Âdkk.

So the PC scores are just given by the U matrix in the SVD of X.
Furthermore, if we wanted the projection of X onto the principal
component vk we would use:

XvkvT
k œ Rn◊p.
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Properties and representations

I For the kth principal component direction vk œ Rp and score
uk œ Rn, the entries of Xvk = dkuk are the scores from
projecting X onto vk, and the rows of XvkvT

k = dkukvT
k are

the projected vectors

I The directions vk and normalized scores uk are only unique up
to sign flips

I Concise representation: let the columns of V œ Rp◊p be the
directions.

1. Scores: columns of XV œ Rn◊p.
2. Projections onto Vk (first k columns of V ): rows of

XVkV T
k œ Rn◊p

19



Example: principal component analysis in R3

Example: X œ R2000◊3. Shown are the three principal component
directions v1, v2, v3 œ R3, and the scores from projecting onto the
first two directions

First three principal component directions
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Example: projecting onto principal component directions

Same example: X œ R2000◊3, v1, v2, . . . v3 œ R3. What happens if
replace X by its projection onto v1? Onto v1, v2? Onto v1, v2, v3?

Projection onto v1
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Projection onto v1, v2, v3
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The third plot looks exactly the same as the original data. . .
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Proportion of variance explained
Recall that we said: d2

k is the amount of variance explained by the
kth principal component direction vk

Two facts:
I The total sample variance of X is

qp
j=1 d2

j

I The total sample variance of XVkV T
k is

qk
j=1 d2

j (amount of
variance explained by v1 . . . vk)

Hence the proportion of variance explained by the first k principal
component directions v1, . . . vk is

qk
j=1 d2

jqp
j=1 d2

j

If this is high for a small value of k, then it means that the main
structure in X can be explained by a small number of directions
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Example: proportion of variance explained

Example: proportion of variance explained as a function of k, for
the donut data
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Dimension reduction via the principal component scores

As we’ve seen in the examples, dimension reduction via principal
component analysis can be achieved by taking the first k principal
component scores Xv1, . . . Xvk œ Rn

We can think of Xv1, . . . Xvk as our new feature vectors, which is
a big savings if k π p (e.g. k = 2 or 3)

An important question: how good are these features at capturing
the structure of our old features? Broken up into two questions:

1. How good are they, for a fixed k?
2. What exactly do we gain by increasing k?

Recall that the second question can be addressed by looking at the
proportion of variance explained as a function of k

24



Example: proportion of variance explained, glass data
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Approximation by projection

As for the first question, think about approximating X by XVkV T
k ,

the projection of X onto the first k principal component directions

An alternate characterization of the principal component
directions: given centered X œ Rn◊p, if Vk = [v1 . . . vk] œ Rp◊k is
the matrix whose columns contain the first k principal component
directions of X, then

XVkV T
k = argmin

rank(A)=k
ÎX ≠ AÎ2

F = argmin
rank(A)=k

nÿ

i=1

pÿ

j=1
(Xij ≠ Aij)2

In other words, XVkV T
k is the best rank k approximation to X

(Aside: the above problem is nonconvex, and would be very hard
to solve in general!)
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Understanding the Alternate Characterization

I We will not spend too much time on this but here is how to
think about the alternate characterization.

I By Pythagoras’ Theorem we know that:

I So we conclude that:
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Scaling the features

We always center the columns of X before computing the principal
component directions.

Another common pre-processing step is to scale the columns of X,
i.e., to divide each feature by its sample variance, so that each
feature in our new X has a sample variance of one.
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Computing principal component directions

This is just a repeat of things you have already seen. There are
two ways to compute the principal components.

Eigenvalue Decomposition: We write XT X
n = V DV T , where the

columns of V are the eigenvectors and D is the diagonal matrix of
eigenvalues. Then

I The columns of V , vj are the principal component directions.

I The eigenvalues are the amounts of variation explained.

I We can compute the scores Xvj .
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Computing principal component directions: SVD

The other alternative is to compute the SVD of X.

X = U D V T

n ◊ p n ◊ p p ◊ p p ◊ p

Here D = diag(d1, . . . dp) is diagonal with d1 Ø . . . Ø dp Ø 0, and
U, V both have orthonormal columns. This gives us everything:

I columns of V , v1, . . . vp œ Rp, are the principal component
directions

I columns of U , u1, . . . up œ Rn, are the principal component
scores

I Squaring the jth diagonal element of D and dividing by n
gives the variance explained by vj

(Don’t forget that we must first center the columns of X!)
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Summary

I Two ways to think about PCA:
1. k orthogonal directions of maximum variance.
2. k dimensional subspace that is “closest” to the data.

I Two (closely related) ways to compute the principal
components:

1. Using an eigendecomposition on the covariance matrix.
2. Using SVD on the data matrix X.
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