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Recap: Unsupervised Learning

» In supervised learning we have (X,Y) pairs, and our goal was
to predict/guess Y from X.

> In un rvised learning we just observe {X1,..., X,,} where
X; e(Rd.>

» We could imagine several possible tasks:

\S l’\ 1. Dimension Reduction/Visualization: Reduce the
bu\g d dimension of the data from d to something smaller (in a way
that makes sense) so we can explore/visualize the data.

@ “\(7.2 Clustering: Group the n points into k groups (in a way that

makes sense).
. Density Estimation: Estimate the underlying distribution of

the data (in a way that makes sense).

Notice the goals and the metrics are much more varied.




Recap: Linear Algebra Basics

» Vectors: L

U1 /

v2

Vd o-
» The length of a vector:
lollz = /o2 + ...+ 02 &

» The projection of a vector b onto a unit vector a;

T
proj,(b) = (a’b)a. /3 L « QA

— \Jall (o




Recap: Orthonormal Matrices

4
» Matrices Q € R%*¢; z

Tt 1
Q=1 ¢ - qd,
N ‘]3 /

q-Tq': 1 if 2=
v 0 otherwise.

which satisfy:

» Orthonormal matrices satisfy:

QrQ =1,
QQ' =1,
Q'=q".



Recap: Matrix Decompositions

Every real, symmetric matrix M can be diagonalized, i.e. we

can write:
w Do (o)

for a diagonal matrix D, and an ortfbnormal matrix U.

The columns of U are called eigenvectors, and each column of
U has an associated diagonal entry in the matrix D are that is
its associated eigenvalue.

We will usually arrange things so that |D11| > [Dao| > .. ..
Positive semi-definite matrices are ones for which every
eigenvalue is > 0.

The eigendecomposition has many uses. Given the
eigendecomposition you can easily invert the matrix, raise it
to some power, compute the matrix exponential and so on.
We will also see that it will give us crucial insight into
important matrices.



Recap: Matrix Decompositions

» Every real matrix (not necessarily symmetric or even square)
_M can be written in terms of its Singular Value

“Decomposition: _ U \J are 63”\

M :_E NIBY ‘—/-T, Or"'RONO‘MA'

for a diagonal matrix X with all positive entries, and two
orthnormal matrices U, V.

» In particular, we can see that:

MM" =U x¥*xU"
MIM =V x¥?x VT,

aansss———

So U and V are just the eigenvectors of M M* and M1 M
(which are both symmetric matrices).




The Covariance Matrix

We have talked about matrices abstractly so far. Let us now
think about a particular important matrix. Remember, all we

_ _ d — 11-—')
have is a data matrix X € R"*¢, X;

We will assume throughout the rest of the lecture that we
have centered the matrix X so it has columns withkaean 0 °

(so the mean of the data is the O vector). An
One thing that we can compute is_the covariance matrix: c’

s_ XX Se¢ (424"

L — ®
The covariance matrix can also be written as:
R T
5= 1 i v Hy H
n i
where z; € R? is the i-th data sample (the i-th row of X
represented as a column vector).



The Covariance M?trix
X x) = XX

» The covariance at”x
eigendecomposition.

» It is also a positive semi-definite matrix. j a,ll rk Q:ZM\M-’M
ros'dwe.
1 n

&a.'llv oSy =0T [— szsz] v
ULN ni4
vanance

= =Y ()2 O\
= olx‘aun \eChen

This is just t@f the data projected onto the 1% .
direction wv. A

VY
(V] (i

S symmetric (and real) and so has an

> Flaally observe that for any vector v we can compute:
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Back to Unsupervised Learning:
What is Dimension Reduction?

Dimension reduction: the task of transforming our data set to one
with fewer features. We want this transformation to preserve the
main structure that is present in the feature space

A new feature can be one of the old features, or it can be a some
linear or nonlinear combination of old features.

—_—

It is often the first step in an analysis, to be followed by, e.g.,
visualization, clustering, regression, classification



. inear dimension reduction

We're going to start with linear dimension reduction.

This means: looking for linear subspaces around which our data
seem to concentrate.

Specifically, we'll be looking for subspaces which contain a large
amount of the variance in the data. This is PCA.

» We hope that dimensions which contain lots of the variance
are also interesting. . .
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PCA Examples

» Just to convince you that PCA is actually an interesting
method here are a couple of examples: Suppose we took the
MNIST digits dataset (a dataset of handwritten digits). Here
is a small sample:
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We want to understand/visualize the data but it is
800-dimensional and there are 50,000 points.
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PCA on MNIST

Suppose we found two “interesting directions” and projected the
data onto those two and plotted them. 4

XK
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Genes Mirror Geography

» This is data from about 3000 Europeans — for each of them
we measure 0.5 million DNA sites. So our data matrix has
3000 points each in 0.5 million dimensions.
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What are these interesting directions? 13



Example: Projections onto Orthonormal Vectors

Example: X € R2000x3 "and vy, v9, v3 € R3 are the unit vectors

parallel to the coordinate axes
8f een— ‘2
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Not all linear projections are equal! What makes a good one?
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>

The first principal component direction of X is the unit vector
v1 € RP that maximizes the sample variance of Xv; € R™ when
compared to all other unit vectors.

Principal component analysis Y,
|

AN

As we saw earlier the variance in direction v is just given by v’ Zw.
Hence the first principal component direction v € RP is

re > Varianee die .
v1 = argmax v X
[v]l2=1

We will call the variance in the direction v; as the amount of
variance explained by vq: D

Bz KV

The vector Xv; € R" is called the first principal component score
of X.
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How do we think about this in terms of Eigenvectors and
Eigenvalues?

> The top principal component is just the top elgenvector (i.e
with largest elgenvalue) of 3.

— prove on W.
amount
> The gdigartion of variance explained is just the associatgd toR

eigenvalue. S ce \" S i’? EV? 2
z v (BV)v, = V) vivi= GV,
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Further principal component directio d scores
Q wan4 + e Q_@

Given the k — 1 principal component directions v1, ... vi_1 &RP
(note that these are orthonormal), we define the kth principal

component direction vi. € RP to be . -
P k MAYIMi2e Vanan@

VE = argmax vI'Sw. bd“' I (‘b

[v]l2=1
vl'v;=0, j=1,..k—1

—— —Rvﬁ“u\eF

The vector Xv; € R" is called the kth principal component score

of X. | | - W'PC’A

The amount of variance explained by the k-th PC is:

d% = vgivk .
Z

How do we think about the PC scores?




and U are the eigenvectors of X X7. So

N o AN
g

So the PC scores are just given by the U matrix in the SVD of X.
Furthermore, if we wanted the projection of X onto the principal
component v; we would use:

Xvy = udyy,

X’Uk = ukdkk.

Xopvi € R™P,
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Properties and representations

For the kth principal component direction v, € RP and score
ur € R™, the entries of Xv, = diu; are the scores from
projecting X onto vg, and the rows of Xvkv,Z = dkukvg are
the projected vectors

The directions v; and normalized scores uy are only unique up
to sign flips

Concise representation: let the columns of V' € RP*P be the
directions.
1. Scores: columns of XV € R"*P,

2. Projections onto Vj, (first k columns of V'): rows of
XV Vi e RxP
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Example: principal component analysis in R?

Example: X € R?000%3  Shown are the three principal component
directions v1, v, v3 € R3, and the scores from projecting onto the

first two directions

First three principal component directions

1.5

1.0

0.5

0.0

-0.5

-1.0

-15

-15 -10 -05 0.0 0.5 1.0 1.5

Xv,

0.0 0.5 1.0

-0.5

-1.0

First two principal component scores
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Example: projecting onto principal component directions

Same example: X €

R2000%3 “a)1 v, ... v3 € R3. What happens if

replace X by its projection onto v1? Onto vy, v2? Onto vy, vo, v3?

Projection onto v4 Projection onto v, v
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The third plot looks exactly the same as the

Projection onto vy, vy, V3
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original data. ..
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Proportion of variance explained

Recall that we said: d% is the amount of variance explained by the
kth principal component direction vy,

gam all U:ju\""‘@

Two facts: A
—» The total sample variance of X is Y-0_, d5 .
> The total sample variance of XV, V. is Z] 1 d2 (amount of
variance explained by vy ... v
p y 1. .. Ug) ex amS j. .
amg
Hence the proportion of variance explained by ’aTe first pr|nC|paI

component directions vq,...vg is
) vae P/fE E!
> j=1 d? -~

Z;:l d? ’b‘h\ \Iaﬂ Ah& .

If this is high for a small value of &, then it means that the main
structure in X can be explained by a small number of directions
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Example: proportion of variance explained

Example: proportion of variance explained as a function of £, for

sk 2 ain

the donut data

Proportion of variance explained
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Dimension reduction via the principal component scores

As we've seen in the examples, dimension reduction via principal
component analysis can be achieved by taking the first k& principal
component scores Xvyq,... Xvp € R™

We can think of Xwvq,... Xv; as our new feature vectors, which is
a big savings if k < p (e.g. k=2 or 3)

An important question: how good are these features at capturing
the structure of our old features? Broken up into two questions:

1. How good are they, for a fixed k7?
2. What exactly do we gain by increasing k7?

Recall that the second question can be addressed by looking at the
proportion of variance explained as a function of £
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Example: proportion of variance explained, glass data

Cumulative proportion of variance explained
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Approximation by projection

As for the first question, think about approximating X by XVkaT,
the projection of X onto the first k principal component directions

An alternate characterization of the principal component
directions: given centered X € R™ P, if V}, = [v1 ...v] € RP*F is
the matrix whose columns contain the first k principal component
directions of X, then

n p
XVkaT = argmin || X — AH% — argmin ZZ(XU — Az-j)2
rank(A)=k rank(A)=k ;1 j=1

In other words, XVkaT is the best rank k approximation to X

(Aside: the above problem is nonconvex, and would be very hard
to solve in general!)
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Understanding the Alternate Characterization |
X - VA Nty

mMma

» We will not spend too much time on this but here is how
think about the alternate characterization.

n minin@‘”’ ‘ 10 —h’v P\X

(k) @ e

4=\ o Vaf" - (Pre);)z
» By Pythagoras' Theorem we ov(ﬁ:c;at

(JIS" 7 4+ (FYS)‘)%: l)(c“:-

» So we conclude that:

P
N A _Z(FWJ ﬂg S ec'\/wL % min 2;@*9‘17







Scaling the features

We always center the columns of X before computing the principal
component directions.

Another common pre-processing step is to scale the columns of X,
i.e., to divide each feature by its sample variance, so that each
feature in our new X has a sample variance of one.

28



Computing principal component directions

This is just a repeat of things you have already seen. There are
two ways to compute the principal components.

. .. : T
Eigenvalue Decomposition: We write XnX = VDVT, where the
columns of V' are the eigenvectors and D is the diagonal matrix of
eigenvalues. Then

> The columns of V', v; are the principal component directions.
» The eigenvalues are the amounts of variation explained.

» We can compute the scores Xwv;.
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Computing principal component directions: SVD

The other alternative is to compute the SVD of X.

X = U D vt
n X p n X p p X p p X p
Here D = diag(dy, .. .d,) is diagonal with d; > ... > d, > 0, and
U,V both have orthonormal columns. This gives us everything:

> columns of V, v1,...v, € RP, are the principal component
directions

> columns of U, uq,...u, € R", are the principal component
scores

» Squaring the jth diagonal element of D and dividing by n
gives the variance explained by v;

(Don't forget that we must first center the columns of X1)
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Summary

» Two ways to think about PCA:

1. k orthogonal directions of maximum variance.
2. k dimensional subspace that is “closest” to the data.

» Two (closely related) ways to compute the principal
components:

1. Using an eigendecomposition on the covariance matrix.
2. Using SVD on the data matrix X.
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