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Recap: Principal Components Analysis (PCA)

I In unsupervised learning, we are just given a (big) data matrix
X œ Rn◊p.

I A basic question is: can we (meaningfully) reduce the
dimension of the data either so we can visualize it, cluster it,
or even do better supervised learning with it.

I PCA answers this questions by finding “interesting directions”
and projecting the data on to those directions.

I It is the most widely used exploratory data analysis tool. It is
extremely useful!
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Recap: What are principal components?

I The linear algebraic answers:
1. They are just eigenvectors of the covariance matrix

‚� = XT X/n.

2. Equivalently, they are the right singular vectors of the matrix
X.

3

X ER P mean 0

symmetric
E VDV PCs just cols of V

X VIVI just cels of F



Recap: What are principal components?
I The statistics/data-based answers:

1. They are the directions of maximum variance. For instance,
the first principal component:

2. They are subspaces which are closest on average to the data.
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Amount/Proportion of Variance Explained

I Suppose we write:

‚� =

then the:
1. Total variance in the data is given by:

T = .

2. Variance explained by i-th principal component is given by:

3. Cumulative proportion of variance explained:
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Recap: Amount/Proportion of Variance Explained

I Leads to two visualizations of the value of added principal
components:
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Recap: Dimension Reduction/Visualization

I Suppose we want to visualize our data (or reduce its
dimensionality) in k dimensions.

I We simply compute the projection of our data onto the k PCs
and plot it:

These are called PC scores.
I If for some reason we wanted to plot it in the original space

(i.e. plot the reconstruction of the data in the subspace
spanned by the PCs):
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Just to get a (short) break from linear algebra we’ll talk a bit
about clustering today and then return to more dimension

reduction (and lots more linear algebra)!
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What is clustering? And why?
Clustering: task of dividing up data into groups (clusters), so that
points in any one group are more “similar” to each other than to
points outside the group

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

−6 −4 −2 0 2 4

−2
0

2
4

X[,1]

X[
,2
]

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

−6 −4 −2 0 2 4
−2

0
2

4

X[,1]

X[
,2
]

9



Why cluster?

Why cluster? Two main uses
I Summary and data compression: deriving a reduced

representation of the full data set.
I Discovery: looking for new insights into the structure of the

data. E.g., finding groups of students that commit similar
mistakes, groups of clients with similar behaviors, groups of
assets with high dependence, or groups of users with similar
behaviors/likes/clicks.

Other uses, e.g.,
I Helping with prediction, i.e., in classification or regression
I Active learning, i.e. reducing the number of labeled examples

we need to do supervised learning
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Don’t confuse clustering and classification!
In classification, we have data for which the groups are known, and
we try to learn what di�erentiates these groups (i.e., classification
function) to properly classify future data

In clustering, we look at data for which groups are unknown and
undefined, and try to learn the groups themselves, as well as what
di�erentiates them
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Some terminology and notation
Given observations X1, . . . Xn, and dissimilarites d(Xi, Xj). (E.g.,
think of Xi œ Rp and d(Xi, Xj) = ÎXi ≠ XjÎ2

2)

Let K be the number of clusters (fixed). A clustering of points
X1, . . . Xn is a function C that assigns each observation Xi to a
group k œ {1, . . . K}
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What makes a good cluster?

In supervised learning, we had a very good idea what made a good
prediction function: Loss functions, misclassification rates, actual
costs, etc.

What makes a good clustering?
I Tightly packed groups?
I Well-separated groups?

You’ll eventually find that a clustering is “good” if it turns out to
be useful, usually for some downstream purpose.

We’ll explore several versions of all of these notions, each of which
will be useful...sometimes.
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Within-cluster scatter

One measure of a clustering is within-cluster scatter. This is a
measure of how spread out the points are within each cluster.

The general notion is that a good clustering should lead to
tightly-packed clusters with low within-cluster scatter.

Notation: C(i) = k means that Xi is assigned to group k, and nk

is the number of points in the group k. Also, let dij = d(Xi, Xj).

The within-cluster scatter is defined as

W = 1
2

Kÿ

k=1

1
nk

ÿ

C(i)=k, C(j)=k

dij

Smaller W is better
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Simple example

Here n = 5 and K = 2,
Xi œ R2 and dij = ÎXi ≠ XjÎ2

2

1 2 3 4 5
1 0 0.25 0.98 0.52 1.09
2 0.25 0 1.09 0.53 0.72
3 0.98 1.09 0 0.10 0.25
4 0.52 0.53 0.10 0 0.17
5 1.09 0.72 0.25 0.17 0

I Red clustering:
Wred = (0.25 + 0.53 + 0.52)/3 + 0.25/2 = 0.56

I Blue clustering:
Wblue = 0.25/2 + (0.10 + 0.17 + 0.25)/3 = 0.30
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Finding the best group assignments

Smaller W is better, so why don’t we just directly find the
clustering C that minimizes W?

Problem: doing so requires trying all possible assignments of the n
points into K groups. The number of possible assignments is huge!

For 25 points and 4 groups: ¥ 5 ◊ 1013

Most problems we look at are going to have way more than n = 25
observations, and potentially more than K = 4 clusters too.

So we’ll have to settle for an approximation
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Rewriting the within-cluster scatter

Focus on Euclidean space: now Xi œ Rp and dissimilarities are
d(Xi, Xj) = ÎXi ≠ XjÎ2

2

Fact: within-cluster scatter can be rewritten as

1
2

Kÿ

k=1

1
nk

ÿ

C(i)=k

ÿ

C(j)=k

ÎXi ≠ XjÎ2
2 =

Kÿ

k=1

ÿ

C(i)=k

ÎXi ≠ X̄kÎ2
2

with X̄k the average of points in group k, X̄k = 1
nk

q
C(i)=k Xi.

The right-hand side above is called within-cluster variation

Hence, equivalently we seek a clustering C that minimizes the
within-cluster variation (approximately)
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Rewriting the minimization

Remember: we want to choose C to minimize
Kÿ

k=1

ÿ

C(i)=k

ÎXi ≠ X̄kÎ2
2

Question: for any Z1, . . . Zm œ Rp, suppose that we minimize the
quantity

qm
i=1 ÎZi ≠ cÎ2

2 over c. What is the minimizing c?
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Rewriting the minimization

With the fact from the last slide, we can introduce new variables
ck, and note that minimizing

Kÿ

k=1

ÿ

C(i)=k

ÎXi ≠ X̄kÎ2
2

is the same as minimizing

Kÿ

k=1

ÿ

C(i)=k

ÎXi ≠ ckÎ2
2,

over both clusterings C and c1, . . . cK œ Rp
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Finally...
We want to minimize

Kÿ

k=1

ÿ

C(i)=k

ÎXi ≠ ckÎ2
2,

over both clusterings C and c1, . . . cK œ Rp. It’s still not clear how
to do this. However, can you:

Minimize it just over C?

Minimize it just over ck?
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K-means algorithm
The K-means clustering algorithm approximately minimizes the
enlarged criterion by alternately minimizing over C and c1, . . . cK

We start with an initial guess for c1, . . . cK (e.g., pick K points at
random over the range of X1, . . . Xn), then repeat:

1. Minimize over C: for each i = 1, . . . n, find the cluster center
ck closest to Xi, and let C(i) = k

2. Minimize over c1, . . . cK : for each k = 1, . . . K, let ck = X̄k,
the average of points in group k

Stop when within-cluster variation doesn’t change

In words:
1. Cluster (label) each point based the closest center
2. Replace each center by the average of points in its cluster
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K-means example
Here Xi œ R2, n = 300, and K = 3
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Voronoi tessellation

Given cluster centers, we identify
each point to its nearest center.
This defines a Voronoi tessellation
of Rp
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Given c1, . . . cK œ Rp, we define the Voronoi sets

Vk = {x œ Rp : Îx ≠ ckÎ2
2 Æ Îx ≠ cjÎ2

2, j = 1, . . . K}, k = 1, . . . K

These are convex polyhedra (should remind you of LDA)
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Properties of K-means

I Within-cluster variation decreases with each iteration of the
algorithm. I.e., if Wt is the within-cluster variation at iteration
t, then Wt+1 Æ Wt

I The algorithm always converges, no matter the initial cluster
centers. In fact, it takes Æ Kn iterations (why?)

I The final clustering depends on the initial cluster centers.
Sometimes, di�erent initial centers lead to very di�erent final
outputs. So we typically run K-means multiple times (e.g., 10
times), randomly initializing cluster centers for each run, then
choose among from collection of centers based on which one
gives the smallest within-cluster variation

I The algorithm is not guaranteed to deliver the clustering that
globally minimizes within-cluster variation (recall: this would
require looking through all possible assignments!)
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K-means example, multiple runs
Here Xi œ R2, n = 250, and K = 4, the points are not as
well-separated

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

0.0 0.5 1.0 1.5

−0
.5

0.
0

0.
5

1.
0

1.
5

WCV = 25.9

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

0.0 0.5 1.0 1.5

−0
.5

0.
0

0.
5

1.
0

1.
5

WCV = 18.1

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

0.0 0.5 1.0 1.5

−0
.5

0.
0

0.
5

1.
0

1.
5

WCV = 24.3

●

●

●

●

●

●

●

●

These are results of result of running the K-means algorithm with
di�erent initial centers (chosen randomly over the range of the
Xi’s). We choose the second collection of centers because it yields
the smallest within-cluster variation
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What are some things K-means lacks?

K-means is a famous, standard clustering algorithm. However, it
lacks several potentially-desirable qualities:

I Ability to use other measures of dissimilarity

I “Interpretable” cluster centers

I Deterministic results

I Multi-level/scale view of clusters, Nested clusters.
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In K-means, cluster centers are averages

A cluster center is representative for all points in a cluster, also
called a prototype

In K-means, we simply take a cluster center to be the average of
points in the cluster. Great for computational purposes—but how
does it lend to interpretation?

Sometimes we prefer methods that return a representative item for
the cluster, rather than an average. For example: a “typical” asset
or company that is similar to all the other members of the cluster.
This makes it easier to think about what the cluster means.

Suppose we were clustering documents. What does an “average”
document mean? A typical document is more useful.
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K-medoids algorithm
K-medoiids clustering addresses the first two concerns. It make
each center one of the cluster points. It also allows other
dimilarities to be substituted.

Initial guess for centers c1, . . . cK (e.g., randomly select K of the
points X1, . . . Xn), then repeat:

1. Minimize over C: for each i = 1, . . . n, find the cluster center
ck closest to Xi, and let C(i) = k

2. Minimize over c1, . . . cK : for each k = 1, . . . K, let ck = Xú
k ,

the medoid of points in cluster k, i.e., the point Xi in cluster
k that minimizes

q
C(j)=k ÎXj ≠ XiÎ2

2
Stop when within-cluster variation doesn’t change

In words:
1. Cluster (label) each point based on the closest center
2. Replace each center by the medoid of points in its cluster
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K-medoids example
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Note: only 3 points had di�erent labels under K-means
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Properties of K-medoids

The K-medoids algorithm shares the properties of K-means that
we discussed (each iteration decreases the criterion; the algorithm
always converges; di�erent starts gives di�erent final answers; it
does not achieve the global minimum)

K-medoids returns centers that are actual data points.

K-medoids generally returns a higher value ofqK
k=1

q
C(i)=k ÎXi ≠ ckÎ2

2 than does K-means (why?).

K-medoids is computationally harder than K-means (because of
step 2: computing the medoid is harder than computing the
average)
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