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Project Updates

1. Release date: First week of April.

2. Deliverables:

» Predictions due: April 30th.
» Final report due: May 3rd.

3. Teams: You can do projects individually or in teams of 2
(preferable). If you want me to (randomly) pair you with
another person use this google doc. | will do this on April 5th
at midnight (after the release of the project).

https://docs.google.com/document/d/
1HkWV112R8XR1mCDBJ6RH1xACRY25PB7zwzbj4tbDt _g/

edit?usp=sharing



Recap: K-medoids

» Just like K-means except we want the centers cy,...,ck to
be actual data points.

» Initial guess for centers c1,...ck (e.g., randomly select K of
the points X1,...X,,), then repeat:

1. Minimize over C: for each i = 1,...n, find the cluster center
ci closest to X;, and let C'(i) = k

2. Minimize over c¢1,...ck: foreach k =1,... K, let ¢, = X},
the medoid of points in cluster k, i.e., the point X in cluster &
that minimizes 3= y—y |1 X — Xill3

Stop when within-cluster variationm doesn’'t change

» Advantages over K-means: C, jom )CK m"ur) rc’ab(e.

» Disadvantages relative tq K-means:

= k- meaTwill ho worse
—) C°M171d"':3 meo\oio(s 1% kmro\u\




Recap: Hierarchical Clustering

» Want to produce a sequence of nested clusters. No need to
specify K anymore. y (e cut &1ve
» Two broad strategies: GQgg ® and @ AY“(.‘\\‘N\i
» Represent hierarchical clusters by a dendrogram: cut "P '3'
horizontally to get clusters, and heights tell us about

(dis)similarities, groups that merge near the bottom are quite
similar.
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Recap: Linkage

To specify an agglomerative hierarchical clustering algorithm
we only specify one thing: the linkage rule. This is just a way
to assign a distance to two groups of points (usually derived
from a distance between individual points).

The most canonical ways to do this:

1. Single Linkage:
dsingle(Ga H) _@

2. Complete Linkage:

e

dcomplete(Ga H) - iegl,e}}éH dij

3. Average Linkage:

oer 1
detmaZ(G, H) = > dij

nan
GUH ;o icH .




Recap: Cut Interpretations

AN
3@0 ¢0'Suppose we cut a (single/complete/average)-linkage
3\’& dendrogram at some height h to get clusters. Can we say
ar?ything.nice abou’_c_;che‘,ﬁlu's‘“gr's;{g n C 0 Jhere it ot leac}
> Single Linkage:
dxy & h 3\, O‘X‘I_‘Lk :
xy - ' : Aa cher
» Complete Linkage: NQ‘Y R‘r )(,\’ C C m

dey € b g

» Average Linkage: Nothing particularly interesting to say
here.

ont othet +hen
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Common properties

Single, complete, average linkage share the following properties:

{» These linkages operate on dissimilarities d;;, and don't need
the points X, ... X,, to be in Euclidean space

» Running agglomerative clustering with _any of these linkages
produces a dendrogram with no

Second property, in words: disimilarity scores between merged
clusters only increases as we run the algorithm

Means that we can draw a proper dendrogram, where the height of
a parent is always higher than height of its daughters



Example of a dendrogram with no inversions
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Shortcomings of mle complete linkage
> Cluglers ma 0ot

Single and complete linkage can have some practigal problems:
PP

» Single linkage suffers fro . In order to merge two
groups, only need one pairk ts to be close, irrespective
of all others. Therefore clusters can be too spread out, and
not compact enough

s ” Complete linkage avoids chaining, but suffers fro .
t}‘d Because its score is based on the worst-case dissinTtiarity
M K%:tween pairs, a point can be closer to points in other clusters
an to points in its own cluster. Clusters are compact, but
o\ \\’@E P P
o e  not far enough apart

Q
b Average linkage tries to strike a balance. It uses average pairwise
dissimilarity, so clusters tend to be relatively compact and relatively
far apart



Example of chaining and crowding
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Shortcomings of average linkage

Average linkage isn't perfect, it has its own problems:

. > Itis not clear what properties the resulting clusters have when
A') we cut an average linkage tree at given height A. Single and
(? complete linkage trees each had simple interpretations

» Results of average linkage clustering can change with a
monotone increasing transformation of dissimilarities d;;. l.e.,

é“/ if h is such that h(z) < h(y) whenever x <y, and if z < y

o!_p,-then h(z) < h(y), and we used dissimilarites h(d;;) instead of

Lo d;;, then we could get different answers

N Y-

‘bepending on the context, second problem may be important or
pj“ unimportant. E.g., it could be very clear what dissimilarities should

be used, or not

Note: results of single, complete linkage clustering are unchanged
under monotone transformations
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Example of a change with monotone increasing
transformation
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Recap: hierarchical agglomerative clustering

Hierarchical agglomerative clustering: start with all data points in
their own groups, and repeatedly merge groups, based on linkage
function. Stop when points are in one group (this is agglomerative;
there is also divisive)

This produces a sequence of clustering assignments, visualized by a
dendrogram (i.e., a tree). Each node in the tree represents a group,
and its height is proportional to the dissimilarity of its daughters

Three most common linkage functions: single, complete, average
linkage. Single linkage measures the least dissimilar pair between
groups, complete linkage measures the most dissimilar pair,
average linkage measures the average dissimilarity over all pairs

Each linkage has its strengths and weaknesses

13



Centroid linkage

Centroid linkage! is commonly used. Assume that X; € RP, and
di; = || Xi — Xj]|2. Let X, X denote group averages for G, H.
Then:

dcentroid(Ga H) — H& _‘&—IH2 |

Example (dissimilarities d;; are
distances, groups are marked
by colors): centroid linkage .
score deentroid (G, H) is the dis- .
tance between the group cen- T
troids (i.e., group averages)

'Eisen et al. (1998), “Cluster Analysis and Display of Genome-Wide

Expression Patterns”
14



Centroid linkage is the standard in biology

Centroid linkage is simple: easy to understand, and easy to
implement. Maybe for these reasons, it has become the standard
for hierarchical clustering in biology

Here n = 60, X; € R?, d;; = || X; — Xj||2. Cutting the tree at
some heights wouldn't make sense ... because the dendrogram has
inversions! But we can, e.g., still look at output with 3 clusters
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Shortcomings of centroid linkage

» Can produce dendrograms with inversions, which really messes
up the visualization

» Even if were we lucky enough to have no inversions, still no
interpretation for the clusters resulting from cutting the tree

» Answers change with a monotone transformation of the
dissimilarity measure d;; = ||X; — X||2. E.g., changing to
di; = || X; — X;||3 would give a different clustering

distance distance”2
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Linkages summary

_ No _Unchanged Cut
Linkage | . > | with monotone | . . 5| Notes
Inversions! ) Interpretation
transformation?
Single v v v chaining
Complete v v v crowding
Average v X X
Centroid X X X simple

Note: this doesn’t tell us what “best linkage” is.

Remember that choosing a linkage can be very situation

dependent.
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€ Drawbacks and More |deas

2\

> retura to#-means and attempt to address more of its
drawbadks. There are several that we listed and discussed
before but two are useful to keep in mind for now:

» K-means is not good at finding non-spherical clusters.

» K-means (and the hierarchical methods) is a “hard” clustering
method, i.e. each point gets assigned to exactly one cluster.
We might have overlapping clusters and K-means would not
be ideal for this setting.

» As an aside, none of the clustering methods we have seen so
far are particularly statistical.

19



A Picture

» We can see overlapping clusters.
» Points that could reasonably belong to either group are
impossible to distiyuish.

0.5

» Suppose we denote by z; the (unobserved) cluster
membership for the i-th point. Just like in classification
maybe we want to model/estimate:

P(z; = red@,P(zi = green|z;), and so on.

These are probabilities of belonging to different clusters, i.e.
they provide a _soft clustering.

20



Density Estimation

» We want to estimate the density of the points in some way

that allows us to extract clusters. ) t\AS‘\'Djfal\\.( .

0 0.5 1

» The density is clearly not Gaussian, and a kernel density
estimator will not be directly useful for clustering. Want
something in-between.

21



Mixture Models

» We are going to model the density as a mixture of simple
distributions:
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Mixture Models

» We are going to model the density as a mixture of simple
distributions:

<relative
5 mad¢

each ChAS"fr

» In particular,

./
ol Q2D

where ;') S"Vof

1. fr are some simple distributions,
2. A\ >0, Zle Ar = 1, are called mixture weights.
3. K is the number of mixture components (i.e. the number of
clusters).
» Do not get confused — summing densities is not the same as

summing draws from the distribution. .



Mixture Models

» How should we imagine mixture models? One way is to think

about how to sample from them. 'a"'ﬁﬂ"' chs,..e' mr&&f
)

» To sample from a mixture model;

» First we draw Z € {1,..., K}, where P(Z = k) = \;.
» Then we draw a sample from the simple distribution f.
» Why does this work? We know that:

fl)=> P(Z=kp(|Z=k) =) Mfz(x).
k=1

» Again, to emphasize: | X ~ %N(O, 1)+ %N(l, 1)]is not the
same as X1 ~ N(0,1)f Xz ~ N(1,1), and X = X; + Xo.

4ote a tae com
T H

. - o (00V)
’0 A r(‘\ T)Xxm‘:\N("(’ ). 24




Gaussian Mixture Models

By far the most popular mixture models are Gaussian Mixture
Models (GMMs).

In a GMM each simple distribution is a multivariate Gaussian.

So we wite o N(pe, T,

F@) =) Medr(w; . X,

k=1 —

where ¢ (-; pg, 2 ) denotes the Gaussian density with mean
(g and covariance Y.

What are the parameters of this model?

{><|~~ /\K{ {/u, -~ ,/MKZ gz{;-—'/Z(/j.
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Gaussian Mixture Models

> o

0.5}

0‘.
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» Model: )\1,)\2,)\3 and

fred (37) = N(,ureda Ered)7
Jolue (%) = N (tblues Xblue);
fgreen (33) = N(Mgreena 2green)y
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Mixture Models in Clustering

7 {(1) = Z ')P_N(/i L)

N(I)FH

» Suppose someone handed us a mixture m?ﬁ k ow would we
“soft” cluster our data?

ey
» For a point x we would compute for i {i, )Ei ;
2 a)

o P(X=Af2
LP(Z—z\X—:c) _U:()(-xtmj ' b()

» Does this expression make |ntUJve sense?

27



Estimating a Mixture Model

» So we only have one real question remaining, given data
\ Xi,...,X, how do we estimate the parameters of the
M,v\ mixture model i.e. the (Ag, px, Xg)?

» Seems easy enough. We can use the LDA idea, take data
ég. from each group, compute the fraction of points (for \x), the
mean (for uy) and the covariance (for X;).

28



Estimating a Mixture Model

So we only have one real question remaining, given data
Xi,...,X, how do we estimate the parameters of the
mixture model i.e. the (Ag, px, Xg)?

Seems easy enough. We can use the LDA idea, take data
from each group, compute the fraction of points (for \x), the
mean (for uy) and the covariance (for X;).

Any problems with this? Are the parameters of a mixture
model even identifiable?

In statistics we call these missing data or latent variable
problems, i.e. the cluster memberships Z1, ..., Z, are missing.

—
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Estimating a Mixture Model — MLE

» If we observed {(X1, Z1),...,(Xn, Z,)} we would JUSt use
maximum likelihood, i.e. we would maximize: ) ‘L,ool

M((@ Hks Sk )e1) Zlogf Xi, Zi),

and this would give us the “LDA" estimates we discussed on
the last slide.
» If we don't observe the Z;'s we should try to maximize the

likelihood of the data we see (this is galled the mar /n;)/
likelihood): /; Dbserv eJ IAQ)A

m%(()\k ,LLk,Ek; k— 1 Zlogf

equivalently:

n K
mfﬁ(()\k /Lk,zk k— 1 Zlog [Z f(Xzak)] )
k=1

this is a hard problem in general. 29



Estimating a Mixture Model — Expectation-Maximization

» EM is a general method for (approximately) maximizing the
(marginal) likelihood when you have missing data. We won't
get too much into the details but describe the EM algorithm

for GMMs directly.

(MalodouS"D Qg“%m‘,j Fk b clulors.

» Roughly, we want to first “guess” the latent variables Z; and
then if we knew those we could just maximize the

(usu—aI/Cﬂﬂete\ likelihood- —5 fe (op J’ ® ( 'dg.
ignin

» |t resembles k-means. Except instead of as ach point
to a single cluster we “softly” assign them so they contribute
fractionally to each cluster.

30



Estimating a Mixture Model — Expectation-Maximization

> We initialize the parameters (g, uix, X1 )%, randomly, and
then alternate the following two steps:

1. E step: We compute the cluster member Er e7w point

-~ ¥
— k|X;) = Ak @i (X pg, B : -/
>im qusj(Xi;,uj,Zj)
t % ff" beloh b -tk duster.

2. M-step: Recompute the parameters:

A )(. A = izt P2 = kIXi) i‘u!;\o wls -
Zw't > i1 P(Z; = k| X;) X; >d ’ZXI

Fka%kﬂk_ Zz \ P(Z; = k| X5) ﬂ“" 16(‘(
l

mrﬂi‘sﬂmllarly update the covariance matrix.
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Estimating a Mixture I\/&o

deI

EM in Action
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